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ABSTRACT

The K-means clustering problem seeks to partition the columns of
a data matrix in subsets, such that columns in the same subset are
‘close’ to each other. The co-clustering problem seeks to simulta-
neously partition the rows and columns of a matrix to produce ‘co-
herent’ groups called co-clusters. Co-clustering has recently found
numerous applications in diverse areas. The concept readily gener-
alizes to higher-way data sets (e.g., adding a temporal dimension).
Starting from K'-means, we show how co-clustering can be formu-
lated as constrained multilinear decomposition with sparse latent
factors. In the case of three- and higher-way data, this corresponds
to a PARAFAC decomposition with sparse latent factors. This is im-
portant, for PARAFAC is unique under mild conditions - and sparsity
further improves identifiability. This allows us to uniquely unravel a
large number of possibly overlapping co-clusters that are hidden in
the data. Interestingly, the imposition of latent sparsity pays a collat-
eral dividend: as one increases the number of fitted co-clusters, new
co-clusters are added without affecting those previously extracted.
An important corollary is that co-clusters can be extracted incremen-
tally; this implies that the algorithm scales well for large datasets.
We demonstrate the validity of our approach using the ENRON cor-
pus, as well as synthetic data.

1. INTRODUCTION

The classical (e.g., K-means) clustering problem seeks to partition
the columns of a data matrix in subsets, such that columns in the
same subset are ‘close’ to each other. The co-clustering problem
seeks to simultaneously partition the rows and the columns of a ma-
trix to produce ‘coherent’ groups called co-clusters. An example
could be a customer vs. product data matrix, where one is not in-
terested in clustering customers or products, but in jointly detecting
subsets of customers buying select products (e.g., online retailing).
This is also referred to as bi-clustering. Co-clustering has recently
found numerous applications in diverse areas, ranging from the anal-
ysis of gene co-expression to network traffic and social network
analysis [5, 8, 4, 10, 1]. The concept readily generalizes to higher-
way data sets (e.g., adding a temporal dimension); yet there are
very few papers dealing with three-way co-clustering (tri-clustering)
[15, 11, 16] and no systematic study of three- and higher-way co-
clustering, to the best of our knowledge. This is important because
the algebraic properties of three- and higher-way data are very dif-
ferent from those of two-way (matrix) data; see, for example [13].
Hard co-clustering is a generalization of K -means, which is NP-
hard. Several heuristic approaches and some disciplined approxi-
mations have been proposed in the literature for both hard and soft
bi-clustering [5, 8, 4, 10, 1]. Starting from basic K-means and its
extensions, we show how co-clustering can be formulated as a con-
strained multilinear decomposition with sparse latent factors. In the
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case of three- and higher-way data, this corresponds to a PARAFAC
decomposition with sparse latent factors. This has important impli-
cations for co-clustering, for PARAFAC is unique under mild condi-
tions; and sparsity further improves identifiability. This allows us to
uniquely unravel a large number of possibly overlapping co-clusters
that are hidden in the data - something impossible with matrix meth-
ods. Interestingly, the imposition of latent sparsity pays a collat-
eral dividend: as one increases the number of fitted co-clusters, new
co-clusters are added without affecting those previously extracted.
This is not true for PARAFAC without latent sparsity - which is not,
and generally cannot be an orthogonal decomposition, by virtue of
uniqueness. An important corollary of this ‘additivity’ is that the
co-clusters can be equivalently recovered one by one, in deflation
mode. This is important because fitting a rank-one component is
far easier computationally, implying that the approach remains op-
erational even for large datasets. We demonstrate our methodology
using the ENRON e-mail corpus, as well as synthetic data.

2. FORMULATION
Clustering as a constrained outer product decomposition: Con-
. oy . J
sider the familiar problem of clustering a set of vectors { x; € R! } .
1=

in K clusters. The goalis to find K << J cluster means {’-"k eR! } K

and an assignment of each x; to a best-matching cluster k£*(j) such
that - [x; — p,k*(j)|2 (or other suitable mismatch cost) is mini-
mized. In matrix algebra terms, the problem can be posed as fol-
lows. Define X := [x1,--- ,x75] (I x J), M = [pq, -+, pg]
(I x K), and an assignment matrix A := [a1,--- ,ak] (J X K)
having binary elements A (j, k) = ax(j) € {0, 1} and rows satis-
fying Zle A(j,k) = 1, Vj (i.e., each row sums to 1). The most
widely used version of the clustering problem, known as K-means
clustering, can then be written as

min [[X — MAT||%,
M,Ac{0,1}'*K N RS

where RS denotes the set of matrices with the property that each row
sums to 1. K-means clustering is NP-hard; for this reason, iterative
algorithms based on the Lloyd-Max iteration are typically used to
compute suboptimal solutions, often with good results.

Note that K-means clustering is equivalent to finding a best-
fitting approximation (in the least squares sense) of the matrix X as
a sum of K outer products

2
NP ———T
P
but the loadings in one mode are constrained: A € {0,1}"** N RS.
The binary constraint A (j, k) = ax(j) € {0, 1}, V4, k corresponds

to the usual case of ‘hard’ clustering: every data vector either be-
longs to a certain cluster or not. The RS constraint Y"1, A(j, k) =
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1, Vj ensures that every data vector belongs to one and only one
cluster - no data vector is left ‘orphan’ and the clusters are non-
overlapping. Relaxing the binary O-1 constraints to non-negativity
while maintaining the RS constraint corresponds to ‘soft’ cluster-
ing (overlapping clusters); the magnitude of A (7, k) now indicates
how well x; fits in cluster k. Replacing the RS constraint by its
“lossy” counterpart >+, A(j,k) < 1 (or even dropping it alto-
gether) emphasizes the extraction of tight clusters at the expense of
not modeling ‘outlying’ data points. This is often well-justified in
the context of exploratory data analysis. From this point on, we fo-
cus on soft lossy (co-) clustering. We also assume non-negative data,
and impose non-negativity on all latent variables - as is often needed
for interpretability.

Co-clustering as constrained outer product decomposition: K-
means and related approaches cluster whole vectors - meaning that
all elements of a given vector are considered when making clustering
decisions, and vectors that are clustered together are ideally ‘close’
in each and every coordinate. A single cluster is modeled as a rank-
one outer product plus noise: C = pa” + noise, where p is un-
constrained and a is binary; i.e., a(j) € {0,1}, with 1’s in those
elements corresponding to columns of the data matrix that belong
to the given cluster. The vector a will typically be sparse, because
most data columns will not belong to any given cluster - at least when
K > 2 and the cluster populations are roughly balanced.

There are many applications where certain vectors are close only
for a certain subset of their elements, and we need to spot this pat-
tern. A good example is gene expression data, where the rows of
the data matrix X correspond to genes, the columns to experimental
conditions, and the objective is to detect patterns of joint gene ex-
pression and the conditions under which this happens. Note that we
do not know a priori which genes are expressed together, or under
which conditions. Another example is marketing, where rows corre-
spond to products, columns to customers, and the objective is not to
cluster the products or the customers, but rather to detect (possibly
overlapping) groups of customers that tend to buy certain subsets of
products. This is the co-clustering (in this case bi-clustering) prob-
lem which has recently generated significant interest in numerous
disciplines [5, 8, 4, 10, 1]. In social network analysis, co-clustering
can be used to detect social groups (often called ‘cliques’) engaging
in certain types of social behavior.

Whereas one-sided clustering involves selection (which columns
belong to the given cluster) in one mode, co-clustering involves se-
lection on both modes (rows and columns). This can be modeled
as G = ba” + noise, where b and a are both sparse. When only
relative expression matters, we can relax the binary constraint on the
elements of b and a, possibly retaining non-negativity when appro-
priate. Assuming non-negative data X (4, j) > 0, Vi, j, and focusing
on overlapping (soft) lossy co-clustering, the problem can then be
formulated as

min_[|X - BAT|3,
B>0,A>0
where the inequalities apply element-wise, and the columns of A
(J x K) and B (I x K) should typically contain many zeros.
One may attempt to use PCA or NMF [9] for co-clustering; how-
ever, the columns of A and B will be very dense, destroying all
support information which is crucial in co-clustering applications.
PCA imposes orthogonality, which is artificial and limits analysis to
non-overlapping co-clusters if non-negativity is also imposed. En-
forcing sparsity is ideally accomplished by penalizing the number of
non-zero elements (the o norm), however this yields an intractable
optimization problem. Recent research has shown that a practical
alternative is to use an ¢; penalty in lieu of the ¢, norm. Enforcing

sparsity can be achieved using alternating sparse regression [12]

i [1X = BAT|[:+AD" [B(K)|+ A D [AG K-
ik ik

Ignoring sparsity constraints, the problem is a non-negative matrix
factorization, which is generally non-unique. Enforcing sparsity im-
proves conditional uniqueness [14], although the uniqueness of sparse
bilinear factorizations as above is currently an open problem.
Extension to three- and higher-way co-clustering: PARAFAC
with sparse latent factors: In many cases, one works with data sets
indexed by three or more variables, instead of two (as in matrices).
A good example is several batches of gene expression data measured
over several experimental conditions in two or more occasions or by
different labs. Another is social network data, such as the ENRON
e-mail corpus, where we have e-mail counts from sender to receiver
as a function of time, stored in a three-way array X whose (i, 7, n)-
th element X(¢, 7, n) is the number of packets send by transmitting
node ¢ to receiving node j during time interval n. The natural gen-
eralization of bi-clustering to tri-clustering is to consider a trilinear

outer product decomposition
K

X%ZakakQCk, (1

k=1

where ® stands for the outer product, i.e., [ar @ by © cx] (4,4, n)
= ay(i)br(j)ck(n), and all vectors should be sparse. Without con-

straints, the above is known as the PARAFAC decomposition [6],
and K is the exact or ‘essential’ rank of X, depending on whether
one seeks an exact or approximate decomposition. Note that latent
sparsity is key here, because the whole point of co-clustering is to
select subsets along each mode. Even without sparsity, however, the
PARAFAC decomposition is unique under relatively mild conditions
- even in certain cases where K >> min(7, J) (e.g., see [13]). This
means that our formulation of (overlapping and lossy) three-way co-
clustering can reveal the true latent patterns in the data when used
as an exploratory tool, even for a large number of co-clusters.

There are very few papers on tri-clustering in the literature [15,
11, 16] (note that tri-clustering is very different from K -means clus-
tering of three-way data, as considered, e.g., in [7]). Off-the-shelf
non-negative PARAFAC has been used for tri-clustering of web data
in [16], albeit without motivation as to why it is an appropriate tool
for co-clustering. A hybrid PARAFAC-Tucker model is proposed in
[11], again without clear motivation regarding its application to co-
clustering. Still, these are the closest pieces of work, and so will use
non-negative PARAFAC as a baseline for comparison in our simu-
lations. We underscore, however, that latent sparsity is key in our
present context, because the whole point of co-clustering is to select
subsets along each mode. Latent factor sparsity has not been con-
sidered in the aforementioned references, which did not start from a
“first principles’ formulation, as we did.

One may wonder if there is a need to impose sparsity in our
present context, in light of uniqueness of unconstrained (or non-
negative) PARAFAC. The answer is two-fold. First, in practice we
compute truncated PARAFAC approximations, instead of a full de-
composition; noise and unmodeled dynamics will thereby render the
extracted factors non-zero everywhere, with probability one. This
destroys the support information that is crucial for co-clustering. En-
forcing latent sparsity suppresses noise and automatically selects the
desired support in all modes, simultaneously. Second, the imposi-
tion of sparsity (and non-negativity) improve uniqueness, thereby
allowing stable extraction of more co-clusters than would otherwise
be possible with plain PARAFAC. For these two reasons, sparsity
constraints are very important here.
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3. PARAFAC WITH SPARSE LATENT FACTORS

Motivated by the aforementioned considerations, we propose the fol-
lowing formulation of tri-clustering

K
1 2
PR L N . kZ_l aobioalit @
AT IAG )+ A IBG R+ A [Cn, k),
i,k ik n.k

where A € R™*K B ¢ R7*¥, and C € RV*¥ contain vectors
ay, by, ¢k respectively; > is interpreted element-wise; and A is a
regularization parameter that trades-off sparsity for least-squares fit.
PARAFAC is usually fitted using alternating least squares (ALS),
wherein each of the three matrices is updated using least squares
conditioned on the other two matrices in a cyclic fashion [6]. In plain
ALS, each conditional update is a linear least squares problem, in-
cluding non-negativity constraints when appropriate. In our context
(which includes the ¢; penalty terms), each conditional update can
be shown to be tantamount to a Lasso problem [14], which can be
solved optimally in a variety of ways. We use a simple element-wise
coordinate descent algorithm for the Lasso step. In practice, we may
initialize A, B, C using non-negative ALS (as implemented in the
N-way Toolbox for Matlab [2]), followed by alternating Lasso. As
we will see shortly, however, a fortuitous side-benefit of our formu-
lation enables far simpler computation of the dominant co-clusters
in an incremental fashion.

4. EXPERIMENTAL EVALUATION

ENRON e-mail corpus: We used a summary version of the ENRON
dataset stored in a three-way array X of size 168 x 168 x 44, con-
taining the number of e-mails exchanged between 168 employees
over 44 months (spanning from 1998 to 2002), indexed by sender,
receiver, and month. Similar to [3], we first compress the dynamic
range of the raw data using a logarithmic transformation: each non-
zero entry of X is mapped to @' = log,(x) + 1. We then fit a
non-negative PARAFAC model with sparse latent factors to extract
the dominant co-clusters. In our present context, each co-cluster cap-
tures a ‘clique’ and its temporal evolution. Table 1 summarizes the
extracted cliques, which turn out to match the structure of the orga-
nization remarkably well - e.g., the label ‘legal’ in Table 1 means
that the corresponding co-cluster contains the employees in the legal
department (plus/minus one employee in all cases reported in Table
1). Furthermore, Table 1 indicates that increasing K yields a nested
sequence of co-clusters. This can also be appreciated by looking at
the corresponding temporal co-cluster profiles for K € {1,2,3},
shown in Fig. 1. We will soon return to this property, but for the
moment let us provide further evidence that our co-clustering anal-
ysis passes sanity checks. The temporal profiles for X = 5 are
plotted in Fig. 2. Two distinct peaks can be identified in the tem-
poral communication patterns among the various cliques. Namely,
the first peak is located in the months between the end of 2000 and
the middle of 2001 (points 26-33 in Fig. 2), when a change of CEO
occurred. The second peak corresponds to bankruptcy, and can be lo-
cated in the months between September and November 2001 (points
36-38 in Fig. 2). In [3], four class labels are identified: Legal, Ex-
ecutive/Govt. Affairs, Executive, Pipeline. The same class labels
are also identified in [11], where non-negative PARAFAC is used,
among other methods. Our results (cf. Table 1) are consistent with
[3, 11], but our cliques are far cleaner, containing fewer outliers due
to the imposition of sparsity.
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Synthetic Data: Starting from an all-zero array X of size 80 x
80 x 8, we implant three co-clusters: Xo.54 50.04,1.3 = 415,53}
Xyo:a,70:7a,2:5 = 2D5,5,45 and Xgg 4 73,77 4.5 = 415,55, Where
I, : I denotes a range of indices and I; s x denotesan I x J X K
array of unit elements. We then add i.i.d. sparse Gaussian noise,
to make the problem a bit more challenging. The number of co-
clusters is set to K = 3. Fig. 3 shows the input data summed
across the third (temporal) mode, and the co-clusters extracted us-
ing PARAFAC with non-negative sparse latent factors (NN SLF) for
A = 12. One can easily verify that the support of each co-cluster
is perfectly recovered, and noise has been effectively removed. For
comparison, the results of PARAFAC with non-negativity (NN) but
without latent sparsity (A = 0) are shown in Fig. 4. Observe how
the two overlapping clusters have been merged into one; a ‘phantom’
co-cluster has emerged; and the loss of localization (leakage) due to
noise. It is important to note here that thresholding the results of
non-negative PARAFAC (Fig. 4) in a post-processing step may re-
duce leakage, but it will not recover the correct support information
and the phantom co-cluster will of course remain.

Nesting revisited: In both cases considered above we observed that
increasing K yields a nested sequence of co-clusters. This is not
limited to the specific datasets, as we shall see next. It is impor-
tant to note that ‘plain’ non-negative PARAFAC (corresponding to
A = 0) does not enjoy this property. This suggests that a sufficiently
large A is needed for the property to hold at least approximately.
Indeed, we have observed that this qualitative property holds with
increasing accuracy as A increases, and for higher values of K. For
numerical assessment, we simulated data containing two overlap-
ping co-clusters, similar to the synthetic data used above. Table 2
summarizes how well the property holds for A = 5, 15and A =0
(the latter corresponds to plain non-negative PARAFAC). The effect
of positive (and increasing) A is evident. Qualitatively similar obser-
vations have been made on completely unstructured (fully random)
data.

5. DISCUSSION

Starting from first principles, we have formulated a new approach to
co-clustering as constrained multilinear decomposition with sparse
latent factors. In future work, we plan to investigate i) automatic
ways of choosing J; ii) using imbalanced sparsity penalties for the
different modes; iii) theoretically justifying the nesting property ob-
served in experiments; and iv) analyzing the uniqueness potential of
PARAFAC with latent sparsity.

6. REFERENCES

[1] A. Anagnostopoulos, A. Dasgupta, R. Kumar, “Approximation Algorithms for
Co-Clustering,” in Proc. PODS 2008, June 9-12, 2008, Vancouver, BC, Canada.

[2] C.A. Andersson, R. Bro, “The N-way Toolbox for MATLAB,”
Chemometrics — and  Intelligent  Laboratory  Systems,  2000; see
http://www.models.life.ku.dk/nwaytoolbox

[3] B.W. Bader, R.A. Harshman, T.G. Kolda, “Temporal analysis of social networks
using three-way DEDICOM,” Sandia National Laboratories TR SAND2006-
2161, 2006.

[4] A. Banerjee, I. Dhillon, J. Ghosh, S. Merugu, and D. S. Modha, “A generalized
maximum entropy approach to Bregman co-clustering and matrix approxima-
tion,” Journal of Machine Learning Research, vol. 8, pp. 1919-1986, Aug. 2007.

[5] Y. Cheng and G. M. Church, “Biclustering of expression data,” in Proc. of the
Eighth International Conference on Intelligent Systems for Molecular Biology,
pp. 93-103, AAAI Press, 2000.

[6] R.A. Harshman, “Foundations of the Parafac procedure: models and conditions
for an "explanatory” multimodal factor analysis,” UCLA Working Papers in Pho-
netics, vol. 16, pp. 1-84, 1970.

[7]1 H. Huang, C. Ding, D. Luo, T. Li, “Simultaneous tensor subspace selection and

clustering: the equivalence of high order SVD and k-means clustering,” in Proc.
14th ACM SIGKDD, pp. 327-335, 2008.



[8] Y. Kluger, R. Basri, J. T. Chang, and M. Gerstein, “Spectral biclustering of mi-
croarray data: Coclustering genes and conditions,” Genome Research, vol. 13,

pp. 703-716, 2003.

[9] D. Lee and H. Seung, “Learning the parts of objects by non-negative matrix
factorization,” Nature, vol. 401, no. 6755, pp. 788-791, 1999.

[10]

S.C. Madeira and A.L. Oliveira, “Biclustering algorithms for biological data

analysis: a survey,” IEEE/ACM Trans. on Computational Biology and Bioinfor-

matics, vol. 1, no. 1, pp. 24-45, Jan.-Mar. 2004.
[11]

W. Peng, T. Li, “Temporal relation co-clustering on directional social network

and author-topic evolution,” Knowledge and Information Systems, pp. 1-20,

March 2010; DOI 10.1007/s10115-010-0289-9
(2]

I. Schizas, G.B. Giannakis, and N.D. Sidiropoulos, “Exploiting Covariance-

domain Sparsity for Dimensionality Reduction,” in Proc. [IEEE CAMSAP 2009,

Dec. 13-16, 2009, Aruba, Dutch Antilles.
[13]

T. Jiang, N.D. Sidiropoulos, “Kruskals Permutation Lemma and the Identifica-

tion of CANDECOMP/PARAFAC and Bilinear Models with Constant Modulus
Constraints,” IEEE Trans. on Signal Processing, vol. 52, no. 9, pp. 2625-2636,

Sept. 2004.
[14]

R. Tibshirani, “Regression shrinkage and selection via the lasso,” Journal of the

Royal Statistical Society. Series B (Methodological), vol. 58, no. 1, pp. 267-288,

1996.
[15]

ters in 3d microarray data,” in Proc. ACM SIGMOD 2005, p. 705.

[16]

L. Zhao, M.J. Zaki, “Tricluster: An effective algorithm for mining coherent clus-

Q. Zhou, G. Xu, Y. Zong, “Web Co-clustering of Usage Network Using Tensor

Decomposition,” in Proc. 2009 IEEE/WIC/ACM International Joint Conference
on Web Intelligence and Intelligent Agent Technology, vol. 3, pp. 311-314, 2009.

K =1 Tegal B

K =2 Legal Executive, Govt. affairs -

K =3 Legal Executive, Govt. affairs Trading -

K =4 Tegal Exccutive, Govi. affairs Trading Pipeline B
K =5 Legal Executive Executive, Govt. affairs Trading Pipeline

Table 1. Extracted co-clusters for ENRON (A = 30)

PARAFAC w/ NN SLF A-mode error B-mode error C-mode error
noisless (A = 5) 2.4 x 10~ 0 1.0 x 102 1.3 x 10— °
noisless (A = 15) 5.8 x 100 4.0 x 10-° 1.8 x 10— °

noisy (A = 5) 3.7 x 10~ 0 5.4 x 10~ 0 1.0 x 102
noisy (A = 15) 1.7 x 100 3.8 x 100 2.1 x 100
PARAFAC w/ NN A-mode error B-mode error C-mode error
noisless 0.1597 0.0024 0.0048
noisy 0.4479 0.0076 0.002

Table 2. Numerical assessment of ‘nesting’.

A-mode error :

max(abs(A2(:, 1) —As(:, 1))), where the subscript denotes the fitted
rank (number of co-clusters); and likewise for modes B and C.

K=1
b i
o~ T ————
ob— - . ) ‘ A~
0 5 10 15 20 25 30 35 m
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2 T
b i
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Fig. 1. Temporal co-cluster profiles for K € {1,2,3} and A = 30.
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Temporal evolution of co-clusters (K=5, lambda=30)
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Fig. 2. Temporal co-cluster profiles for K = 5 amd A = 30.
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Fig. 3. Overlapping co-clusters: PARAFAC w/ NN SLF (A = 12)

Third mode

Sum data

Co-cluster 1 Co-cluster 2

Co-cluster 3

Fig. 4. Overlapping co-clusters: PARAFAC w/ NN (A = 0)




