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ABSTRACT

The discovery of gravitational waves by the Advanced Laser Inter-
ferometer Gravitational-wave Observatory (LIGO) has ushered in a
new era in astrophysics. Successful detection of gravitational wave
signals requires ground-based interferometers like LIGO and Virgo
to be exquisitely isolated from environmental and instrumental
noise. Albeit the highly sophisticated design of the detectors which
carefully mitigates effects of most types of noise, they are still sus-
ceptible to non-Gaussian noise transients called glitches. As they
can mask or mimic real gravitational wave signals and given their
high rate of occurrence, proper characterization and classification
of glitches is necessary.

State-of-the-art machine learning approaches for glitch classifi-
cation involves training deep neural networks which notoriously
require a large number of human annotations, currently provided
by the Gravity Spy project [19]. As the operational sensitivity of
LIGO increases across several detectors, the number of glitch oc-
currences are bound to increase. This increase can render human
annotation of all potential glitches infeasible, resulting in inevitable
label scarcity.

In this work, we set out to explore the problem of characterizing
and classifying glitches in a label-scarce setting. First, we propose
a tensor-based unsupervised representation, leveraging techniques
from multilinear algebra, which discovers meaningful structure
that correlates well with human annotations, while uncovering
subtle intraclass variation. This result serves as a proof of concept
for conducting glitch exploration in the future, where a vast number
of glitches are expected to be unlabeled. Subsequently, we use our
tensor-based representation in a thought experiment to measure its
effectiveness in enhancing the performance of state-of-the-art deep
transfer learning models, when the number of labels is severely
decreased.
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1 INTRODUCTION

Einstein’s general theory of relativity in 1916 predicted the ex-
istence of gravitational waves as perturbations in the fabric of
spacetime caused by interactions between massive accelerating ob-
jects in the universe. The first gravitational wave signal, GW150914,
detected in 2015 by LIGO stretched spatial lengths by a distance
smaller than the diameter of a proton. Physically measuring such
an incredibly small change in length using ground-based detectors
requires huge and highly sensitive interferometers like LIGO.

Although the highly sophisticated design of LIGO detectors iso-
late the sensitive instruments from most types of non-astrophysical
noise, the detectors are susceptible to non-Gaussian noise tran-
sients called glitches. The sources of glitches are environmental
and instrumental in nature. Glitches have a high rate of occurrence,
complex morphologies and wide variation in their duration and
frequency range. Classifying glitches into morphologically distinct
classes helps to characterize them and understand their origin such
that some sources of noise can be fixed in upgrades to LIGO and
others can be further understood [11]. Given their diversity, ma-
chine learning approaches have been used to automatically classify
glitches.

Gravity Spy[19] is a citizen science project which aims to clas-
sify glitches into known classes using crowd-sourced human la-
beling of glitches which are represented on their web interface as
time-frequency spectrogram images. They now maintain a com-
prehensive labeled dataset of numerous glitches that occurred in
the first and second observing runs of LIGO. In previous works,
S.Bahaadini et al [1] [2] discuss several popular machine learning
classifiers trained using the Gravity Spy dataset and a deep transfer
learning method is discussed by D. George et al. [6] which achieves
state-of-the-art results.

Machine learning models, especially deep learning models, no-
toriously require a large amount of labeled training data because
the number of parameters that need to be tuned by the learning
algorithm can range up to several million. Given the small size of
the Gravity Spy dataset (~ 8500 labeled glitches) in order to avoid
overfitting, S. Bhaadini et al. [1][2] used relatively shallow neural
networks which are trained from scratch and D. George et al. [6]
use state-of-the-art deep neural networks by leveraging transfer
learning to repurpose a pretrained deep neural network by fine-
tuning it for the glitch classification task. As the LIGO experiment
expands across the globe with the addition of new detectors and es-
pecially the increase in the operational sensitivity of the detectors,
we expect to see a rise in occurrences of glitches. This necessitates
us to perform glitch classification at a larger scale. To that end, in
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order to employ the state-of-the-art supervised learning models, the
human labeling process is required to keep pace with the increasing
number of glitches.

In this work, we set out to investigate the problem of glitch
characterization and classification in a label-scarce setting. Our in-
vestigation first examines the extreme case where no human anno-
tations are available, and subsequently analyzes the consequences
of severely limiting the number of labels on the state-of-the-art
models. We then explore how our proposed method can be used in
conjunction with the state-of-the-art in order to compensate for the
lack of adequate amounts of labels. In particular, our contributions
are two-fold:

e Unsupervised tensor-based glitch exploration: We pro-
pose an unsupervised tensor-based representation of glitch
data, leveraging methods from multilinear algebra and ten-
sor analysis, that identifies distinct categories of glitches that
correlate well with human annotations of the Gravity Spy
project. Furthermore, our representation is able to identify
subtle variation within classes defined by Gravity Spy. This
observation serves as a proof of concept for the utility of our
proposed representation in vastly unlabeled LIGO data.

e Enhancing the state-of-the-art in label-scarce settings:
In order to measure the effectiveness of our unsupervised
tensor decomposition in capturing useful structure in LIGO
glitches, we propose a thought experiment in the form of an
ensemble model, where we integrate our proposed tensor-
based representation and an existing state-of-the-art deep
transfer learning model, and evaluate the performance in
label scarce settings.

In the remainder of the paper, we provide some background,
enumerate the challenges and problems faced, and describe our
solutions to those problems, which yield promising preliminary
results.

2 BACKGROUND & PROBLEM STATEMENT
2.1 Impact of glitches on LIGO detections

Glitches adversely affect the searches for transient gravitational
waves in LIGO signals. Glitches can mask or mimic a transient
gravitational wave. For instance, GN170817, a gravitational wave
generated by a collision event of a neutron star binary occurred
during a glitch in the Livingston detector [14]. Luckily, the glitch
signal was short and the gravitational wave signal was long which
led to easy removal of the glitch from the signal. However, with
upgrades to the detectors, the occurrence of glitches is bound to
increase due to the increased sensitivity of the detector rendering
the glitch problem an important one to address.

2.2 Gravity Spy Dataset

The Gravity Spy project[19] has made public a human-labelled
dataset of ~ 8500 glitches from the first (O1) and second (O2) ob-
serving runs of LIGO. Some of the glitch classes were created by the
experts in LIGO Scientific Collaboration (LSC), and more classes
were identified by the human annotators based on visual inspection,
and were subsequently added to the dataset upon review from LSC.
The publicly available Gravity Spy dataset contains 22 classes as
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shown in Figure 1 viz. 20 morphologically distinct classes, 1 No-
Glitch class and 1 None-of-the-above class which is a catch-all class
for glitches which human classifiers could not classify into any
of the 20 classes. Each glitch is visualized using 4 different time
windows viz. 0.5, 1.0, 2.0 and 4.0 seconds. Details regarding the
criteria for obtaining the glitches and creating this dataset can be
found in [1] and [19] respectively.

In this work, we use a publicly available version of Gravity Spy
dataset[1] which was kindly made available by S. Bahaadini et al
consisting of human-labeled glitches which occurred during the
O1 and O2 runs of LIGO.

As noted in [1], the 22 classes constituting this dataset are the
best efforts of the curators to create a representative sample of
different types of glitches that occurred during O1 and O2 runs.
However, our work is a proof of concept glitch exploration and
classification of any glitch dataset - labeled, unlabeled or partially
labeled - and we use the Gravity Spy dataset as our benchmark.

2.3 Problem Statement

In this paper, we investigate the effects of label scarcity in analyzing
LIGO glitches. The challenge is twofold:

(1) Different glitches occur with different frequencies, resulting
in significant imbalances in the representation of every class
of glitch in the data. Classes such as Blip, Light Modulation
and Low Frequency Burst are well-represented with hundreds
of examples available for each class whereas classes like
Paired Doves, Air Compressor and Chirp have 27, 58 and
66 examples respectively. This class imbalance challenge is
present even without label scarcity.

(2) If we assume label scarcity, the above challenge is further
amplified, since the absolute number of available data points
per glitch class, especially for some less frequent glitches,
becomes extremely low (in the order of tens of examples).
Such a low number of training examples is expected to neg-
atively affect the performance of current state-of-the-art
models which leverage deep learning, which is notorious for
requiring large amounts of labeled data points per class.

In this paper, we explore solutions to the above challenges by

solving the following two problems:

Problem 1: Given a collection of unlabeled glitches, identify in an
unsupervised manner inherent hidden structure in the data, which
correlates with human annotations.

Addressing Problem 1 can provide insights on how to tackle the

following problem.

Problem 2: Given a collection of glitches, where only a small per-
centage of them is labeled, train a classification model that works on
par with state-of-the-art models which operates on a fully labeled
dataset.

Section 3 discusses our suggested approach to Problem 1, and

subsequently, Section 4 discusses how lessons learned from address-
ing Problem 1 can be applied to solving Problem 2.

3 UNSUPERVISED TENSOR-BASED GLITCH
EXPLORATION

An extreme instance of label scarcity is a complete lack of labels.
In such instances, unsupervised methods are used to discover the
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Figure 1: 2.0 second view of various types of glitches in the Gravity Spy dataset. None-of-the-Above glitch type excluded.

underlying structure in the data. We explore the glitch dataset by
expressing it in from of a tensor created by stacking glitch images.
Tensors or multi-way arrays are multi-dimensional extensions of
matrices [15], and have been shown, time and time again to be very
effective in modeling highly heterogeneous and multidimensional
data. A tensor indexed by n variables is termed an n-mode tensor
(e.g., a matrix is simply a 2-mode tensor). Tensor decompositions
are data analysis tools that leverage multilinear algebra for extract-
ing interpretable latent patterns from the data [9]. Thus, our glitch
dataset is a good candidate for tensor analysis. Tensor-based cluster-
ing methods have been shown to be effective for high-dimensional
data like images[18][4]. In this work, we use CP/PARAFAC tensor
decomposition to find latent space embeddings for the glitches.

3.1 Tensor factorization for glitches

We obtain unsupervised representations of glitches by perform-
ing CP/PARAFAC decomposition on the glitch dataset represented
as a 4-mode tensor XN-Inlo-channels where N s the number of
glitches, I1, Iz denote the dimensions of the glitch spectrogram and
channels denotes the number of channels used to encode the im-
age. CP/PARAFAC decomposition of X is expressed as a sum of
outer products of 4 factor matrices viz. A, B, C and D each with r

components or columns.

R
X ~ ;A(:, 7)o B(:;,r) 0 C(:,r) 0 D(:, 1)

For the computation of the CP/PARAFAC decomposition we used
the implementation of the Alternating Least Squares method [15] in
Tensorly [10]. Below we outline how we analyze the factorization
results.

3.2 Analysis of factorization results

We obtained the factor matrix A € RN*R for various values of
the rank using 2 second view of the glitches. Each row of Ais a

Table 1: Coverage analysis of factor matrices obtained using vari-
ous decomposition ranks. For each rank, we show the percentage
of ground truth classes present in the top-20 across all components.

rank % classes covered in top-20

20 38.09
21 33.33
22 42.85
23 38.09

R-length embedding of a glitch in latent space where R is the rank
used for the tensor decomposition.

Computing rank of a tensor is an NP-hard problem [8]. Appro-
priate rank selection in case of tensors is an open problem and
several heuristics have been proposed to determine the appropriate
rank in [3] for dense tensors and an extension for sparse tensors is
proposed in [13] and [12]. In this work, we have simply selected a
range of ranks based on the number of ground-truth classes present
in the Gravity Spy dataset.

To examine the underlying structure discovered by the tensor
decomposition, we performed a homogeneity analysis on the factor
matrix A. We take the top k values per column of the factor matrix
A and examine the labels of the corresponding glitches. Figure 2
shows percentage of different classes appearing in top-20 in each
column of factor matrix A of a rank 24 decomposition.

We also examine the extent to which the various ground-truth
classes are covered across the various components of the decom-
position using coverage analysis. We find the dominant label in
the top-k values in each component of the factor matrix and deter-
mine how many of the ground-truth classes are present across all
components combined. Table 1 shows the results of this analysis.
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Figure 2: The figure shows the homogeneity analysis of CP/PARAFAC decomposition of glitch tensor using rank 24. Each column shows the
percentage of each type of glitch appearing in the top-20 in each of the 24 components of the factor matrix. It can be observed that Extremely
Loud glitch dominates the top-20 values of several components of the factor matrix. All types of glitches are suitably captured in at least one

component.

Some gravity spy classes like Extremely Loud and Low Frequency
Burst are catch-all classes and hence have a high intraclass variabil-
ity. According to [1], Extremely Loud class contains high energy
glitches and loud Koi Fish type of glitches are included in this class.

As shown in Figure 3, CP/PARAFAC decomposition of Extremely
Loud class reveals clusters of similar glitches within the class and
clearly isolates the loud, high energy Koi Fish type glitches.

This demonstrates the ability of tensor decomposition to glean
good structure present in the glitch tensor with a selection of an
appropriate rank. Thus, tensor-based methods would be effective
for searching meaningful patterns in power excesses in LIGO signal
and can potentially be used of exploring unmodeled sources of
gravitational waves.

4 ENSEMBLE MODEL FOR LABEL-SCARCE
GLITCH CLASSIFICATION

This section explains in detail the proposed method for an ensemble
model for glitch classification using only a small fraction of the la-
bels available in the dataset. We begin by understanding the method
of deep transfer learning for classifying glitch spectrograms and the
effect of label scarcity on this method. Thereafter, we propose an
ensemble method in which we augment the deep transfer learning
representations with tensor embeddings.

4.1 Deep Transfer Learning

Convolutional neural networks (CNNs) are currently the state-of-
the-art technique in image classification. CNNs are excellent feature
extractors which allow us to learn low dimensional representations
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Figure 3: Each row in the figure represents the top-10 glitch in-
stances from each component of the factor matrix obtained from
CP/PARAFAC decomposition with rank 5. Observe that row 5 shows
the cluster of loud Koi Fish type glitches isolated within the Ex-
tremely Loud class.

from the raw image input. We can learn better and more sophisti-
cated features by stacking layers in a CNN and making it deeper.
This is in essence the principle behind deep learning.

Although deep CNNs are powerful tools, they have millions
of parameters that need to be learned. Given the sheer number
of parameters of the model, we require commensurate amount of
labeled data to properly train the network and avoid the pitfall of
overfitting where the network simply memorizes the features in the
training examples instead of learning to generalize.
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In many real use-cases, however, we often do not have resources
to collect millions images and then label them in order to have ample
training data for our deep network. In order to train deep CNNs
using a small dataset like Gravity Spy, transfer learning is employed.
It is common knowledge in the machine learning community that
the initial layers of a deep CNN learn fairly generic features like
edges and curves which are universal to all images. Thus, instead
of training the network to learn these generic features from scratch,
we can borrow a deep network trained on a massive dataset, albeit
for a different task than ours, and fine-tune the deeper layers which
learn abstract, data-specific features for our glitch classification
task.

4.2 Effect of Label scarcity

D. George et al in [6] demonstrate that deep transfer learning
achieves state-of-the-art results for glitch classification task using
Gravity Spy dataset compared to other approaches which train mod-
els from scratch. They use 80% of the labeled glitches for fine-tuning
various deep CNNs [16][17][7] pre-trained on the ImageNet[5]
dataset and validate their trained model on the remaining 20% of
the labeled glitches.

To simulate a label-scarce setting, we throttle the number of
labeled instances available for training by randomly sampling 10%
of the glitches for each class from the 80% split and use this sample
for training. We used the remaining 20% glitches as hold-out set for
validation across all experiments. It is to be noted that label scarcity
further exacerbates the class imbalance problem.

The deep transfer learning method using limited labels is de-
scribed in Algorithm 1.

Algorithm 1 Representations using Deep Learning

1: Input:

Dataset D: {(x;, yi)}f\il where x; € Rhixkxchannels jq 5
glitch spectrogram and y; is the corresponding label.

I1, Iy denote the dimensions of the glitch spectrogram and
channels denotes the number of channels used to encode the
image, typically channels = 3 for and RGB image. N is the total
number of glitches in the dataset.

Labeled training set L: Choose a small percentage of
glitches and their labels at random from each class.

Unlabeled set U: Treat rest of the glitches as unlabeled.

2: Step 1: Fine-tune pretrained deep network using L.
3: Step 2: Use trained network as feature extractor f and repre-
sent glitches in L U U in latent space.

f . Rllxlzxchannels S RM

Obtain feature vectors as FV and FVy for L and U respec-
tively.

4: Step 3: Train a discriminator using FV}, and corresponding
labels and evaluate on the hold-out set.

For the purposes of this paper we are going to exclude the None
of the Above class from our analysis as this class does not have a
consistent intraclass structure. The classification performance is
measured using F1 score for each class which is the harmonic mean
of the precision and recall.

We randomly split the Gravity Spy dataset into 80% training
and 20% hold-out sets. To demonstrate the impact of using limited
labels for training a deep CNN, we first trained the network using
the whole 80% training data, and then on random 10% samples for
5 runs. The hold-out set was used of validation.

Table 2 shows the effect of label scarcity on a VGG19 [16] net-
work pretrained on ImageNet [5] in terms of drop in average F1
score over 5 runs.

Table 2: Class-wise F1 scores of VGG19 fine-tuned on 10% and 80% of
the labeled glitches respectively show that there is a drop in F1score
for every class as we reduce the amount of available labels during
training. The under-represented classes (in bold) are worst affected.

glitch class vggl9-10% vggl9-80%  support
Air Compressor 0.790938685  0.827586207 12
Blip 0.946134684 0.981182796 374
Chirp 0.672668127 1 14
Extremely Loud 0.969669574 1 91
Helix 0.973149947 1 56
Koi Fish 0.955218569 0.990990991 166
Light Modulation 0.912167451 0.973913043 115
1080 Lines 0.908763929 0.96969697 66
Low Frequency Burst  0.906152506  0.957528958 132
Low Frequency Lines  0.920353467  0.941176471 91
No Glitch 0.65114379 0.821917808 37
Paired Doves 0.426031746 0.909090909 6
Power Line 0.963662563 0.966292135 91
Repeating Blips 0.916514915 0.964285714 57
1400 Ripple 0.847251596 0.929292929 47
Scattered Light 0.951348696 0.978494624 92
Scratchy 0.988632219 0.992907801 71
Tomte 0.733760082 0.867924528 24
Violin Mode 0.948745888 0.989473684 95
Wandering Line 0.565641026 0.888888889 9
Whistle 0.83488995 0.94017094 61

4.3 Ensemble model using Tensor Embeddings

As described in Algorithm 2, we use the embeddings obtained from
the tensor decomposition to augment the feature vectors of each
glitch obtained using the deep CNN. These combined CNN and
tensor embeddings are used to train a discriminator to classify the
glitches into 21 classes. Figure 4 depicts the block diagram of the
ensemble setup.

The presented ensemble is a thought experiment that is meant to
measure the effectiveness of the CP/PARAFAC factors. Note that
there is no target/label leakage since the decomposition is unsu-
pervised, albeit leveraging the structure of the entire dataset, as in
typical semi-supervised settings. However, in a realistic deployed
setting, we would have to project test instances to the already
computed decomposition space and use that projection as the rep-
resentation. To the best of our knowledge, such augmentation of
a supervised model with an unsupervised one is an open problem
which we reserve for future work.
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Figure 4: Block Diagram of Ensemble method which combines feature vectors from VGG19 fine-tuned on 10% of the labeled glitches and

CP/PARAFAC decomposition of tensor representing all the glitches.

Algorithm 2 Ensemble Representation

1: Input:

R;: Feature vectors for labeled glitches FVy and feature
vectors for unlabeled glitches FVy; as obtained in Algorithm 1.

Ry: Factor Matrix A € RNVN*R where N is the total num-
ber of glitches and R is the decomposition rank used in
CP/PARAFAC.

2: Step 1: Construct a latent representation of glitches by com-
bining latent representation in Ry with corresponding repre-
sentation in Ry for every glitch.

Ensembler: FV, joined with corresponding row of R.
Ensembler;: FVy joined with corresponding row of Ry.

3. Step 2: Train a discriminator using Ensembley, and validated

the trained model using Ensembley;

We use a VGG19 trained on a random 10% sample from the
training data as a base CNN and augment the feature vectors ob-
tained from this base CNN with tensor embeddings from 5 different
decomposition runs in our ensemble setup.

Figure 5 shows the average class-wise F1 scores across 5 runs
as a measure of the classification performance of the ensemble
model using various ranks for tensor decomposition. We see that
augmenting CNN representation with tensor embedding improves
the classification performance in following respects.

o Most classes perform better than the baseline VGG19 with
appropriate selection of the CP/PARAFAC rank.

e More classes do better with lower rank tensor embeddings
because low rank decomposition is more stable. As we go
higher, we have low SNR. Improving tolerance of our decom-
position can improve performance at higher ranks.

o Classes like Paired Doves, Wandering Lines and Chirp has 2,
3 and 5 examples respectively in the training dataset and are
severely under-represented under label scarcity.

5 RELATED WORK

S.Bahaadini et al[2] have used the Gravity Spy dataset to perform
glitch classification in multi-view mode. They use two ways to
represent glitches in a multi-view mode viz. merged view where
they concatenate the 4 images representing the 4 views of a glitch
in a grid and use the resultant image for classification, and parallel
view where they concatenate feature maps obtained by training
4 shallow CNNs on the 4 views independently and then use the
concatenated feature maps for classification. They use the glitches
from the first observing run of LIGO and employ a 75%,12.5% and,
12.5% training, validation and test split.

D. George et al[6] take the approach of deep transfer learning to
classify glitch images in single view mode and fused view mode in
which they encode 1.0 sec, 2.0 sec and 4.0 sec views of a glitch in
the RGB channels of a new image. They employ a 80%, 20% training
and validation split of their data to finetune various popular deep
CNN architectures[7][16][17] pretrained on ImageNet[5].

To the best of out knowledge, this paper represents the first
attempt as glitch-classification in a label scare setting.

6 CONCLUSIONS AND FUTURE DIRECTIONS

We present a proof of concept approach for tackling the problem of
classifying LIGO glitches in a label scarce setting.

Our unsupervised tensor-based analysis shows that the sim-
ple CP/PARAFAC tensor decomposition is able to find coherent
structure in the glitch dataset. We demonstrated the ability of
CP/PARAFAC to discover the intraclass structure in the catch-all
class Extremely Loud which agrees with the ground truth composi-
tion of that class as mentioned in [1]. In future work on tensor-based
analysis of the glitches, we seek to investigate the crucial question
of automatic rank selection for the tensor decomposition. We will
also further study the different constraints, like sparsity and near-
orthogonality, that we should impose on the factors in order to
discover cleaner, more interpretable structure.
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glitch-class rank16 rank17 rankl18 rank21 vrank22 rank24 vggl9-10%
Air Compressor 0.8 0.792381 0.651429 0.721556  0.64  0.637594 0.7909387
Blip 0.977917 0.971861 0.975585 0.779007 0.96778 0.957481 0.9461347
Chirp 0.763373 0.629524 0.786791 0.635293 0.708635 0.641734 0.6726681
Extremely Loud 0.763368 0.769477 0.959159 0.776485 0.774048 0.729489 0.9696696
Helix 0.987516 0.99823 0.987386 0.99099 0.79823 0.992792 0.9731499
Koi Fish 0.960781 0.971778 0.975695 0.958999 0.964452 0.762866 0.9552186

Light Modulation
1080 Lines

0.920353 0.901827 0.945295 0.920357 0.930897 0.848184 0.9121675
0.965106 0.985075 0.979237 0.964182 0.97928 0.970693 0.9087639

Low Frequency Burst 0.923818 0.920617 0.943303 0.915748 0.946082 0.911988 0.9061525

Low Frequency Lmes 0.967671 0.972074
No Glitch
Paired Doves
Power Line

0.96233 0.954238 0.923065 0.940686 0.9203535
0.889135 0.886005 0.842307 0.72678 0.882322 0.835769 0.6511438
0.556444 0.652821 0.462143 0.385348 0.510476 0.412015 0.4260317
0.969064 0.96995 0.965219 0.775479 0.960489 0.958114 0.9636626

Repeatmg Blips 0.934822 0.920429 0.915624 0.806786 0.900288 0.909373 0.9165149
1400 Ripple 0.88207 0.975129 0.971175 0.963139 0.971132 0.975171 0.8472516
Scattered Light 0.961426 0.966528 0.980255 0.954508 0.97252 0.930934 0.9513487
Scratchy 0.980719 0.991529 0.983974 0.975306 0.976711 0.985974 0.9886322
Tomte 0.859776 0.70295 0.827707 0.675095 0.845038 0.658655 0.7337601
Violin Mode 0.775937 0.985196 0.983101 0.94351 0.976882 0.976441 0.9487459
Wandering Line 0.338661 0.645714 0.475458 0.239394 0.527233 0.32381 0.565641
Whistle 0.893064 0.903229 0.879539 0.693833 0.879965 0.861037 0.8348899

Figure 5: Average Class-wise F1 score for ensemble model using various ranks over 5 different runs of tensor decomposition. The classes
highlighted in bold are some of the most under-represented classes in the training data and highlighted in green are instances where ensemble

outperforms baseline VGG19.

Finally, we demonstrated that the tensor-based augmentation of
deep CNN features has the potential to reduce the impact of label
scarcity to some extent on the state-of-the-art model used for clas-
sifying glitches. Further investigation into better representations,
realistic deployment of our proposed ensemble, more suitable mod-
els and data augmentation for label scarce scenario is underway.
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