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Abstract How can we analyze large-scale real-world data
with various attributes? Many real-world data (e.g., network
traffic logs, web data, social networks, knowledge bases,
and sensor streams) with multiple attributes are represented
as multi-dimensional arrays, called tensors. For analyzing
a tensor, tensor decompositions are widely used in many
data mining applications: detecting malicious attackers in
network traffic logs with (source IP, destination IP, port-
number, timestamp), finding telemarketers in a phone call
history with (sender, receiver, date), and identifying inter-
esting concepts in a knowledge base with (subject, object,
relation). However, current tensor decomposition methods
do not scale to large and sparse real-world tensors with mil-
lions of rows and columns and ‘fibers’. In this paper, we pro-
pose HATEN2, a distributed method for large-scale tensor
decompositions that runs on the MAPREDUCE framework.
Our careful design and implementation of HATEN2 dramat-
ically reduce the size of intermediate data, and the number
of jobs leading to achieving high scalability compared with
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the state-of-the-art method. Thanks to HATEN2, we analyze
big real-world sparse tensors that can not be handled by the
current state of the art, and discover hidden concepts.
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1 Introduction

Given historic records of millions of people calling each
other, how can we identify telemarketers who make a lot
of calls but never receive ones? How can we detect sus-
picious attackers in a network packet transmission log? In
general, how can we analyze large-scale real-world data
with various attributes? Many real-world data (e.g., knowl-
edge bases [1], web data [2], network traffic data [3], and
many others [4–6]) with multiple attributes are represented
as multi-dimensional arrays, called tensors. In analyzing a
tensor, tensor decompositions are powerful tools in many
data mining applications: correlation analysis on sensor
streams [4], latent semantic indexing on DBLP publication
data [7], multi-aspect forensics on network data [3], network
discovery on fMRI data [6], to name a few. Using tensor de-
compositions, we find latent factors (or relations) within the
data. These latent factors can be roughly and informally seen
as soft-clustering of the data. For example decomposing a
tensor constructed from the phone call history with (sender,
receiver, date) into R latent factors corresponds to finding R
clusters of senders that call a set of receivers on a specific
date.

PARAFAC and Tucker are two widely used tensor de-
compositions. Since there is no single generalization of Sin-
gular Value Decomposition (SVD) for a tensor, both PA-
RAFAC and Tucker are considered as extensions of SVD
to higher dimensions. PARAFAC is useful for decomposing
a tensor into rank-one tensors which form the latent factors;
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Tucker is more suitable for compressing tensors and exam-
ining relations between the latent factors. Tucker is a more
generalized version of PARAFAC, since the factors interact
with all pairs of other factors.

Tensor decompositions have been extensively studied
for various data mining tasks. However, most of tensor de-
composition algorithms designed to deal with tensors fitting
in main memory fail to decompose recent large-scale real
world tensors with millions and billions of rows, columns,
and ‘fibers’. The main challenge is to overcome the interme-
diate data explosion problem in distributed systems where
the size of intermediate data exceeds the capacity of a sin-
gle machine or even a cluster as the size of an input ten-
sor gets larger. For example, if the size of the input tensor
X ∈ RI×J×K is I = J = K = 1 millions, the size of in-
termediate data of the n-mode product in Tucker would be-
come 1 Exabytes (=1018 bytes) with a straightforward im-
plementation using distributed systems. Thus, we need to
develop scalable and distributed tensor decomposition algo-
rithms.

In this paper, we propose HATEN2 (which stands for
HADOOP Tensor method for 2 decompositions), a scal-
able tensor decomposition suite for Tucker and PARA-
FAC decompositions on HADOOP [8], an open-source ver-
sion of the MAPREDUCE framework [9]. HATEN2 provides
both unconstrained and nonneagtivity-constrained PARA-
FAC and Tucker decompositions: HATEN2-PARAFAC and
HATEN2-Tucker for unconstrained version, and HATEN2-
PARAFACNN and HATEN2-TuckerNN for nonnegativity-
constrained version. Nonnegative tensor decomposition re-
ceives increasing attention because its result gives the ben-
efit of easy interpretation, thanks to the nonnegativity in the
factors. By carefully reordering operations and exploiting
the sparsity of real world tensors, HATEN2 solves the inter-
mediate data explosion problem in distributed systems. Fur-
thermore, HATEN2 significantly reduces the running time
by integrating several redundant jobs. As a result, HATEN2
is able to analyze data that are several orders of magnitude
larger than what the state of the art can handle. Applying
HATEN2 to several real world tensors, we discover mali-
cious attackers in network traffic logs with (source IP, desti-
nation IP, port-number, timestamp), telemarketers in a phone
call history with (sender, receiver, date), and interesting con-
cepts in a knowledge base with (subject, object, relation).

Our main contributions are the following:

– Algorithm. HATEN2 provides a unified framework,
for unconstrained and nonnegativity-constrained Tucker
and PARAFAC decompositions for sparse real world
tensors in distributed systems, which significantly re-
duce the intermediate data size and the running time.

– Scalability. HATEN2 decomposes up to 100× larger
tensors without constraints as shown in Figure 1 and
up to 1000× larger tensors with the nonnegativity con-

Table 1: Table of symbols.

Symbol Definition

X a tensor
X(n) mode-n matricization of a tensor
a a scalar (lowercase, italic letter)
a a column vector (lowercase, bold letter)
A a matrix (uppercase, bold letter)
R number of components
◦ outer product
⊗ Kronecker product
� Khatri-Rao product
∗ Hadamard product
· standard product
×̄n n-mode vector product
×n n-mode matrix product
∗̄n n-mode vector Hadarmard product (Definition 1)
∗n n-mode matrix Hadarmard product (Definition 5)
AT transpose of A
‖M‖F Frobenius norm of M
bin(X) function that converts non-zero elements of X to 1
nnz(X) number of nonzero elements in X

idx(X) set of indices ((i, j, k) or (i, j, k, l)) of nonzero
elements in X

I, J,K dimensions of each mode of input tensor X
P,Q,R dimensions of each mode of core tensor G

straint as shown in Figure 8. Furthermore, HATEN2
scales up near linearly on the number of machines.

– Discovery. By applying HATEN2, we discover inter-
esting patterns on various real-world data—knowledge
bases, network traffic logs, and phone call history—with
millions of rows, columns, and fibers which were hard
to analyze by existing methods.

The binary code and datasets are available at http://
datalab.snu.ac.kr/haten2. The preliminary ver-
sion of this work is described in [10]. In this work, we
add two tensor decompositions (HaTen2-PARAFACNN and
HaTen2-TuckerNN) for nonnegativity-constraints, and for-
mulate them using our HaTen2 framework (Section 3.3).
Furthermore, we present the additional discovery results
on the three real world tensors: concept discovery results
on RDF knowledge base (Freebase-sampled), network traf-
fic pattern discovery results on network traffic logs, and
phone call pattern discovery results on phone call history
(Phonecall) (Section 5.1∼ 5.3).

The rest of paper is organized as follows. Section 2
presents the preliminaries of the tensor and its decompo-
sitions. Section 3 describes our proposed method for the
scalable tensor decompositions. After presenting the exper-
imental results and discoveries in Section 4 and Section 5,
we discuss related works in Section 6. Then we conclude in
Section 7.
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(a) Nonzeros and Dimensionality (b) Density (c) Core (d) Order

Fig. 1: Data scalability of our proposed HATEN2-DRI compared to other methods, for Tucker decomposition. The datasets
are explained in detail at Section 4.1. o.o.m.: out of memory. Density is defined to be the number of nonzeros divided by the
number of all elements in a tensor. Note that our best method HATEN2-DRI analyzes 10 ∼ 100× larger data than the Tensor
Toolbox.

2 Preliminaries

In this section, we describe the preliminaries on tensor and
its decompositions. Table 1 shows the definitions of symbols
used in this paper. Matrices are denoted by boldface capitals
(e.g. B), and the rth row of the matrix B is denoted by br.
Vectors are denoted by boldface lowercases (e.g. a).

2.1 Tensor

Tensor. Tensor is a multi-dimensional array. Each ‘dimen-
sion’ of a tensor is called mode or way. An N -mode or N -
way tensor is denoted by X ∈ RI1×I2×···×IN . bin(X) de-
notes a function that converts non-zero elements in X to 1.
nnz(X) means the number of non-zero elements of X, and
idx(X) means the set of indexes (e.g. (i, j, k) for 3-mode
tensor X) of non-zero elements in X.
Fibers and Slices. A fiber is defined by fixing all but one in-
dex. In a 3-way tensor, it is denoted by X:jk,Xi:k, and Xij:.
A slice is defined by fixing all indices but two indices. In a
3-way tensor, it is denoted by Xi::,X:j: and X::k.
Matricization of tensor. The mode-n matricization of
a tensor X ∈ RI1×I2×···×IN is denoted by X(n) ∈
RIn×(

∏
k 6=n Ik) and arranges the mode-n fibers to be the

columns of the resulting matrix.
n-mode matrix product. The n-mode matrix product of a
tensor X ∈ RI1×I2×···×IN with a matrix U ∈ RJ×In is de-
noted by X×nU and is of size I1×···In−1×J×In+1···×IN .
It is defined by

(X×n U)i1...in−1jin+1...iN =

In∑
in=1

xi1i2...iNujin .

n-mode vector product. The n-mode vector product of a
tensor X ∈ RI1×I2×···×IN with a vector v ∈ RIn is denoted
by X×̄nv and is of size I1 × · · ·In−1 × In+1 · · · ×IN . It is

defined by

(X×̄nv)i1...in−1in+1...iN =

In∑
in=1

xi1i2...iN vin .

Kronecker product. The Kronecker product of matrices
A ∈ RI×J and B ∈ RK×L is denoted by A ⊗ B. The
result is a matrix of size (IK)× (JL) and defined by

A⊗B =


a11B a12B · · · a1JB
a21B a22B · · · a2JB

...
...

. . .
...

aI1B aI2B · · · aIJB


=
[
a1 ⊗ b1 a1 ⊗ b2 a1 ⊗ b3 · · · aJ ⊗ bL−1 aJ ⊗ bL

]
Khatri-Rao product. The Khatri-Rao product (or column-
wise Kronecker product) (A�B), where A,B have the
same number of columns, say R, is defined as:

A�B =
[
A(:, 1)⊗B(:, 1) · · ·A(:, R)⊗B(:, R)

]
where A(:, r) is the rth column of A. If A is of size I × R
and B is of size J ×R then (A�B) is of size IJ ×R.
Hadamard product. The Hadamard product A ∗ B is the
elementwise matrix product, where A and B have the same
size (I × J), and is defined as:

A ∗B =


a11b11 a12b12 · · · a1Jb1J

a21b21 a22b22 · · · a2Jb2J

...
...

. . .
...

aI1bI1 aI2bI2 · · · aIJbIJ



2.2 Basic Tensor Decomposition

Tensor decomposition is a general tool for tensor analysis.
Using tensor decomposition, we find latent factor or rela-
tions among data. In this paper, we focus on two major ten-
sor decompositions, PARAFAC and Tucker.
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2.2.1 PARAFAC Decomposition

PARAFAC (parallel factors) decomposition [11], also called
CANDECOMP (canonical decomposition), decomposes a
tensor into a sum of rank-one tensors. There has been rich
literature on algorithms for the PARAFAC decomposition, a
concise summary thereof can be found in [12].

Fig. 2: Rank-R PARAFAC decomposition of a three-way
tensor. The tensor X is decomposed as three factor matrices
A, B, and C.

PARAFAC decomposition for 3-way tensor. Given a 3-
way tensor X ∈ RI×J×K and rank R, PARAFAC decom-
position factorizes the tensor into 3 factor matrices, A, B,
and C, as follows:

X ≈ [λ;A,B,C] =

R∑
r=1

λrar ◦ br ◦ cr

where R is a positive integer (typically between 10 and
100), λ is a weight vector, and A ∈ RI×R, B ∈ RJ×R,
and C ∈ RK×R are the factor matrices. Figure 2 shows the
3-way PARAFAC tensor decomposition.

PARAFAC decomposition forN -way tensor. Given anN -
way tensor X ∈ RI1×I2×...×IN and rank R, PARAFAC
decomposition factorizes the tensor into N factor matrices,
A(1), A(2), ... , A(N), as follows:

X ≈ [λ;A(1),A(2), ...,A(N)] =

R∑
r=1

λra
(1)
r ◦a(2)r ◦...◦a(N)

r .

where R is a positive integer, λ is a weight vector, and
A(1) ∈ RI1×R, A(2) ∈ RI2×R, ... , A(N) ∈ RIN×R are the
factor matrices.

PARAFAC-ALS. Algorithm 1 shows the alternating least
squares algorithm for 3-way PARAFAC decomposition
where † denotes the pseudo-inverse operation. The stopping
criterion for Algorithm 1 is either one of the following: 1)

the difference between the two least squares errors of con-
secutive iterations is smaller than a threshold, or 2) the max-
imum number of iterations is exceeded.

Algorithm 1: 3-way PARAFAC-ALS.
Input: Tensor X ∈ RI×J×K , rank R, maximum iterations T
Output: PARAFAC decomposition λ ∈ RR×1,A ∈ RI×R,

B ∈ RJ×R, C ∈ RK×R

1: Initialize A,B,C;
2: for t = 1, ..., T do
3: A← X(1) (C�B) (CTC ∗BTB)†;
4: Normalize columns of A (storing norms in vector λ);
5: B← X(2) (C�A) (CTC ∗ATA)†;
6: Normalize columns of B (storing norms in vector λ);
7: C← X(3) (B�A) (BTB ∗ATA)†;
8: Normalize columns of C (storing norms in vector λ);
9: if stopping criterion is met then

10: break for loop;
11: end if
12: end for
13: return λ,A,B,C;

2.2.2 Tucker Decomposition

In Tucker decomposition [13], called N-mode PCA or N-
mode SVD, a tensor is decomposed into a core tensor and
factor matrices of each mode. The factor matrices represent
the principal components of each mode and the core ten-
sor represents the interactions between the different compo-
nents. Tucker decomposition is a more generalized version
of PARAFAC decomposition, since the factors interact with
all pairs of other factors.

Fig. 3: Tucker decomposition of a three-way tensor. The ten-
sor X is decomposed as a core tensor G, and three factor
matrices A, B, and C.

Tucker decomposition for 3-way tensor. The 3-way tensor
is decomposed as follows.

X ≈ [G;A,B,C] = G×1 A×2 B×3 C

=

P∑
p=1

Q∑
q=1

R∑
r=1

gpqrap ◦ bq ◦ cr
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where G ∈ RP×Q×R is the core tensor, and A ∈
RI×P ,B ∈ RJ×Q, and C ∈ RK×R are the factor matri-
ces. Figure 3 shows the Tucker decomposition of a 3-way
tensor.
Tucker decomposition for N-way tensor. The N-way ten-
sor is decomposed as follows.

X ≈ [G;A(1),A(2), ...,A(N)]

= G×1 A
(1) ×2 A

(2)...×N A(N)

where, G ∈ RJ1×J2...×JN is the core tensor, and A(1) ∈
RI1×J1 ,A(2) ∈ RI2×J2 , ..., and A(N) ∈ RIN×JN are the
factor matrices.
Tucker-ALS. Tucker-ALS algorithm uses an alternating
least squares approach. For updating each factor, there are
some approaches such as SVD, Bauer-Rutishauser, Gram-
Schmidt and NIPALS [14]. Algorithm 2 shows the standard
SVD-based algorithm for 3-way Tucker decomposition.

Algorithm 2: 3-way Tucker-ALS
Input: Tensor X ∈ RI×J×K , desired core size: P ×Q×R
Output: Core tensor G ∈ RP×Q×R and orthogonal factor matrices

A ∈ RI×P ,B ∈ RJ×Q, and C ∈ RK×R

1: Initialize B,C;
2: repeat
3: Y← X×2 BT ×3 CT ;
4: A← P leading left singular vectors of Y(1);
5: Y← X×1 AT ×3 CT ;
6: B← Q leading left singular vectors of Y(2);
7: Y← X×1 AT ×2 BT ;
8: C← R leading left singular vectors of Y(3);
9: G← Y×3 C;

10: until ||G|| ceases to increase or the maximum number of outer
iterations is exceeded.

2.3 Nonnegative Tensor Decomposition

Nonnegative tensor decomposition (NTD) is a tensor
decomposition with the constraint enforcing all elements
in the factors to be nonnegative. Since all elements have
nonnegative values, the result of NTD is more interpretable.
The most widely used method for nonnegative tensor
decomposition or nonnegative matrix decomposition is the
multiplicative update rule proposed by Lee and Seung [15].
They use the Euclidean distance and Kullback-Leibler
divergence for the cost function. Lemma 1 [15] is the
Euclidean distance version of the multiplicative update rule
for nonnegative matrix decomposition.

Lemma 1 When factoring the input matrix V into WH,
the Euclidean distance ‖V−WH‖ is nonincreasing under
the update rules

Haµ ← Haµ
(WTV)aµ

(WTWH)aµ
,Waµ ←Waµ

(VTH)aµ
(WHHT )aµ

.

The Euclidean distance is invariant under these updates
if and only if W and H are at a stationary point of the dis-
tance.

Since this rule is composed of only element wise mul-
tiplication and division, if an initial matrix is nonnegative,
then all interim matrices become nonnegative. The conver-
gence of the multiplicative update rule is proved in the pa-
per [15].

2.3.1 Nonnegative PARAFAC Decomposition

The definition and algorithm of nonnegative PARAFAC de-
composition for 3-way tensor are as follows.
Nonnegative PARAFAC decomposition for 3-way tensor.
Given a nonnegative tensor X, the nonnegative PARAFAC
decomposition solves

min
A,B,C

‖X−
R∑
r=1

λrar ◦ br ◦ cr‖,

subject to ar ≥ 0,br ≥ 0, cr ≥ 0, where A ∈ RI×R+ ,B ∈
RJ×R+ , and C ∈ RK×R

+ are factor matrices of PARAFAC
decomposition.
Nonnegative PARAFAC-ALS. Algorithm 3 shows nonneg-
ative PARAFAC-ALS algorithm for a 3-way tensor using
multiplicative update rule [16]. The stopping criterion of Al-
gorithm 3 is the same as that of Algorithm 1.

Algorithm 3: 3-way nonnegative PARAFAC-ALS
Input: Tensor X ∈ RI×J×K

+ , rank R, maximum iterations T .
Output: PARAFAC decomposition λ ∈ RR×1,A ∈ RI×R

+ ,
B ∈ RJ×R

+ , C ∈ RK×R
+ .

1: Initialize A,B,C with nonnegative values;
2: for t = 1, ..., T do
3: A← A ∗ X(1)(C�B)

A(CTC∗BTB)
;

4: Normalize columns of A (storing norms in vector λ);
5: B← B ∗ X(2)(C�A)

B(CTC∗ATA)
;

6: Normalize columns of B (storing norms in vector λ);
7: C← C ∗ X(3)(B�A)

C(BTB∗ATA)
;

8: Normalize columns of C (storing norms in vector λ);
9: if stopping criterion is met then

10: break for loop;
11: end if
12: end for
13: return λ,A,B,C;

2.3.2 Nonnegative Tucker Decomposition

The definition and algorithm of the nonnegative Tucker de-
composition for 3-way tensor are as follows.



6 Inah Jeon et al.

Nonnegative Tucker decomposition for 3-way tensor.
Given a nonnegative tensor X, the nonnegative Tucker de-
composition solves

min
A,B,C

‖X−
P∑
p=1

Q∑
q=1

R∑
r=1

gpqrap ◦ bq ◦ cr‖,

subject to gpqr ≥ 0,ap ≥ 0,bq ≥ 0, cr ≥ 0, where G ∈
RP×Q×R

+ is the core tensor, and A ∈ RI×P+ ,B ∈ RJ×Q+ ,
and C ∈ RK×R

+ are factor matrices of Tucker decomposi-
tion.
Nonnegative Tucker-ALS. Kim and Choi extend multi-
plicative rule based nonnegative PARAFAC decomposition
to nonnegative Tucker decomposition. Algorithm 4 shows
nonnegative Tucker-ALS algorithm for a 3-way tensor us-
ing multiplicative update rule [17].

Algorithm 4: 3-way nonnegative Tucker-ALS
Input: Tensor X ∈ RI×J×K

+ , desired core size: P ×Q×R

Output: Core tensor G ∈ RP×Q×R
+ and orthogonal factor matrices

A ∈ RI×P
+ ,B ∈ RJ×Q

+ , and C ∈ RK×R
+

1: Initialize B,C;
2: repeat

3: A← A ∗
(X×2B

T×3C
T )(1)G

T
(1)

A(G×2BTB×3CTC)(1)G
T
(1)

;

4: Normalize columns of A;

5: B← B ∗
(X×1A

T×3C
T )(2)G

T
(2)

B(G×1ATA×3CTC)(2)G
T
(2)

;

6: Normalize columns of B;

7: C← C ∗
(X×1A

T×2B
T )(3)G

T
(3)

C(G×1ATA×2BTB)(3)G
T
(3)

;

8: Normalize columns of C;
9: G← G ∗ X×1A

T×2B
T×3C

T

G×1ATA×2BTB×3CTC
;

10: until ||G|| ceases to increase or the maximum number of outer
iterations is exceeded.

3 Proposed Method

In this section, we present HATEN2, our proposed dis-
tributed MAPREDUCE algorithms for large scale tensor de-
compositions. Section 3.1 gives the main ideas of HATEN2;
Section 3.2 describes details of HATEN2; and Sec-
tion 3.3 extends HATEN2 for handling the nonnegativity-
constraints.

3.1 Overview

How can we design scalable and efficient PARAFAC/Tucker
decomposition algorithms for very large tensors? The most
challenging parts of those algorithms are n-mode matrix
product Y ← X ×2 BT ×3 CT (Lines 3, 5, and 7 of Al-
gorithms 2 and 4) in Tucker-ALS and nonnegative Tucker-
ALS, and Khatri-Rao product Y ← X(1) (C�B) (Lines

3, 5, and 7 of Algorithms 1 and 3) in PARAFAC-ALS and
nonnegative PARAFAC-ALS. There are several challenges
in designing efficient distributed algorithms for these opera-
tions.

– Minimize intermediate data. During the computation,
huge intermediate data are generated in the shuffle stage.
How can we minimize the intermediate data?

– Minimize disk accesses. How can we minimize the disk
accesses to decrease the running time?

– Minimize jobs. How can we minimize the number of
MAPREDUCE jobs to decrease the running time?

Our main ideas to address the challenges are as follows.

– Decoupling the steps in n-mode vector product. We
decouple the multiplication and the addition steps in n-
mode vector product by introducing a new operation
called Hadamard-and-Merge which leads to decreasing
the intermediate data size (Section 3.2.2).

– Removing dependencies in sequential products. We
remove dependencies by carefully reordering the com-
putations, and exploiting the sparsity of real world ten-
sors. It leads to further decreasing the intermediate data
size (Section 3.2.3).

– Integrating jobs by increasing memory usage. We in-
tegrate multiple MAPREDUCE jobs by increasing mem-
ory usage. The idea leads to minimizing the number of
jobs and the disk accesses (Section 3.2.4).

Figure 4 shows the framework of our proposed
HATEN2-DRI (or just HATEN2) method which contains
all the above ideas. Note that although the computations
for the two decompositions Tucker and PARAFAC are dif-
ferent, our HATEN2 unifies them into a general frame-
work where the two methods differ only at the final merge
step: HATEN2-Tucker uses CrossMerge, while HATEN2-
PARAFAC uses Pairwise-Merge (see Section 3.2.4 for
details). In the next subsection, we describe the three main
ideas in detail.

3.2 Method Details

In the following, we start with a naive method, and im-
prove the method gradually by adding several ideas one by
one until we reach the final method HATEN2-DRI (or just
HATEN2). Figure 5 and Table 2 summarize the differences
between all methods. Tables 3 and 4 show the total costs of
all the methods in terms of the maximum intermediate data
size, and the number of total MAPREDUCE jobs.
3.2.1 Naive Method

The most naive method is the straightforward implementa-
tion of the idea in MET [5], the state-of-the art single ma-
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Table 2: Comparison of all methods experimented. Our proposed and recommended method is HATEN2-DRI (or just
HATEN2) which incorporates all the proposed ideas.

Method Distributed? Decoupling the Steps (D/N) Remove Dependencies (R/N) Integrating Jobs (I/N)
(Section 3.2.2) (Section 3.2.3) (Section 3.2.4)

Tensor Toolbox No No No No
HATEN2-Naive Yes No No No
HATEN2-DNN Yes Yes No No
HATEN2-DRN Yes Yes Yes No

HATEN2-DRI (or just HATEN2) Yes Yes Yes Yes

Fig. 4: General computational framework in HATEN2 for Tucker and PARAFAC decompositions (Q = R in PARAFAC).
Although the two decompositions are different, our HATEN2 unifies them into a general framework where the two methods
differ only at the final merge step: CrossMerge for HATEN2-Tucker, and PairwiseMerge for HATEN2-PARAFAC (see
Section 3.2.4 for details).

Table 3: Summary of costs in all methods for comput-
ing X ×2 B ×3 C in Tucker decomposition. We replace
nnz(X ×2 B) with nnz(X)Q according to the estimation
of nnz(X×2 B) in Lemma 4.

Method Max. Intermediate Data Total Jobs

HATEN2-Tucker-Naive nnz(X) + IJK Q + R
HATEN2-Tucker-DNN nnz(X)QR Q + R + 2
HATEN2-Tucker-DRN nnz(X)(Q + R) Q + R + 1
HATEN2-Tucker-DRI nnz(X)(Q + R) 2

chine implementation which was adopted by Tensor Tool-
box. The main idea is to perform each n-mode vector prod-
uct separately. HATEN2-Tucker-Naive computes T = X×2

BT first by performing X×̄2b
T
q operation Q times, and

then computes T ×3 CT by performing T×̄3c
T
r operation

R times, where bq and cr are the qth row of B, and the
rth row of C, respectively. Algorithm 5 shows HATEN2-
Tucker-Naive method.

Table 4: Summary of costs in all methods for computing
X(1)(C�B) in PARAFAC decomposition.

Method Max. Intermediate Data Total Jobs

HATEN2-PARAFAC-Naive nnz(X) + IJK 2R
HATEN2-PARAFAC-DNN nnz(X) + J 4R
HATEN2-PARAFAC-DRN 2nnz(X)R 2R + 1
HATEN2-PARAFAC-DRI 2nnz(X)R 2

Similarly, HATEN2-PARAFAC-Naive computes Tr =

X×̄2b
T
r first, and then computes Yr = Tr×̄3c

T
r . It com-

putes Y by performing these operations R times. Algo-
rithm 6 shows HATEN2-PARAFAC-Naive method.
MAPREDUCE algorithm. The MAPREDUCE algorithm of
n-mode vector product X×̄2b

T
q in HATEN2-Naive is as fol-

lows.
<Naive: X×̄2b

T
q >

– MAP: map < i, j, k,X(i, j, k) > on (iK + k), such
that tuples with the same key are shuffled to the
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Algorithm 5: HATEN2-Tucker-Naive for computing
Y← X×2 B

T ×3 C
T

Input: Tensor X ∈ RI×J×K , and factor matrices B ∈ RJ×Q,
C ∈ RK×R

Output: Tensor Y ∈ RI×Q×R

1: for q=1,..,Q do
2: Tq ← X×̄2b

T
q ;

3: end for
4: for r=1,..,R do
5: Yr ← T×̄3c

T
r ;

6: end for

Algorithm 6: HATEN2-PARAFAC-Naive for comput-
ing Y← X(1) (C�B)

Input: Tensor X ∈ RI×J×K , and factor matrices B ∈ RJ×R,
C ∈ RK×R

Output: Tensor Y ∈ RI×R

1: for r=1,..,R do
2: Tr ← X×̄2b

T
r ;

3: Yr ← Tr×̄3c
T
r ;

4: end for

same reducer in the form of <key: (iK + k), values:
{(j,X(i, j, k))|∀(i, j, k) ∈ idx(Xi:k)} >, and send bq
to the all the reducers in the form of <key: (iK +

k)|∀(i, k), values: {(j,bq(j))|∀j ∈ idx(bq)} >.
– REDUCE: take <key: (iK + k), val-

ues: {(j,bq(j))|∀j ∈ idx(bq)},
{(j,X(i, j, k))|∀(i, j, k) ∈ idx(Xi:k)} >, and emit
< i, k,

∑J
j=1 X(i, j, k)bq(j) >.

The reducer processing the key iK + k receives the
non-zero elements of Xi:k and bq . Then it performs the in-
ner product of the two vectors, and outputs an element of
the result tensor Tq . T×̄3c

T
r operation is handled in the

same manner. Although simple, this naive implementation
has too much overhead because 1) the vector bTq is copied
IK times which eventually generates too much intermedi-
ate data (nnz(X) + IJK), and 2) the vector bTq might not
fit in the memory of a machine when J is very large. How
can we improve this naive method? In the following three
subsections we incrementally improve the naive method.

3.2.2 Decoupling the Steps in n-mode Vector Product

The first idea to improve the naive method is to make the n-
mode vector product ×̄n scalable. As we saw in the previous
subsection, the naive algorithm which broadcasts the vec-
tor bTq has too much overhead. Our idea, called Hadamard-
and-Merge, is to decouple the product into two steps: the
Hadamard product step where the element of the vector is
multiplied with the corresponding element of the tensor, and
the merge step where the multiplied values are summed.
Hadamard-and-Merge operation comprises the two follow-

ing operations: n-mode vector Hadamard product and Col-
lapse.

Definition 1 (n-mode vector Hadamard product) The n-
mode vector Hadamard product of a tensor
X ∈ RI1×I2×···×IN and a vector v ∈ RIn is denoted by
X∗̄nv and is of size I1 × I2 × · · · × IN . It is defined by

(X∗̄nv)i1...in...iN = xi1...in...iN vin .

Definition 2 (Collapse(X)n) The Collapse operation of
a tensor X ∈ RI1×I2×···×IN on mode n is denoted by
Collapse(X)n and is of size I1 × · · · × I(n−1) × I(n+1) ×
· · · × IN . It is defined by

(Collapse(X)n)i1...in−1in+1...iN =

In∑
in=1

xi1...in...iN .

Intuitively, the n-mode vector Hadamard product is a
generalization of Hadamard product of two vectors. The
Collapse(X)n operation sums up all the values of a ten-
sor X across the mode n. With these definitions, HATEN2-
DNN expresses the original n-mode vector product X×̄2b

T
q

by Collapse (X∗̄2bTq )2. By decoupling the n-mode vector
product into two steps, HATEN2-DNN greatly decreases the
intermediate data size of HATEN2-Naive from nnz(X) +

IJK to nnz(X)QR for Tucker, and from nnz(X) + IJK

to nnz(X) + J for PARAFAC. Algorithms 7 and 8 show
HATEN2-DNN for Tucker and PARAFAC decompositions,
respectively. In HATEN2-Tucker-DNN, we compute T =

X ×2 BT ∈ RI×Q×K by iteratively performing T′
q =

X∗̄2bTq for Q times, and then merging them using the op-
eration Collapse(T′)2. T ×3 CT operation is handled in
the same manner. In HATEN2-PARAFAC-DNN, Collapse is
applied right after the individual n-mode vector Hadamard
product.

Algorithm 7: HATEN2-Tucker-DNN for computing
Y← X×2 B

T ×3 C
T

Input: Tensor X ∈ RI×J×K , and factor matrices B ∈ RJ×Q,
C ∈ RK×R

Output: Tensor Y ∈ RI×Q×R

1: for q=1,..,Q do
2: T′

q ← X∗̄2bT
q ;

3: end for
4: T ← Collapse(T′)2;
5: for r=1,..,R do
6: Y′

r ← T∗̄3cTr ;
7: end for
8: Y← Collapse(Y′)3;

MAPREDUCE algorithm. The MAPREDUCE algorithms of
n-mode vector Hadamard product and Collapse(X)n in
HATEN2-DNN are expressed as follows.

< X∗̄2bTq >
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(a) HATEN2-Naive (b) HATEN2-DNN

(c) HATEN2-DRN (d) HATEN2-DRI

Fig. 5: Comparison of all HATEN2 variants for Tucker decomposition. Areas with the same color are sent to the same reducer
in the MAPREDUCE jobs for n-mode (Hadamard) product.

Algorithm 8: HATEN2-PARAFAC-DNN for comput-
ing Y← X(1) (C�B)

Input: Tensor X ∈ RI×J×K , and factor matrices B ∈ RJ×R,
C ∈ RK×R

Output: Tensor Y ∈ RI×R

1: for r=1,..,R do
2: T′

r ← X∗̄2bT
r ;

3: Tr ← Collapse(T′
r)2;

4: Y′
r ← Tr ∗̄3cTr ;

5: Yr ← Collapse(Y′
r)3;

6: end for

– MAP: map < i, j, k,X(i, j, k) > on j, and <

j, q,bq(j) > on j such that tuples with the same
key are shuffled to the same reducer in the form of
<key: j, values: (q,bq(j)), {(i, k,X(i, j, k))|∀(i, k) ∈
idx(Xi:k)} >.

– REDUCE: take <key: j, values:
(q,bq(j)), {(i, k,X(i, j, k))|∀(i, k) ∈ idx(Xi:k)} >

and emit < i, j, k, q,X(i, j, k)bq(j) > for each
(i, k) ∈ idx(Xi:k).

< Collapse(T)2 >

– MAP: map < i, j, k, q,X(i, j, k)B(j, q) > on (iK + k)

such that tuples with the same key are shuffled to the
same reducer in the form of <key: (iK + k), values:
{(q,X(i, j, k)B(j, q))|∀(i, j, k, q) ∈ idx(Ti:k:)} >.

– REDUCE: take <key: (iK + k), values:
{(q,X(i, j, k)B(j, q))|∀(i, j, k, q) ∈ idx(Ti:k:)} >

and emit < i, q, k,
∑
j X(i, j, k)B(j, q) > for each

(i, j, k, q) ∈ idx(Ti:k:).

In n-mode vector Hadamard product, the mappers send
nnz(X:j:) of j-th slice and an element of bq to reducers us-
ing j as the key. The reducers multiply the vector element
with the tensor elements. In Collapse operation, mappers
send nnz(Xi:k)Q elements to reducers using iK + k as the
key. The reducers aggregate the values.

3.2.3 Removing Dependencies in Sequential Products

The previous two methods HATEN2-Naive and HATEN2-
DNN have a significant problem: they have dependencies
in their computation sequences. In Tucker decomposition,
to compute Y ← X ×2 BT ×3 CT , both of the previous
methods first compute T = X×2 B

T by multiplying X and
columns of B, and then multiply T with the columns of C.
That is, the second step cannot be initiated until the first step
is finished. Similarly, in PARAFAC decomposition, comput-
ing Y ← X(1) (C�B) has a dependency: X is multiplied
with bT first, and the result is multiplied with cT . These de-
pendencies in the computation have the following problems.

– Too large intermediate data: in Tucker decomposition,
the number nnz(T) of nonzero elements in T = X ×2

BT is estimated to be nnz(X)Q for a sparse tensor
X, as described in Lemma 4. Thus, multiplying T with
CT would require intermediate data of size nnz(X)QR

which is prohibitively large.
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– Too many MAPREDUCE jobs: in PARAFAC decompo-
sition, HATEN2-PARAFAC-DNN requires 4R MAPRE-
DUCE jobs, since the first multiplication with bT , and
the second multiplication with cT are performed in se-
quence.

Our idea to solve the problems is to remove the depen-
dencies by carefully reordering the computations, and ex-
ploiting the sparsity of real world tensors. Before describing
the details, we introduce two new operations CrossMerge

and PairwiseMerge as follows.

Definition 3 (CrossMerge) The CrossMerge opera-
tion of N − 1 tensors X1 ∈ RI1×...×IN×J1 , ...,
Xn−1,Xn+1, ...,XN ∈ RI1×...×IN×JN on the mode n is
denoted by CrossMerge(X1, ...,Xn−1,Xn+1, ...,XN )(n)
and is of size RIn×J1×...×JN . It is defined by

(CrossMerge(X1, ...,Xn−1,Xn+1, ...,XN )(n))inj1...jN =

I1,...,In−1,In+1,...,IN∑
(i1,...,in−1,in+1,...,iN )=(1,...,1)

X1(i1, ..., iN , j1)×· · ·×Xm(i1, ...iN , jN ),

for all ji = 1, ..., Ji where i 6= n.

Definition 4 (PairwiseMerge) The PairwiseMerge

operation of N − 1 tensors X1, ...,Xn−1,Xn+1, ...,XN ∈
RI1×...×IN×J on the mode n is denoted by
PairwiseMerge(X1, ...,Xn−1,Xn+1, ...,XN )(n) and
is of size RIn×J . It is defined by

(PairwiseMerge(X1, ...,Xn−1,Xn+1, ...,XN )(n))inj =

I1,...,In−1,In+1,...,IN∑
(i1,...,in−1,in+1,...,iN )=(1,...,1)

X1(i1, ..., iN , j)×· · ·×Xm(i1, ...iN , j),

for all j = 1, ..., J .
Our crucial observation is that these two operations can

be used for removing the dependencies in the computations
of X ×2 BT ×3 CT and X(1) (C�B), respectively, as
shown in the following lemmas.

Lemma 2 (CrossMerge) Given X ∈ RI×J×K , B ∈
RJ×Q, and C ∈ RK×R,

X×2 B
T ×3 C

T ⇔ CrossMerge(T′,T′′)(1)

where T′ ∈ RI×J×K×Q is a tensor whose qth subtensor
T′

:::q is given by X∗̄2bTq , and T′′ ∈ RI×J×K×R is a tensor
whose rth subtensor T′

:::r is given by bin(X)∗̄3cTr .

Proof. The (i, q, k)-th element Miqk of M = X ×2 B
T is

given by

Miqk =

J∑
j=1

X(i, j, k)B(j, q).

Then the (i, q, r)-th element of (X×2 B
T )×3 C

T is

K∑
k=1

M(i, q, k)C(k, r)

=

K∑
k=1

(

J∑
j=1

X(i, j, k)B(j, q))C(k, r)

=

(J,K)∑
(j,k)=(1,1)

X(i, j, k)B(j, q)C(k, r) (1)

The (i, j, k, q)-th element of subtensor T′
:::q is given

by X(i, j, k)bTq (j), and (i, j, k, r)-th element of subtensor
T′′

:::r is given by (bin(X)(i, j, k))cTr (k). Therefore, the
(i, j, k, q)-th element of T′ is

T′
ijkq = X(i, j, k)B(j, q),

and the (i, j, k, r)-th element of T′′ is

T′′
ijkr = (bin(X)(i, j, k))C(k, r).

The (i, q, r)-th element of CrossMerge(T′,T′′)(1) is

(J,K)∑
(j,k)=(1,1)

T′(i, j, k, q)T′′(i, j, k, r).

=

(J,K)∑
(j,k)=(1,1)

X(i, j, k)B(j, q)(bin(X)(i, j, k))C(k, r)

=

(J,K)∑
(j,k)=(1,1)

X(i, j, k)B(j, q)C(k, r) (2)

where the last equality uses the fact X(i, j, k) ×
(bin(X)(i, j, k)) = X(i, j, k). The equation (1) for
(i, q, r)-th element of X ×2 BT ×3 CT is exactly the
same as the equation (2) for (i, q, r)-th element of
CrossMerge(T′,T′′)(1). �

Lemma 3 (PairwiseMerge) Given X ∈ RI×J×K , B ∈
RJ×R, and C ∈ RK×R,

X(1) (C�B)⇔ PairwiseMerge(F′,T′′)(1)

where F′ ∈ RI×J×K×R is a tensor whose rth subtensor
F′

:::r is given by X∗̄2bTr , and T′′ ∈ RI×J×K×R is a tensor
whose rth subtensor T′

:::r is given by bin(X)∗̄3cTr .

Proof. The (i, r)-th element of M = X(1)(C�B) is de-
fined by

Mir =

(J,K)∑
(j,k)=(1,1)

X(i, j, k)B(j, r)C(k, r) (3)

The (i, j, k)-th element of subtensor F′
:::r is given by

X(i, j, k)bTr (j), and the (i, j, k)-th element of subtensor
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T′
:::r is given by (bin(X)(i, j, k))cTr (k). Therefore, the

(i, j, k, r)-th element of F′ is

F′
ijkr = X(i, j, k)B(j, r),

and the (i, j, k, r)-th element of T′′ is

T′′
ijkr = (bin(X)(i, j, k))C(k, r).

The (i, r)-th element of PairwiseMerge(F′,T′′)(1) is

(J,K)∑
(j,k)=(1,1)

F′(i, j, k, r)T′′(i, j, k, r).

=

(J,K)∑
(j,k)=(1,1)

X(i, j, k)B(j, r)(bin(X)(i, j, k))C(k, r)

=

(J,K)∑
(j,k)=(1,1)

X(i, j, k)B(j, r)C(k, r) · · · (2). (4)

where the last equality uses the fact X(i, j, k) ×
(bin(X)(i, j, k)) = X(i, j, k). The equation (3)
for (i, r)-th element of X(1)(C�B) is exactly the
same as the equation (4) for (i, r)-th element of
PairwiseMerge(F′,T′′)(1). �

Fig. 6: Comparison of HATEN2-Tucker-DNN and
HATEN2-Tucker-DRN.

Using these two operations, HATEN2-DRN-Tucker,
shown in Algorithm 9, computes T′ and T′′ first, and
then merges the result. Figure 6 illustrates the difference
of HATEN2-Tucker-DRN and HATEN2-Tucker-DNN. Note
that both T′ and T′′ are sparse if the input tensor X is sparse,
which is true in most real world tensors. Thus, HATEN2-
Tucker-DRN further decreases the intermediate data size
of HATEN2-DNN from nnz(X)QR to nnz(X)(Q + R).
We want to emphasize that this decrease of the interme-
diate data size comes from the sparsity of real world ten-
sors where nnz(X) ∼ I; if the input tensor is a full
tensor (which is not realistic), the intermediate data size
of HATEN2-DNN becomes nnz(X)Q which is smaller
than that of HATEN2-DRN. Also, note that the removal
of dependency in HATEN2-DRN enables computing T′

and T′′ in parallel; the idea is reflected in HATEN2-DRI

(see Section 3.2.4 for details). For PARAFAC decomposi-
tion, HATEN2-PARAFAC-DRN, shown in Algorithm 10,
decreases the number of MAPREDUCE jobs of HATEN2-
PARAFAC-DNN from 4R to 2R+ 1.

Algorithm 9: HATEN2-Tucker-DRN for computing
Y← X×2 B

T ×3 C
T

Input: Tensor X ∈ RI×J×K , and factor matrices B ∈ RJ×Q,
C ∈ RK×R

Output: Tensor Y ∈ RI×Q×R

1: for q=1,..,Q do
2: T′

q ← X∗̄2bT
q ;

3: end for
4: for r=1,..,R do
5: T′′

r ← bin(X)∗̄3cTr ;
6: end for
7: Y← CrossMerge(T′,T′′)(1);

Algorithm 10: HATEN2-PARAFAC-DRN for com-
puting Y← X(1) (C�B)

Input: Tensor X ∈ RI×J×K , and factor matrices B ∈ RJ×R,
C ∈ RK×R

Output: Tensor Y ∈ RI×R

1: for r=1,..,R do
2: F′

r ← X∗̄2bT
r ;

3: end for
4: for r=1,..,R do
5: T′′

r ← bin(X)∗̄3cTr ;
6: end for
7: Y← PairwiseMerge(F′,T′′)(1);

MAPREDUCE algorithm. The MAPREDUCE

algorithms of CrossMerge(T′,T′′)(1) and
PairwiseMerge(F′,T′′)(1) operations are as follows.

< CrossMerge(T′,T′′)(1) >

– MAP: map < i, j, k, q,X(i, j, k)bq(j) > on (i, rQ+ q)

for all r = 1, ...R, and< i, j, k, r, cr(k) > on (i, rQ+q)

for all q = 1, ...Q such that tuples with the same key
are shuffled to the same reducer in the form of <key:
(i, rQ + q), values: {(j, k,X(i, j, k)bq(j))|∀(i, j, k) ∈
idx(Xi::)}, {(j, k, r, cr(k))|∀(i, j, k) ∈ idx(Xi::)} >.

– REDUCE: take <key: (i, rQ+ q), values:
{(j, k,X(i, j, k)bq(j))|∀(i, j, k) ∈ idx(Xi::)},
{(j, k, r, cr(k))|∀(i, j, k) ∈ idx(Xi::)} > and emit
< {i, q, r,

∑
j,kX(i, j, k)bq(j)cr(k) for all

q=1, ..., Q, r=1, ..., R} > for each (i, j, k) ∈ idx(Xi::).

< PairwiseMerge(F′,T′′)(1) >

– MAP: map < i, j, k, r,X(i, j, k)br(j) > on (i, r),
and < i, j, k, r, cr(k) > on (i, r) such that tuples with
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the same key are shuffled to the same reducer in the form
of <key: (i, r), values: {(j, k,X(i, j, k)br(j))

|∀(i, j, k) ∈ idx(Xi::)}, {(j, k, cr(k))|∀(i, j, k) ∈
idx(Xi::)} >.

– REDUCE: take <key: (i, r), values:
{(j, k,X(i, j, k)br(j))|∀(i, j, k) ∈ idx(Xi::)},
{(j, k, cr(k))|∀(i, j, k) ∈ idx(Xi::)} > and emit <
{i, r,

∑
j,kX(i, j, k)br(j)cr(k) for all r = 1, ..., R} >

for each (i, j, k) ∈ idx(Xi::).

3.2.4 Integrating Jobs by Increasing Memory Usage

Although HATEN2-DRN decreased the intermediate data
size and the number of MAPREDUCE jobs, the number of
jobs is still significant: it is Q+R+ 1 for HATEN2-Tucker-
DRN and 2R + 1 for HATEN2-PARAFAC-DRN. In this
subsection, we propose HATEN2-DRI to further decrease
the number of jobs to 2, thereby decreasing the disk ac-
cesses and the running time. Algorithms 11 and 12 show
HATEN2-Tucker-DRI, and HATEN2-PARAFAC-DRI, re-
spectively. HATEN2-DRI has two main ideas: integrating 1)
vector products into a matrix product, and 2) products for
different factor matrices.

Algorithm 11: HATEN2-Tucker-DRI for computing
Y← X×2 B

T ×3 C
T

Input: Tensor X ∈ RI×J×K , and factor matrices B ∈ RJ×Q,
C ∈ RK×R

Output: Tensor Y ∈ RI×Q×R

1: (T′,T′′)← IMHP (X,B,C);
2: Y← CrossMerge(T′,T′′)(1);

Algorithm 12: HATEN2-PARAFAC-DRI for comput-
ing Y← X(1) (C�B)

Input: Tensor X ∈ RI×J×K , and factor matrices B ∈ RJ×R,
C ∈ RK×R

Output: Tensor Y ∈ RI×R

1: (T′,T′′)← IMHP (X,B,C);
2: Y← PairwiseMerge(T′,T′′)(1);

Integrating vector products into a matrix product.
HATEN2-DRI performs several n-mode vector Hadamard
products together in one MAPREDUCE job, instead of multi-
ple jobs, using the n-mode matrix Hadamard product which
we define as follows.

Definition 5 (n-mode matrix Hadamard product) The n-
mode matrix Hadamard product of a tensor
X ∈ RI1×I2×···×IN with a matrix U ∈ RQ×In is denoted

by X∗nU and is of size I1× I2×· · ·× IN ×Q . It is defined
by

(X ∗n U)i1i2...iNq = (X∗̄nUT
q:)i1i2...iN .

where Uq: is the qth row of U.
MAPREDUCE algorithm. The MAPREDUCE algorithm of
n-mode matrix Hadamard product is as follows:

< X ∗2 B >

– MAP: map < i, j, k,X(i, j, k) > on j, and <

j, q,B(j, q) > on j such that tuples with the same key
are shuffled to the same reducer in the form of <key: j,
values: {(q,B(j, q))|∀q ∈ {1, ..., Q}},
{(i, k,X(i, j, k))|∀(i, j, k) ∈ idx(X:j:)} >.

– REDUCE: take <key: j, values: {(q,B(j, q))|∀q ∈
{1, ..., Q}}, {(i, k,X(i, j, k))|∀(i, j, k) ∈ idx(X:j:)} >
and emit < i, j, k, q,X(i, j, k)B(j, q) > for each
(i, j, k) ∈ idx(X:j:) and q ∈ {1, ..., Q}.

The previous HATEN2-DRN method performs the n-
mode vector Hadamard product X∗̄2bTq for Q times using
nnz(X:j:) + 1 of memory space per reducer; however, our
new method HATEN2-DRI performs X ∗2 BT only once
using nnz(X:j:) + Q of memory space per reducer where
Q is used for storing a column of BT . HATEN2-DRI de-
creases the number of jobs significantly without introducing
too much overhead since Q is very small (e.g., 10 or 20).
Integrating products for different factor matrices.
HATEN2-DRI also integrates X ∗2 BT and bin(X) ∗3 CT

computations into one MAPREDUCE job. This integration
is possible since the dependency of the two operations is
removed in HATEN2-DRN (and, hence in HATEN2-DRI).
Thanks to the integration, the original tensor data X needs
to be read from disks only once (not twice as in previous
methods), and thus we further decrease the running time.
MAPREDUCE algorithm. The MAPREDUCE algorithm of
the integrating operation, denoted by IMHP (X,B,C), is
as follows. IMHP (X,B,C)

– MAP: map< i, j, k,X(i, j, k) > on j,< j, q,B(j, q) >

on j, < i, j, k,X(i, j, k) > on k, and < k, r,C(k, r) >

on k such that tuples with the same key are shuffled to
the same reducer in the form of <key: j, values:
{(q,B(j, q))|∀q ∈ {1, ..., Q}}, {(i, k,X(i, j, k))

|∀(i, j, k) ∈ idx(X:j:)} >, and <key: k, values:
{(r,C(k, r))|∀r ∈ {1, ..., R}}, {(i, j,X(i, j, k))

|∀(i, j, k) ∈ idx(X:k:)} >.
– REDUCE: take <key: j, values:
{(q,B(j, q))|∀q ∈ {1, ..., Q}}, {(i, k,X(i, j, k))|
∀(i, j, k) ∈ idx(X:j:)} > and emit <

i, j, k, q,X(i, j, k)B(j, q) > for each (i, j, k) ∈
idx(X:j:) and q ∈ {1, ..., Q}, and take
<key: k, values: {(r,C(k, r))|∀r ∈ {1, ..., R}},
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{(i, j,X(i, j, k))|∀(i, j, k) ∈ idx(X:k:)} > and emit
< i, j, k, r,C(k, r) > for each (i, j, k) ∈ idx(X:k:) and
r ∈ {1, ..., R}.

Finally, we note that although the two decomposi-
tions Tucker and PARAFAC are different, our HATEN2-
DRI unifies them in a general framework of IMHP and
merge. As seen in Algorithms 11 and 12, as well as in
Figure 4, HATEN2-Tucker-DRI and HATEN2-PARAFAC-
DRI differ only in the merge function (CrossMerge for
HATEN2-Tucker-DRI, and PairwiseMerge for HATEN2-
PARAFAC-DRI). This general framework allows easier ex-
tension of the method for other algorithms, as well as simple
maintenance of the code.

3.2.5 Cost of HATEN2

We present the costs of the steps of all HATEN2 methods in
terms of the intermediate data size, the number of MAPRE-
DUCE jobs, and the number of the floating point operations
in Tables 5 and 6. Based on Tables 5 and 6, we compare the
total costs of all the methods in terms of the maximum in-
termediate data size, and the number of total MAPREDUCE

jobs in Tables 3 and 4. We replace nnz(T = X×2 B) with
nnz(X)Q according to the estimation of nnz(X ×2 B) in
Lemma 4.

Lemma 4 Given a sparse X ∈ RI×J×K , and a fully dense
B ∈ RJ×Q, the first-order Taylor approximation of the
number of nonzeros in X×2 B is nnz(X)Q.

Proof. Let P (Xijk) be the probability that Xijk 6= 0.
Assuming uniform distribution, P (Xijk) is estimated to be
nnz(X)
IJK . Since B is a fully-dense matrix, a nonzero element

in Xi:k fiber, when multiplied with B, appears asQ nonzero
elements in the result tensor X ×2 B. Thus, the probability
that there is no element in the (i, k)-th fiber of X ×2 B is
given by Q(1 − P (Xijk))J = Q(1 − nnz(X)

IJK )J . Then the
estimated number of nonzero elements in X ×2 B is given
by (1 − (1 − nnz(X)

IJK )J) × IQK. Applying the first-order
Taylor expansion of (1 + x)n ≈ 1 + nx to the equation
(1− nnz(X)

IJK )J , we get

(1− (1− nnz(X)

IJK
)J)× IQK ≈

(1− (1− J nnz(X)
IJK ))× IQK = nnz(X)Q

�
Note that in Tucker decomposition, HATEN2-Tucker-

DRI which contains all the proposed ideas, has the mini-
mum intermediate data size. In PARAFAC, the intermedi-
ate data size of HATEN2-PARAFAC-DNN seems smaller
than that of HATEN2-PARAFAC-DRI. However, HATEN2-
PARAFAC-DNN has a lower scalability since the matrix Tr

becomes dense, and thus Tr∗̄3cTr might raise an out of mem-
ory error. In contrast, HATEN2-PARAFAC-DRI scales well
by exploiting the sparsity of real-world tensors with the idea
described in Sections 3.2.3 and 3.2.4. For both decomposi-
tions, HATEN2-DRI has the minimum number of jobs.

3.3 Extensions of HATEN2 for Nonnegativity Constraints

In this section, we extend HATEN2 for nonnegativity con-
straints. We first propose HATEN2-PARAFACNN, a dis-
tributed nonnegative PARAFAC decomposition whose sin-
gle machine version is shown in Algorithm 3. Then, we pro-
pose HATEN2-TuckerNN, a distributed nonnegative Tucker
decomposition whose single machine version is shown in
Algorithm 4. Similar to the standard PARAFAC and Tucker,
the challenges in designing distributed nonnegative factor-
ization algorithms are computing X(1) (C�B) and X ×2

BT ×3 C
T , respectively, which incur the intermediate data

explosion problem. Using the same ideas presented in Sec-
tion 3, we reduce the size of the intermediate data as well as
the number of the total jobs.

3.3.1 HATEN2-PARAFACNN

MapReduce Algorithm for HATEN2-PARAFACNN. Up-
dating each factor of A, B, and C in Lines 3, 5, and 7 of
Algorithm 3 requires four computational steps:
<Updating factor A >

– Step 1: M1 ← X(1)(C�B).
– Step 2: M2 ← CTC ∗BTB.
– Step 3: M3 ← 1

AM2
.

– Step 4: A← A ∗M1 ∗M3.
Step 1 uses the same MapReduce algorithm described in

Section 3.2. In Step 2, the operations CTC and BTB uti-
lize the parallel outer product technique of GigaTensor [18].
Since results of both operations are R × R matrices and R
is small, Hadamard product becomes straightforward. Step 3
computes A ∗M2 where M2 is CTC∗BTB. Using the dis-
tributed cache multiplication described in GigaTensor [18],
each machine receives M2 and calculates each row of the
result matrix 1

AM2
with the following map-only job.

– MAP-3: map < i,A(i, :) > on i and calculate the i-th
row of 1

AM2
with distributively cached M2 so that the

i-th row of 1
AM2

is produced by each mapper.

Step 4 computes the Hadamard product of the three ma-
trices A, M1, and M3.

– MAP-4: map < i,A(i, :) >, < i,M1(i, :) >, and
< i,M3(i, :) > on i such that tuples with the same
i are shuffled to the same reducer in the form of <
i, {(A(i, j),M1(i, j),M3(i, j)|∀j)} >.

– REDUCE-4: take< i, {(A(i, j),M1(i, j),M3(i, j)|∀j)}
>, and emit < i,A(i, :) ∗M1(i, :) ∗M3(i, :) >.
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Table 5: Summary of costs in the steps of all methods for computing X ×2 B ×3 C in Tucker decomposition. T denotes
X×2 B.

Method Step Intermediate Data Jobs

HATEN2-Tucker-Naive X×̄2b
T
q nnz(X) + IJK Q

T×̄3c
T
r nnz(T) + IQK R

HATEN2-Tucker-DNN X∗̄2bT
q nnz(X) + J Q

Collapse nnz(X)Q 1
T∗̄3cTr nnz(X)Q + K R
Collapse nnz(X)QR 1

HATEN2-Tucker-DRN X∗̄2bT
q nnz(X) + J Q

bin(X)∗̄3cTr nnz(X) + K R
CrossMerge nnz(X)Q + nnz(X)R 1

HATEN2-Tucker-DRI IMHP 2nnz(X) + JQ + KR 1
CrossMerge nnz(X)Q + nnz(X)R 1

Table 6: Summary of costs in the steps of all methods for computing X(1)(C�B) in PARAFAC decomposition. Tr denotes
X×̄2b

T
r .

Method Step Intermediate Data Jobs

HATEN2-PARAFAC-Naive X×̄2b
T
r nnz(X) + IJK R

Tr×̄3c
T
r nnz(Tr) + IK R

HATEN2-PARAFAC-DNN X∗̄2bT
r nnz(X) + J R

Collapse nnz(X) R
Tr ∗̄3cTr nnz(Tr) + K R
Collapse nnz(Tr) R

HATEN2-PARAFAC-DRN X∗̄2bT
r nnz(X) + J R

bin(X)∗̄3cTr nnz(X) + K R
PairwiseMerge 2nnz(X)R 1

HATEN2-PARAFAC-DRI IMHP 2nnz(X) + JR + KR 1
PairwiseMerge 2nnz(X)R 1

3.3.2 HATEN2-TuckerNN

MapReduce Algorithm for HATEN2-TuckerNN. Updat-
ing each factor of A, B, and C in Lines 3, 5, and 7 of Algo-
rithm 4 requires five computational steps:
<Updating factor A >

– Step 1: M1 ← X×2 B
T ×3 C

T .
– Step 2: M2 ← (X×2 B

T ×3 C
T )(1)G

T
(1).

– Step 3: M3 ← (G×2 B
TB×3 C

TC)(1)G
T
(1).

– Step 4: M4 ← 1
AM3

.
– Step 5: A← A ∗M2 ∗M4.

Step 1 uses the same MapReduce algorithm as described
in Section 3.2. Step 2 multiplies (X ×2 BT ×3 CT )(1)
and GT

(1) which requires a similar MapReduce job of Step
3 in HATEN2-PARAFACNN. In Step 3, the operations
BTB and CTC utilize the parallel outer product technique
of GigaTensor [18] as explained in Step 2 of HATEN2-
PARAFACNN. Since the sizes of the core tensor, BTB, and
CTC are small, we perform (G×2 B

TB×3 C
TC)(1)G

T
(1)

in a local machine. Steps 4 and 5 are the same as those in

Steps 3 and 4 of HATEN2-PARAFACNN, respectively. Up-
dating the core tensor G in Line 9 of Algorithm 4 requires
similar computation steps.

4 Experiment

In this section, we present experimental results to answer the
following questions.

Q1 What is the performance of HATEN2-DRI compared
with other methods?

Q2 How well does HATEN2-DRI scale up with various fac-
tors (nonzeros, dimensionality, density, core tensor size,
order, and machines)?

After describing the experimental settings in Section 4.1,
we present the scalability results in Section 4.2 to answer Q1
and Q2.
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Table 7: Summary of the tensor data used. B: billion, M: million, K: thousand.

Data I J K Nonzeros Density Format Source

Freebase-sampled 38 M 38 M 532 139 M 1.733× 10−10 {entity, entity, relation} Freebase [19]
Phonecall 30M 30M 62 184M 3.297× 10−9 {sender, receiver, time}

NELL 26 M 26 M 48 M 144 M 4.387× 10−15 {subject, object, predicate} ‘Read the Web’ [1]
NELL-2 15 K 15 K 29 K 77 M 1.262× 10−5 {subject, object, predicate} ‘Read the Web’ [1]

DARPA1998 22K 22K 23M 28M 2.515× 10−9 {source IP, destination IP, time} MIT Lincoln Lab. [20]
Random 1 K∼100 M 1 K∼100 M 1 K∼100 M 10 K∼10 B 10−15 ∼ 10−5

4.1 Experimental Settings

We compare our final method HATEN2-DRI with other
methods (HATEN2-Naive, HATEN2-DNN, HATEN2-DRN)
as well as the Tensor Toolbox [21], the state of the art tensor
computation package for a single machine.

4.1.1 Machines

HATEN2 is run on a HADOOP cluster with 40 machines
where each machine has a quad-core Intel Xeon E3 1230v3
3.3Ghz CPU, 32 GB RAM, and 12 Terabytes disk. The Ten-
sor Toolbox is run on a machine from the HADOOP cluster.

4.1.2 Dataset

The tensor dataset used in our experiments is summarized in
Table 7, with the following details.

– Freebase-sampled: sampled RDF triples (subject entity,
object entity, relation) where the entries are related with
music, book, tv shows, film, people, and sport from Free-
base [19].

– Phonecall: real-world phone call history data (who-
calls-whom) containing (sender, receiver, date) triples
(e.g. ‘1234’, ‘5678’, ‘06-DEC-07’) in 2007-12-01 to
2008-1-31.

– NELL: real world knowledge base data containing (noun
phrase 1, noun phrase 2, context) triples (e.g. ‘George
Harrison’, ‘guitars’, ‘plays’) from the ‘Read the Web’
project [1]. NELL-2 data is the filtered data from NELL
by removing entries whose values are below a threshold.

– DARPA1998: 1998 DARPA intrusion detection evalu-
ation dataset from MIT Lincoln Laboratory [20]. We
translate the packet data into a 3-way tensor which is
composed of (source IP, destination IP, time) triples. For
example, a triple (’202.77.162.213’, ’172.16.114.50’,
’1998-06-19 08:49:21’, ’1’) corresponds to a packet sent
from 202.77.162.213 to 172.16.114.50 at 08:49:21, June
11th, 1998.

– Random: synthetic random tensor of size I × I × I .
The size I varies from 103 to 108, the number of nonze-
ros varies from 104 to 1010, and the density varies from
10−15 ∼ 10−5.

4.2 Scalability

To answer the questions Q1 and Q2, we compare the ma-
chine and the data scalabilities of HATEN2-DRI with those
of other methods. Since the Tensor Toolbox does not pro-
vide nonnegative tucker decomposition, we omit scalability
experiments of the Tensor Toolbox.

4.2.1 Data Scalability

Data scalability is measured for the following four aspects:
number of nonzeros and dimensionality, density, core ten-
sor size, and order. We change the input tensor in terms of
each aspect one by one, while fixing other aspects, and mea-
sure the running time using all the 40 machines in the clus-
ter. Since the HATEN2-Naive method cannot process even
a 104 scale tensor (Figures 1(a) and 7(a)), HATEN2-Naive
is omitted from the density and core scalability experiments
(Figures 1(b,c) and 7∼ 9(b,c)).
Nonzeros and Dimensionality. We increase the dimension-
ality I = J = K of modes from 103 to 108. The number of
nonzeros is set to dimensionality ×10. For Tucker decom-
position, the size P × Q × R of the core tensor is fixed to
10× 10× 10. For PARAFAC decomposition, the rank R is
set to 10. As shown in Figures 1(a) and 7∼ 9(a), our best
method HATEN2-DRI shows the best result: HATEN2-DRI
analyzes 108 scale tensor the most quickly. HATEN2-Naive
and HATEN2-DNN failed for tensors with size beyond 103

and 107, respectively. Although HATEN2-DRN also ana-
lyzes 108 scale tensor, the running time is 1.7 times slower
than that of HATEN2-DRI.
Density. We increase the density (=number of nonzeros /
number of all possible elements) of input tensor from 10−9

to 10−5; accordingly, the number of nonzeros becomes 1 bil-
lion to 1 trillion, and they take 20MB to 196GB disk space.
The dimensionality of each mode is set to 105 (I = J = K).
For Tucker decomposition, the size P × Q × R of the core
tensor is fixed to 10 × 10 × 10. For PARAFAC decompo-
sition, the rank R is set to 10. As shown in Figures 1(b)
and 7∼ 9(b), our method HATEN2-DRI analyzes up to
1000× denser tensors than existing method for nonnegative
PARAFAC decomposition and the running time is the fastest
compared with other variants of HATEN2.
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(a) Nonzeros and Dimensionality (b) Density (c) Core (d) Order

Fig. 7: Data scalability of our proposed HATEN2-DRI compared to other methods, for PARAFAC decomposition. The
datasets are explained in detail at Section 4.1. o.o.m.: out of memory. Note that our best method HATEN2-DRI decomposes
10 ∼ 100× larger data than the Tensor Toolbox.

(a) Nonzeros and Dimensionality (b) Density (c) Core (d) Order

Fig. 8: Data scalability of our proposed HATEN2-DRI compared to other methods, for nonnegative Tucker decomposition.
The datasets are explained in detail at Section 4.1. o.o.m.: out of memory. Among the variants of HATEN2, HATEN2-DRI is
the fastest, and analyzes 10× denser data than HATEN2-DNN does.

(a) Nonzeros and Dimensionality (b) Density (c) Core (d) Order

Fig. 9: Data scalability of our proposed HATEN2-DRI compared to other methods, for nonnegative PARAFAC decompo-
sition. The datasets are explained in detail at Section 4.1. o.o.m.: out of memory. Note that HATEN2-DRI decomposes 10
∼ 1000 × larger data than the Tensor Toolbox and HATEN2 decomposes a tensor with a 4× larger core tensor compared
to the Tensor Toolbox. Among the variants of HATEN2, HATEN2-DRI is the fastest, and analyzes 10× larger data than
HATEN2-DNN does.

Core Tensor Size. We increase the core size of a random
tensor of size 106× 106× 106 with 107 nonzeros, and mea-
sure the running time. For Tucker decomposition, the core
tensor size increases from 10 × 10 × 10 to 40 × 40 × 40

or 80× 80× 80; for PARAFAC, the rank R increases from
10 to 40 or 80. For normal PARAFAC and Tucker decom-
positions, as shown in Figures 1(c) and 7(c), HATEN2-DRI
scales well, providing the best performance for all the core
sizes. When the core size is 80, HATEN2-DRI outperforms
the second best method (HATEN2-DRN) by 2.25 times.

For nonnegative PARAFAC and Tucker decompositions, as
shown in Figures 8(c) and 9(c), HATEN2-DRI scales well
up to core size 40. Note that in Figure 9(c), HATEN2-DRI
decomposes a tensor with a 4× larger core tensor compared
to the Tensor Toolbox.

Order. We increase the order (=number of modes) of a ran-
dom tensor of size 106 × 106 × 106 with 107 nonzeros,
and measure the running time. For normal PARAFAC and
Tucker decompositions, as shown in Figures 1(d) and 7(d),
HATEN2-DRI scales well, providing the best performance
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among variants of HATEN2 for all the orders. Similar scal-
ability is observed for nonnegative PARAFAC and Tucker
decompositions, as shown in Figures 8(d) and 9(d), respec-
tively.

4.2.2 Machine Scalability

To measure the machine scalability, we increase the number
of machines from 10 to 40, and report T10/TM where TM is
the running time withM machines. We use the NELL tensor
data of size 26M ×26M ×48M containing 144M nonzeros.
For Tucker and nonnegative Tucker decomposition, the core
tensor size is set to 10 × 10 × 10. For PARAFAC and non-
negative PARAFAC decomposition, the rank size is set to
10. As shown in Figure 10, our best method HATEN2-DRI
scales near linearly in the beginning, while the performance
flattens as the number of machines grows due to overheads
required in distributed systems (e.g., synchronization time,
JVM loading time, etc.). Note that the machine scalability
of Tucker is better than that of PARAFAC. Since Tucker
is more complex and involves a lager amount of computa-
tions compared with PARAFAC, increasing the number of
machines is more effective in Tucker. Due to many sub-
operations performed in a local machine, the machine scala-
bilities of nonnegativity-constrained Tucker and PARAFAC
decompositions are smaller than those of the unconstrained
versions.

Fig. 10: Machine scalability of HATEN2-PARAFAC-DRI,
HATEN2-PARAFACNN-DRI, HATEN2-Tucker-DRI, and
HATEN2-TuckerNN-DRI with regard to the “Scale Up” fac-
tor T10

TM
, where TM is the running time with M machines.

Note that in all cases, HATEN2-DRI scales near linearly in
the beginning, while the performance flattens as more ma-
chines are added due to overheads in distributed systems.

5 Discovery

In this section, we present discovery results to answer the
following questions.

Q1 What are the discoveries on real world tensors?
Q2 What are the differences between PARAFAC and Tucker

decompositions on real world tensors?

We apply HATEN2 to four large-scale real-world
tensors: Freebase-sampled, DARPA1998, Phonecall, and
NELL-2.

5.1 Freebase-sampled

Freebase [19] is a knowledge base dataset in the RDF (Re-
source Description Framework) format, composed of (sub-
ject entity, object entity, relation) triples. Below, we explain
construction of a tensor from Freebase and interesting con-
cepts discovered by HATEN2.
Building Freebase-sampled tensor. We build a Freebase-
sampled tensor from the full Freebase dataset [19]. First,
we extract relations about several important topics includ-
ing ‘Music’, ‘Books’, ‘People’, ‘Film’, ‘TV’, and ‘Sports’.
Then, we remove the triples containing literal entities (e.g.,
(John, ‘John’, name)) since they represent definitions which
do not help reveal latent concepts.
Concept discovery. We find several latent concepts in the
Freebase-sampled tensor by applying HATEN2-Tucker and
HATEN2-PARAFAC on it. We choose the top-k highest val-
ued elements from each column of each factor. Table 8
shows the results by HATEN2-PARAFAC with rank 10.
There are several concepts (e.g., ‘Pop/Rock Music Albums’,
‘Expert’, and ‘Classic’) each of which contains groups of
subjects, objects, and relations. Note that each subject group
is tightly coupled only with the corresponding object and
relation groups, due to the diagonal core tensor of PARA-
FAC. On the other hand, Tucker decomposition gives more
diverse concepts determined by cross combinations of vari-
ous groups. Table 9 shows factors by HATEN2-Tucker with
the core size 10× 10× 10. We find several groups for each
mode: e.g., for the ‘subject’ mode, we find the groups of
‘Instruments’, ‘Jobs’, and ‘Marriage’. Table 10 shows con-
cepts each of which combines groups from the subject, the
object, and the relation factors. The first concept ‘Musician’
consists of the subject group S1 (‘Instruments’), the object
group O1 (‘Recording Contributors’), and the relation group
R1 (‘Professionalism’); the second concept ‘Expert’ con-
sists of the subject group S2 (‘Jobs’), the object group O2
(‘Persons’), and the relation group R1 (‘Recording Contrib-
utors’). Note that the object group R1 appears in both of the
concepts, exemplifying the Tucker’s ability of finding con-
cepts from various, possibly overlapping groups. The last
concept ‘Married Couple’ consists of the subject group S3
(‘Marriage’), the object group O3 (‘Spouse’), and the rela-
tion group R2 (‘Marriage’).
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Table 8: Concept discovery result from HATEN2-PARAFAC on the Freebase-sampled dataset.

Concepts Subject Entity Object Entity Relation

Concept1: Pop Music The Day Hell Broke Loose at Sicard Hollow ns:music.album release type.album
‘Pop/Rock Albums’ Alternative rock Enigma Variations ns:music.artist.track

Rock music A Bunch of Stuff ns:music.genre.album
The Fifteenth Porn Cut ns:music.artist.album

Concept2: Actor Lia Scott Price
‘Expert’ Film Producer Eric Idle ns:people.profession.

Comedian Barbra Streisand people with this profession
Singer Madonna

Concept3: Johann Sebastian Bach Concerto for Oboe & Violin in D Minor, BWV 1060: II. Adagio ns:music.artist.album
‘Classic’ Pyotr Ilyich Tchaikovsky Prelude No. 10 in E minor, BWV 855 ns:music.artist.track contribution

John Eliot Gardiner Choral: “Ach mein herzliebes Jesulein” ns:music.genre.album
Heinrich Schiff Cello-Suite No.4 Es-dur BWV 1010: III. Courante ns:music.album release type.album

Table 9: Discovered factors from HATEN2-Tucker on the Freebase-sampled dataset.

Subject S1: Instruments Subject S2: Jobs Subject S3: Marriage

Piano Actor
Subject Guitar Film Score Composer Marriage

Entity Electronic Keyboard Singer
Bass Screenwriter

Object O1: Recording Contributors Object O2: Persons Object O3: Spouse

Pedro Rousseau O. Z. Livaneli Helene Belmar Julius & William Safire
Object Yann Tiersen Eric Idle Beverly McKittrick & Jackie Gleason
Entity Ari Hest Jay Chou Kathleen Garman & Jacob Epstein

Krischan Frehse Haylar Garcia Tyrone Willingham & Kim

Relation R1: Professionalism Relation R2: Marriage Relation R3: Book

ns:book.newspaper issue.publication date
Relation ns:people.profession ns:people.marriage union type ns:book.poetic verse form.poems of this form

.people with this profession .unions of this type ns:book.magazine.genre
ns:book.book edition.interior illustrations by

Table 10: Concept discovery result from HATEN2-Tucker on the Freebase-sampled dataset.

Concepts Subject Entity Object Entity Relation

Concept1:(S1,O1,R1) Piano Pedro Rousseau
‘Musician’ Guitar Yann Tersen ‘ns:people.profession

Electronic Keyboard Ari Hest .people with this profession’
Bass Krischan Frehse

Concept2: (S2,O2,R1) Actor O. Z. Livaneli
‘Expert’ Film Score Composer Eric Idle ‘ns:people.profession

Singer Jay Chou .people with this profession’
Screenwriter Haylar Garcia

Concept3: (S3,O3,R2) Helene Belmar Julius & William Safire
‘Married Couple’ Marriage Beverly McKittrick & Jackie Gleason ‘ns:people.marriage union type

Kathleen Garman & Jacob Epstein .unions of this type’
Tyrone Willingham & Kim

5.2 DARPA1998

DARPA1998 is an intrusion detection evaluation dataset
provided by MIT Lincoln Laboratory [20]. They provide
packet dump files containing network traffic logs during
seven weeks and a list of network-based attacks. The list of
attack information contains descriptions of attacks such as
source IPs, destination IPs, attack types, and times. Table 11

shows a summary of the attack information. More detailed
descriptions are in [20].

Building network traffic tensor. To analyze network traffic
logs provided in the DARPA1998 dataset, we convert net-
work packet dump data into a 3-way tensor. First, we extract
source and destination IP addresses, and a timestamp for
each packet. Next, we map the IP addresses and the times-
tamps onto natural numbers. Since a timestamp has a con-
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Table 11: Descriptions of attacks that occur in the DARPA1998 network traffic logs.

Description

Attacker IP 135.13.216.191
10.20.30.40
230.1.10.20
194.7.248.53
...

Victim IP 172.16.112.50 (pascal)
172.16.113.50 (zeno)
172.16.114.50 (marx)

Duration 1998-06-01 ∼ 1998-07-17

Attack type Denial of Service: back, land, neptune, pod, smurf, syslog, teardrop
Sweeping: ip sweep, port sweep
Buffer overflow: eject, ffb, format, imap
Guessing password: dict, guest
etc: ftp-write, loadmodule, nmap, perlmagic, phf ...

Table 12: Network traffic pattern discovery result by HATEN2-PARAFAC on the DARPA1998 dataset.

Traffic Pattern Source IP Destination IP Time Description

Pattern1:‘neptune attack’ 10.20.30.40 172.16.112.50 1998-07-02, 10:16 A.M. neptune: Syn flood denial of service on one or more ports.

Pattern2:‘Heavy interactions’ 135.13.216.191 172.16.112.50 1998-07-01, 09:46 A.M. There were heavy interactions between 2 machines through telnet.

Pattern3:’Normal traffic’ 172.16.112.194 194.27.251.21 1998-06-15, 03:27 P.M. Normal traffic logs.
172.16.112.50 194.7.248.153 1998-06-30, 11:57 A.M.
172.16.114.148 197.218.177.69 1998-07-13, 04:56 P.M.

Table 13: Discovered factors from HATEN2-Tucker on the DARPA1998 dataset.

Source IP S1: ‘neptune’ attacker Source IP S2: ‘port sweep’ attackers Source IP S3: Various attackers

Source IP 135.13.216.191 194.7.248.153 135.8.60.182
10.20.30.40 194.27.251.21 197.182.91.233
230.1.10.20 197.218.177.69

Destination IP D1: Victim Destination IP D2: Victims Destination IP D3: Attackers

Destination IP 172.16.112.50 194.7.248.153 172.16.114.148
172.16.113.50 194.27.251.21
172.16.112.50 197.218.177.69

Time T1: Specific time Time T2: Specific time Time T3: Various times

Time 1998-07-01, 09:46 A.M. 1998-07-09, 12:10 P.M. 1998-06-11, 2:05 P.M.
1998-07-09, 12:22 P.M. 1998-06-12, 11:56 A.M.
1998-07-09, 12:22 P.M. 1998-07-08, 11:16 P.M.

tinuous value, we discretize it into bins of length 0.001 sec-
ond. Last, we build a 3-way tensor with (‘Source IP’, ‘Des-
tination IP’, ‘Time’) triples where each element in the ten-
sor represents the number of packets for the corresponding
triple.

Network traffic pattern discovery. By applying HATEN2
on the tensor constructed above, we discover several inter-
esting patterns summarized in Figure 11. Table 12 shows
discovery results by HATEN2-PARAFAC with rank 10. We
find several patterns (e.g., ‘neptune attack’, ‘Heavy inter-
action’, and ‘Normal traffic’) from factor groups that con-
tain source IP, destination IP and time. For each group, we
present IP addresses and time that have extraordinarily high

scores. In the ‘neptune attack’ and ‘Heavy interaction’ pat-
terns, scores are concentrated on certain IP addresses and
times since massive packets are exchanged between sev-
eral machines at a certain point. On the other hand, in the
‘Normal traffic’ pattern, scores are spread over all IP ad-
dresses and times, and the score gaps between entries are
small. We apply HATEN2-Tucker to the same tensor; we
discover patterns for each factor group and find network traf-
fic patterns by combining the factor groups. Table 13 shows
several factors discovered by HATEN2-Tucker with the core
size 10 × 10 × 10. For the ‘source IP’ mode, we find ‘nep-
tune attacker’, ‘port sweep attacker’ and ‘Various attacker’
groups. The ‘Various attacker’ group performs various types
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Table 14: Network traffic pattern discovery result by HATEN2-Tucker on the DARPA1998 dataset.

Traffic Pattern Source IP Destination IP Time Description

Pattern1:(S1, D1, T1) 135.13.216.191 172.16.112.50 1998-07-01, 09:46 A.M. There were heavy interactions between 2 machines through telnet.
‘Heavy interaction’ 10.20.30.40

230.1.10.20

Pattern2:(S1, D1, T2) 135.13.216.191 172.16.112.50 1998-07-09, 12:10 P.M. neptune: Syn flood denial of service on one or more ports.
‘neptune attack’ 10.20.30.40 1998-07-09, 12:22 P.M.

230.1.10.20 1998-07-09, 12:23 P.M.

Pattern3:(S3, D2, T3) 135.8.60.182 194.7.248.153 1998-06-11, 2:05 P.M. Several attackers perform various types of attacks several times.
‘Various attack’ 197.182.91.233 172.16.113.50 1998-06-12, 11:56 A.M.

197.218.177.69 172.16.112.50 1998-07-08, 11:16 P.M.

Fig. 11: Network traffic pattern discovery result by HaTen2 on DARPA1998, an intrusion detection dataset. Group1 shows
an attack pattern where several attackers perform malicious attacks like denial of service to the victims at a certain point.
Group2 shows an interaction pattern where two machines intensively communicate with each other at a certain point. Group3
shows a normal traffic pattern.

of attacks several times. Similarly, we find victim groups
and attack time groups from the ‘Destination IP’ mode and
the ‘Time’ mode, respectively. Since packets are exchanged
between attackers and victims, D3 group consists of at-
tackers though it stands for the destination IP address. Ta-
ble 14 shows the discovered patterns that are combinations
of source IP, destination IP and time factor groups. The first
group ‘Heavy interaction’ consists of the source IP group S1
(‘neptune attacker’), the destination IP group D1 (“victim”),
and the time group T1 (‘Specific time’); The second group
‘neptune attack’ consists of the source IP group S1 (‘nep-
tune attacker’), the destination IP group D1 (‘victim’), and
the time group T2 (‘Specific time’). The third group ‘Var-
ious attack’ consists of the source IP group S3 (‘Various
attacker’), the destination IP group D2 (‘victim’), and the
time group T3 (‘Various time’). The third group shows vari-
ous attack patterns performed by several attackers at several
occasions. Note that the source IP group S1 and the des-
tination IP group D1 are shared by Pattern1 and Pattern2.
Since Tucker provides various concepts by cross combina-
tions of factor groups, some factor groups appear in multi-
ple concepts. We also apply the nonnegativity-constrained
Tucker and PARAFAC using our HATEN2-TuckerNN and
HATEN2-PARAFACNN. The overall result is similar to that
of the unconstrained versions of Tucker and PARAFAC.

However, the entries that have negatively high scores in the
unconstrained versions are scored positively in the nonneg-
ative tensor decompositions. Since all entries have values
larger than 0 in nonnegative tensor decomposition, the im-
portance between entities is easily compared. Comparing to
the ground truth, we successfully detect attackers and vic-
tims in the network traffic logs. For example, we find the fol-
lowing attacker groups: ‘neptune’ attackers, ‘port sweep’ at-
tackers, and attackers who perform various types of attacks.
Note that we detect the exact attack time for the ‘neptune’
attack, one of the denial of service attack where attackers
send lots of packets to victims intensively at a certain time.

5.3 Phonecall

Phonecall is a real-world phone call history data from an
anonymous provider, containing the information of senders,
receivers, dates, times, and durations. Below, we explain the
construction of a tensor from the Phonecall data, and inter-
esting concepts discovered by HATEN2.
Building Phonecall tensor. To build a 3-way tensor, we ex-
tract sender, receiver, and date entries from the Phonecall
dataset, and map them to natural numbers. Then, we build a
3-way tensor with (‘sender’, ‘receiver’, ‘date’) triples where
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Fig. 12: Discovered sender and receiver groups by HATEN2 on the Phonecall dataset. We find telemarketers who call many
people a lot but never receive calls. In the closed group, a large amount of traffics are internally concentrated. There is also a
normal group where a person interacts with a small number of people.

Table 15: Discovered factor groups by HATEN2-Tucker on the Phonecall dataset.

Sender S1: Telemarketer Sender S2: Senders in a closed group Sender S3: Normal

Sender id 19893602 5188590 7145415
19922918 5188591 8349492
6657916 5188592 1944847

Receiver R1: Victim Receiver R2: Receivers in a closed group

Receiver id 3517446 5188590
3517450 5188591
4605892 5188592

Date D1: Normal Date D2: Spike Date D3: Periodic Date D4: Christmas

Date 21-Dec-07 07-Dec-07 07-Dec-07 21-Dec-07
03-Jan-08 09-Dec-07 22-Dec-07
04-Jan-08 27-Jan-08 23-Dec-07

Table 16: Phone call pattern discovery result by HATEN2-
Tucker on the Phonecall dataset.

Phone call Pattern Sender Receiver Date

Pattern1:(S1, R1, D1) 19893602 3517446 21-Dec-07
‘Telemarketing’ 19922918 3517450 03-Jan-08

6657916 4605892 04-Jan-08

Pattern2:(S2, R2, D3) 5188590 5188590 07-Dec-07
‘Closed group’ 5188591 5188591 09-Dec-07

5188592 5188592 27-Jan-08

Pattern3:(S3, R3, D1) 7145415 3517446 21-Dec-07
‘Normal’ 8349492 3517450 03-Jan-08

1944847 4605892 04-Jan-08

each element in the tensor represents the number of calls for
the corresponding triple.

Phone call pattern discovery. Table 15 shows discov-
ered factor groups after applying HaTen2-Tucker on the
Phonecall dataset. We discovered three groups each of
which is a combination of factor groups. Figure 12 shows
call patterns of those groups, and Table 16 shows in more
details how they are composed of. In Table 15, for the
sender mode, we find ‘Telemarketer’, ‘Senders in a closed

group’ and ‘Normal’ groups. Corresponding to the ‘Tele-
marketer’ group, we find the ‘Victim’ group in the receiver
mode. The members of the ‘Telemarketer’ group call over
all the other people, but never receive calls from anyone.
Figure 13 shows the telephone traffic pattern of a telemar-
keter with ID 19893602 and a victim with ID 3517446. Note
that the telemarketer calls 218,725 people 46 times on aver-
age, and 3,367 times at maximum. The amount of received
calls is zero, because they never receive calls from anyone.
On the other hand, the members of the ‘Victim’ group re-
ceives many calls from telemarketers, while receiving few
calls from normal people. For example, in Figure 13 (b), a
receiver with ID 3517446 receives 1 to 10 calls from normal
people, but more than 3,000 calls from a telemarketer. These
‘Telemarketer’ and ‘Victim’ groups form the ‘Telemarket-
ing’ group as shown in Table 16. Another group called the
‘Closed group’ consists of two subgroups: ‘Senders in a
closed group’ for the sender mode and ‘Receivers in a closed
group’ for the receiver mode. In this group, members of the
‘Senders in a closed group’ send a large amount of traf-
fics to the members of the ‘Receivers in a closed group’.
The last group we discover is the ‘Normal’ group. In the
‘Normal’ group, each member interacts with a small num-
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(a) Telemarketer (b) Victim

Fig. 13: Telephone traffics of one of telemarketers with ID 19893602 and one of victims with ID 3517446. The telemarketer
calls over all people, but never receives calls from any other. The victim receives lots of calls from the telemarketer while
receiving a few calls from normal people.

ber of people in the group. Lastly, we examine the factors
for the date mode. Figure 14 shows patterns of the four date
mode factors described in Table 15. For the date mode, we
find ‘Normal’, ‘Spike’, ‘Periodic’, and ‘Christmas’ groups.
Factor1 (‘Normal’ factor) shows the normal pattern having
similar scores over most days, while having high scores be-
fore special events such as Christmas and the New Year’s
Day. This result makes sense because people usually give
words of blessing to their friends right before such special
days. Factor2 (‘Spike’ factor) has an abnormal peak point
at 2007-12-07. Factor3 (‘Periodic’ factor) shows a periodic
pattern, and Factor4 (‘Christmas’ factor) reaches its positive
peak right before Christmas and negative peak on 2007-12-
07. The ‘Normal’ factor is contained in the ‘Normal’ and
‘Telemarketing’ pattern in Table 16, since telemarketers call
many normal people. The ‘Periodic’ factor is contained in
the ‘Closed group’ pattern since the members in the group
interacts with each other periodically.

5.4 NELL-2

NELL is a knowledge base dataset containing (‘Noun Phrase
1’, ‘Noun Phrase 2’, ‘Context’) triples from the ‘Read the
Web’ project [1]. We filter the NELL data by removing en-
tries whose values are below a threshold; the result is a ten-
sor named NELL-2 whose size is 14545 × 14545 × 28818

with 76 millions of nonzeros.
Concept discovery. We discover latent concept groups of
NELL-2 by applying HATEN2-PARAFAC with rank 20, and
HATEN2-Tucker with the core tensor size 20× 20× 20. Ta-
ble 17 shows the concept discovery results from HATEN2-
PARAFAC. We discovered several concepts: e.g., ‘Health
Care System’, ‘File Transfer’, ‘Internet Service’, and ‘Shop-
ping’. In PARAFAC decomposition, because the core tensor
is diagonal, each ‘Noun Phrase 1’ group is combined only

with a ‘Noun Phrase 2’ group and a ‘Context’ group. On
the other hand, Tucker decomposition provides more diverse
concepts compared with PARAFAC decomposition: e.g., a
‘Noun Phrase 2’ group may be combined with several ‘Noun
Phrase 1’ groups and ‘Context’ groups. Table 18 shows the
groups in factors from Tucker decomposition: e.g., ‘Health’,
‘Credit’, ‘Network’, ‘Algorithm’, ‘Project’, and ‘Informa-
tion’ in the ‘Noun Phrase 1’ mode. Table 19 shows the dis-
covered concepts each of which combines the groups from
the ‘Noun Phrase 1’, the ‘Noun Phrase 2’, and the ‘Context’
factors. The first concept represents ‘Health Care System’
which contains the ‘Noun Phrase 1’ group S1 (‘Health’),
the ‘Noun Phrase 2’ group O2 (‘Service’), and the ‘Context’
group C1 (‘Care’). Note that a group of a factor appears in
several concept groups in Tucker decomposition. For exam-
ple, the ‘Noun Phrase 2’ group O2 appears in the first, the
second, and the third concepts; the ‘Context’ group C6 ap-
pears in both the second and the third concepts.

Table 17: Concept discovery result using HATEN2-
PARAFAC on the NELL-2 dataset.

Noun Noun
Concepts Phrase1 Phrase2 Context

Concept1: health providers ‘np1’ ‘care’ ‘np2’
‘Health Care child systems ‘np1’ ‘insurance’ ‘np2’

System’ skin organizations ‘np1’ ‘and safety’ ‘np2’

Concept2: file protocol ‘np1’ ‘stream’ ‘np2’
‘File Transfer’ hypertext stack ‘np1’ ‘transfer’ ‘np2’

FTP technology ‘np2’ ‘cable’ ‘np1’

Concept3: internet providers ‘np1’ ‘service’ ‘np2’
‘Internet phone web sites ‘np1’ ‘access’ ‘np2’
Service’ application roots ‘np1’ ‘hosting’ ‘np2’

Concept4: discount store ‘np1’ ‘food’ ‘np2’
‘Shopping’ shop service ‘np1’ ‘and nutrition’ ‘np2’

grocery products ‘np1’ ‘supplement’ ‘np2’
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Fig. 14: Discovered patterns for the date factors by HATEN2 on the Phonecall dataset. Factor1 shows a normal pattern
that has high scores right before Christmas and the New Year’s Day, and remains constant for the other days; Factor2 has
an abnormal peak point on 2007-12-07; Factor3 shows a periodic pattern; Factor4 reaches its positive peak right before
Christmas and negative peak on 2007-12-07.

Table 18: Discovered factors from HATEN2-Tucker on the NELL-2 dataset.

NP S1: Health NP S2: Credit NP S3: Network NP S4: Algorithm NP S5: Project NP S6: Information

health credit internet optimization agency information
Noun child charge phone rankings proposal details
Phrase1 skin bank email listings management news

eye ID contact algorithms activities material
patient account network indexing manager pictures

NP O1: Region NP O2: Service NP O3: Web search NP O4: Research NP O5: Loan NP O6: Network

world providers search research loan roots
Noun state system website experience rates speeds
Phrase2 planet service page work mortgage proxies

region insurance industry training lender ports
globe organization performance study refinancing routers

Context C1: Care Context C2: Credit Context C3: Function Context C4: Transfer Context C5: Support Context C6: Service

‘np1’ ‘care’ ‘np2’ ‘np1’ ‘card’ ‘np2’ ‘np2’ ‘engine’ ‘np1’ ‘np1’ ‘stream’ ‘np2’ ‘np2’ ‘project’ ‘np1’ ‘np1’ service’ ‘np2’
‘np1’ ‘insurance’ ‘np2’ ‘np1’ ‘report’ ‘np2’ ‘np2’ ‘returned’ ‘np1’ ‘np1’ ‘transfer’ ‘np2’ ‘np2’ ‘and development’ ‘np1’ ‘np1 ‘access np2

Context ‘np1’ ‘service’ ‘np2’ ‘np2’ ‘management’ ‘np1’ ‘np2’ ‘results’ ‘np1’ ‘np1’ ‘communication’ ‘np2’ ‘np2 ‘funding’ ‘np1’ ‘np1’ ‘hosting’ ‘np2’
‘np1’ ‘safety’ ‘np2’ ‘np1’ ‘account’ ‘np2’ ‘np2’ ‘returns’ ‘np1’ ‘np1’ ‘protocol’ ‘np2’ ‘np1’ ‘sponsoring’ ‘np2’ ‘np1’ ‘broadband ‘np2
‘np1’ ‘and fitness’ ‘np2’ ‘np1’ ‘debt’ ‘np2’ ‘np2’ ‘machine’ ‘np1’ ‘np2’ ‘cable’ ‘np1’ ‘np1’ ‘supporting’ ‘np2’ ‘np1’ ‘infrastructure’ ‘np2’

6 Related Work

6.1 CP/PARAFAC

Acar et al. [22] use the PARAFAC decomposition in order
to detect epilepsy in brain measurements. In [2], Kolda and
Bader extend the popular HITS algorithm for ranking web-
pages, by incorporating anchor text information to the hy-
perlinks, and using PARAFAC in order to derive hubs and
authorities from the data. PARAFAC has also been used in
anomaly detection; [3] and [23] detect network anomalies
in computer network connection logs and specifically [23]
spots anomalies in time-evolving social networks as well.
Last but not least, the PARAFAC decomposition has been

used in community detection, where we have different views
of the same network of people [24], or the network evolves
over time and we are interested in identifying communities
over time [25].

6.2 Tucker

In [26], apart from a highly memory efficient Tucker de-
composition algorithm, there is an overview of the various
aspects of the Tucker decomposition as a data mining tool.
The authors of [27] use a tensor in order to represent mul-
tiple semantic relations (such as “synonym” or “antonym”)
and use Tucker as a higher order generalization of SVD, in
order to perform Latent Semantic Analysis. One of the most
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Table 19: Concept discovery result using HATEN2-Tucker
on the NELL-2 dataset.

Noun Noun
Concepts Phrase1 Phrase2 Context

Concept1: (S1, O2, C1) health providers ‘np1’ ‘care’ ‘np2’
‘Health Care System’ child system ‘np1’ ‘insurance’ ‘np2’

skin professionals ‘np1’ ‘service’ ‘np2’

Concept2: (S3, O2, C6) internet providers ‘np1’ ‘service’ ‘np2’
‘Internet Service’ application system ‘np1’ ‘access’ ‘np2’

email professionals ‘np1’ ‘hosting’ ‘np2’

Concept3: (S6, O2, C6) information providers ‘np2’ ‘service’ ‘np1’
‘Information Access’ details system ‘np2’ ‘access’ ‘np1’

news professionals ‘np2’ ‘hosting’ ‘np1’

Concept4: (S4, O3, C3) optimization search ‘np2’ ‘engine’ ‘np1’
‘Web Search Algorithm’ rankings website ‘np2’ ‘returned’ ‘np1’

marketing performance ‘np2’ ‘results’ ‘np1’

Concept5: (S5, O4, C5) agency research ‘np2’ ‘projects’ ‘np1’
‘Research Project grants training ‘np2’ ‘funding’ ‘np1’

Funding’ proposal study ‘np1’ ‘sponsoring’ ‘np2’

widely used Tucker variation is the so called Higher Order
Singular Value Decomposition (HOSVD) [28] which is a
Tucker3 model with additional orthonormality constraints
on the factor matrices. An exemplary work of employing
HOSVD is [29] where the authors provide web search rec-
ommendations to users. HOSVD has been extensively used
in Computer Vision applications [30][31]

6.3 Scalable Algorithms for Tensor Analysis

Bader and Kolda develop efficient algorithms for sparse ten-
sors [32], where they avoid the materialization of very large,
unnecessary intermediate Khatri-Rao products. Kang et al.
proposed GigaTensor [18] that first uses a distributed sys-
tem for PARAFAC decomposition. GigaTensor is similar
to HATEN2-PARAFAC-DRN in this paper; however in this
work we provide a significant improvement upon [18]. It can
be shown that the ways that GigaTensor [18] and [32] avoid
the intermediate data explosion are equivalent, however, Gi-
gaTensor [18] provides an algorithm which is optimized for
the distributed setting. In the preliminary version of this pa-
per [10], Jeon et al. unify the large scale Tucker and PA-
RAFAC tensor decomposition algorithms on MAPREDUCE

into a general framework, but do not consider the nonneg-
ativity constraint. In [33] Beutel et al. propose FlexiFaCT,
a MAPREDUCE algorithm based on Distributed Stochastic
Gradient Descent for PARAFAC and coupled PARAFAC
decompositions. In [34], Bro and Sidiropoulos use Tucker
to compress a tensor, then do the PARAFAC decomposition
on the compressed tensor and finally decompress the factors,
thus speeding up the PARAFAC decomposition. An alterna-
tive approach, DBN, is introduced in [35] where the authors
use Relational Algebra to break down the tensor into smaller

tensors, using relational decomposition, and thus achieving
scalability. Furthermore, [23], introduces ParCube, an ap-
proximate and highly paralellizable algorithm for sparse PA-
RAFAC decomposition. For scalable Tucker decomposition,
there exists several previous works. Kolda and Sun [26] pro-
pose MET (Memory-Efficient Tucker) for scalable Tucker
decomposition algorithm running on Matlab. Finally, Erdos
and Miettinen introduce a scalable boolean tensor decompo-
sition using random walks [36].

7 Conclusion

In this paper, we propose HATEN2, a distributed method for
large-scale tensor decompositions that runs on the MAPRE-
DUCE platform. HATEN2 provides a unified framework to
devise efficient MAPREDUCE algorithms for unconstrained
and nonnegativity-constrained Tucker and PARAFAC tensor
decompositions, which significantly reduces the intermedi-
ate data size and the running time. By careful design and im-
plementation, HATEN2 decomposes up to 1000x larger ten-
sors compared to existing methods. Furthermore, HATEN2
scales up near linearly on the number of machines. By ap-
plying HATEN2, we discover interesting patterns on various
real-world data—knowledge bases, network traffic logs, and
phone call history—with millions of rows, columns, and en-
tries which were hard to analyze by existing methods.
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