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Abstract—Graph generation is a task that has been explored
with a wide variety of methods. Recently, several papers have
applied Generative Adversarial Networks (GANs) to this task, but
most of these methods result in graphs of full or unknown rank.
Many real-world graphs have low rank, which roughly translates
to the number of communities in that graph. Furthermore, it has
been shown that taking the low rank approximation of a graph
can defend against adversarial attacks. This suggests that testing
models against graphs of different rank may be useful.

However, current methods provide no way to control the rank
of generated graphs. In this paper, we propose two variants
of BRGAN: GAN architectures that generates synthetic graphs,
which in addition to having realistic graph features, also have
bounded rank. Our first variant, BRGAN-A, generates synthetic
graphs competitive with state-of-the-art models, with rank equal
to or lower than the desired rank. Our second variant, BRGAN-
B, generates graphs of almost exactly the desired rank, but results
in less realistic results. We also propose a novel rank penalty term
on the generator, which allows us to control this realism-rank
tradeoff.

I. INTRODUCTION

Graph generation is a common task, and many models
exist for this task. Traditional statistical methods (such as the
Barabási–Albert model [1]) usually attempt to model specific
attributes of the graph. While this can lead to generated
graphs being similar to the target graph with respect to one
or more attributes, it requires the user to accurately identify
characteristics of the graph they wish to mimic. This issue
has been addressed with the introduction of neural network
models (like GraphRNN [2]), which learn directly from a set
of graphs without requiring the user to explicitly declare any
graph attributes.

Recent advances in the field include the use of Generative
Adversarial Networks (GANs) for graph generation. The GAN
was first introduced in 2014 by Goodfellow et al.[3]. While
they were originally used for image generation, they have since
been applied to a wide variety of fields, including the field of
graph generation.

A current state-of-the-art model LGGAN [4] learns to
directly generate the adjacency matrices of graphs and its
corresponding labels given a set of graphs as input. It does
this by using a GAN with a Graph Convolutional Network
(GCN) [5] as its discriminator and a Multi-layer Perceptron
(MLP) network as its generator.

Alternatively, GraphRNN [2] models the graph as a se-
quence and uses a RNN to generate realistic graphs. You et

al.[2] also provides a set of datasets that we use to evaluate
the quality of our model.

Most existing graph generation techniques tend to produce
a graph of full or high rank. While this is sufficient for most
use cases, generating a graph of a known rank can also be
useful. The rank of a community graph roughly corresponds
to the number of communities within the graph. Bounding
the rank of the generated graph therefore allows a user to
generate graphs with bounded number of communities, which
is difficult or impossible with existing graph generation models
and can result in more realistic graphs.

Low-rank approximations of graphs have also been shown
to be useful in defending against adversarial attacks [6],
which further suggests that the rank of a graph is an useful
parameter. Being able to control the rank allows users to
generate synthetic datasets with realistic graphs to test the
effectiveness of new models on inputs with different ranks.

Determining the full rank of a matrix is computationally
tractable by using the Singular Value Decomposition (SVD),
which can be calculated in polynomial time. However, deter-
mining the low-rank subspace in which the data “live” is by
no means a trivial problem, and is usually done heuristically
by truncating the singular values of a matrix so that a certain
percentage of the data variation is preserved.

In matrices, this is typically not considered a major issue,
however, the problem is further compounded when we move to
higher-order structures like time evolving graphs, since finding
the rank of three-dimensional tensor is NP-hard [7]. Generat-
ing realistic data where the rank of the data is known can
further promote research in developing and testing methods
AutoTen [8] or NSVD [9] for approximating the rank of a
tensor. We reserve this for future works, but it serves as a
compelling motivation for the generation of realistic matrices
and higher-order tensors of known rank.

In this work, we begin this journey by focusing on gener-
ating graphs (matrices) of fixed rank in this work because
finding their rank is computationally tractable. This allows
us to evaluate the effectiveness of our bound on the rank of
the graph. We propose a new model, BRGAN-A, that first
generates factor matrices of rank of at most k and uses these
factor matrices to construct the adjacency matrix. This allows
us to bound the rank of the generated graphs. We also propose
another variant, BRGAN-B that lets us generate graphs of
exactly rank k. To do this, we propose a novel penalty term
on the loss function of the generator that encourages the



generation of orthogonal factor matrices.
We evaluate these models and show that they has com-

petitive performance to current state-of-the-art neural network
graph generation models despite a bound on the rank of the
graph. We also evaluate the effectiveness of this bound and
the sensitivity of our model to changes to k.

Our contributions include:
• Novel problem formulation: we propose the problem

of adversarially generating an adjacency matrix with a
desired rank.

• Novel architecture: we propose two novel architectures
for the above problem that generate the adjacency matrix
with a rank bound of k from factor matrices.

• Novel regularization term: we propose a novel reg-
ularization term that increases the rank of generated
adjacency matrices up to k.

• Extensive experimentation: we thoroughly evaluate the
effectiveness of our approach along three dimensions:
the rank of the generated graphs, the realism of the
generated graphs, and the sensitivity of our model to
hyperparameters.

II. PROBLEM FORMULATION AND PROPOSED METHOD

Table I provides a summary of the notation used in this
work:

Notation Meaning
X, x, x Matrix, vector, scalar
‖X‖F Frobenius norm
‖x‖p `p-norm
DM Matrix of the diagonal entries of M
k The desired rank of the output matrices.
λk Penalty term

vec(X) Vectorization operator (vertically stack the columns of X
into a vector)

Table I: Table of symbols and their description.

We define the rank of a graph as the rank of its adjacency
matrix. Recall that the rank of a matrix is equal to the number
of rank-1 matrices required to sum up to it. In this work, we
generate an adjacency matrix of at most rank k.

Current graph generation models produce graphs of un-
bounded rank. This is because existing methods tend to either
model the graph as a sequence or generate the adjacency
matrix directly, which makes it difficult to bound the rank
of the resulting matrix.

The SVD can be used to find a rank-k approximation of
an adjacency matrix which is optimal with respect to the
2-norm and Frobenius norm of the difference between the
approximation and original matrix. However, this approxima-
tion will not necessarily preserve graph properties. Because
of this, we propose BRGAN: a novel architecture that uses
a bilinear network to generate an adjacency matrix from its
factor matrices. This allows us to bound the rank of the output.

We propose 2 methods to do this, which we denote
BRGAN-A and BRGAN-B.

A. BRGAN-A

BRGAN-A generates the adjacency matrix from two factor
matrices, and allows for an upper bound on the rank of the
generated matrices. One advantage of this over BRGAN-B is
that it requires fewer parameters and has fewer restrictions on
the generated factor matrices, which allows for more realistic
graphs.

Let the two factor matrices be denoted A and B, where A ∈
Rn×k and B ∈ Rk×n. Then, their product C = AB ∈ Rn×n

and rank(C) ≤ min(rank(A), rank(B)). By definition,
rank(A) ≤ min(n, k) and rank(B) ≤ min(n, k). If we define
k such that k ≤ n, we know that rank(A), rank(B) ≤ k.
Then, rank(C) ≤ min(k, k) ≤ k. We exploit this property to
generate a graph of bounded rank. Note that this approach
does not guarantee that C is of exactly rank k because
the vectors in A and B are not guaranteed to be linearly
independent. However, we describe how to reduce the chance
of this occurring in Section II-C.

In the case of an undirected graph, the adjacency matrix
is symmetric. Our method can be easily adapted to naturally
enforce this symmetry. We can generate a symmetric matrix
S of rank k or lower from our factor matrix A if we take
S = ATA. Then rank(S) = rank(A) ≤ k. We can also
incorporate our second factor matrix B if we let S = ATA+
BTB. This would lead to rank(S) ≤ 2k. However, we leave
a detailed evaluation of this approach to a future work.

B. BRGAN-B

BRGAN-B generates the adjacency matrix from three factor
matrices. Two of these matrices are penalized towards orthog-
onality, and the third matrix is a diagonal matrix.

Let the first two factor matrices be denoted U and VT .
Then, the third factor matrix is denoted Σ. These correspond
to their namesakes in the Singular Value Decomposition
(SVD), where we can decompose a given matrix M into
M = UΣVT .

As such, we can construct our adjacency matrix from
the components by simply taking the product of the factor
matrices. By the definition of the SVD, we know that the
rank of the matrix is equal to the number of singular values
in the diagonal matrix Σ. This allows us to provide an exact
bound on the rank of the generated graphs.

However, one requirement of the SVD is that the U and VT

matrices must be orthogonal. To do this, we introduce a novel
penalty term on the orthogonality of the generated U and VT

matrices. We talk more about this term below in Section II-C.
It is also worth noting that this method could be easily

extended to work for generating tensors of known rank like
time-evolving graphs or multigraphs by applying the same idea
to the CP (CANDECOMP/PARAFAC) decomposition [10].
However, this is beyond the scope of this paper, and we leave
a detailed evaluation of this approach to a future work.

C. Rank Penalty

In the case of BRGAN-A, the generator provides a hard
upper bound on the rank of the generated adjacency matrices,
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Figure 1: Example of penalty term 2 applied to 3 sample matrices.
(a) shows that a matrix of orthogonal column vectors has a penalty
of 0. (b) shows that a matrix of non-orthogonal column vectors has
a non-zero penalty. (c) shows that a matrix that is almost column
orthogonal has a relatively low penalty. Penalty term 1 can be viewed
in a similar manner.

but does not offer a lower bound on the generated rank. This
is because of the natural occurrence of linearly dependent
columns in A and linearly dependent rows in B. While this
can be beneficial for some use cases, having as many matrices
of exactly rank k as possible may also be desirable.

BRGAN-B allows for an exact bound on the rank of
the generated adjacency matrices, but also requires that U
and VT be orthogonal. While an orthogonal matrix can be
obtained from a given matrix through Gram–Schmidt orthog-
onalization, it requires that all the vectors in the matrix be
linearly independent—i.e., the matrix is non-singular. Since it
is possible for the factor matrices to be singular, we can cannot
use this method.

To solve this issue, we propose two possible novel penalty
terms on the loss function of the generator, whose goal is to
promote orthogonality among the columns of A and the rows
of B.

L = LG + λk

(∥∥vec (I−ATA
)∥∥

p
+
∥∥vec (I−BBT

)∥∥
p

)
(1)

L = LG + λk(
∥∥vec (ATA−DATA

)∥∥
p
+ (2)∥∥vec (BBT −DBBT

)∥∥
p
)

Penalty term 1 encourages generating normalized orthog-
onal vectors and is used primarily for BRGAN-B, but also
works well for BRGAN-A. Penalty term 2 encourages non-
normalized orthogonal column vectors in A and row vectors
in B.

We know that if some matrix M is orthonormal, then
MT = M−1 and MTM = MMT = I. Term 1 penalizes
that difference. While this is useful for BRGAN-B, where

the matrices must be strictly orthonormal to obey the SVD
formulation, sometimes we do not need such a strict constraint.

The intuition behind term 2 can be explained if we view
the matrix multiplication as a sum of outer products of the
matrices. In BRGAN-A, we define the output matrix C =
AB, and in BRGAN-B, we define C = UΣVT . In the case
of BRGAN-B, Σ simply scales the values and therefore does
not affect the rank of the resulting matrix as long as it consists
of non-zero entries.

Therefore, we can analyze the multiplication as C = AB,
where A = UΣ and B = VT in the case of BRGAN-B. Then,
we can rewrite this product in terms of the outer products of
column vectors, where ai denotes the i-th column of a and
bT
i denotes the i-th row of b:

C = AB =

n∑
i=1

aibT
i (3)

Since our goal is to make C full rank (or as high rank
as possible), we would therefore ideally want the columns
of A and the rows of B to be linearly independent (within
themselves). Recall that this is possible since k ≤ n.

Term 2 is different from term 1 in that its goal is to
encourage only column-wise orthogonality in A and row-wise
orthogonality in B. This provides a lighter constraint than that
of Term 1 since the rows of A and the columns of B do not
have to be orthogonal. This also means that they do not have
to be normalized. This is sufficient when using the BRGAN-
A architecture, as the aim is simply to reduce the number of
linearly dependent vectors in C = AB, not to enforce strict
matrix orthogonality.

All of the terms are written with the generic `p-norm,
since we found that using the `1 and `2 norms can lead to
slightly different results as shown in Table VI. Since we use
the vectorization operator, note that p = 2 is equivalent to
calculating the Frobenius norm of the matrix.

Using the `1-norm has the benefit of encouraging sparsity
in the diagonal of the Gram matrices, which contain pairwise
inner products of the rows and columns of A and B, and
should ideally be zero. In contrast, using the `2-norm encour-
ages minimizing the squared distance in the values. However,
we found that both give similar results, but the `2 norm is
more stable. The reason for this is that using the `1-norm can
result in sparse Gram matrices, which encourages the generator
to generate close-to-zero factor matrices. This is especially
prevalent with term 2.
λk controls the strength of our regularization, although we

have found that it works well even with small values of λk. We
evaluate the performance of this penalty term and its sensitivity
to different values of λk in Section IV-D below.

III. ARCHITECTURE

A GAN consists of two main models: the generator G
and the discriminator D. The generator maps a sample from
a latent space z to a graph G. The discriminator takes an
adjacency matrix M and outputs the probability p of a sample



being fake. These two models are then trained in unison in
the hope that the generator will improve at generating realistic
graphs and the discriminator will improve in identifying fake
graphs.

One limitation of the original GAN model [3] is that it
works poorly for discrete values because it uses the Jensen-
Shannon (JS) divergence. WGAN [11] helps mitigate the
effects of this by using Wasserstein distance instead. WGAN-
GP [12] further improves the training of WGANs by applying
a gradient penalty and CT-GAN [13] further improves on
WGAN-GP with the addition of a consistency term. Fan and
Bert [4] also found that the CT-GANs [13] perform well in
graph generation. We found similar results in our testing and
therefore use the CT-GAN framework for BRGAN.

A. Generator Architecture

1) BRGAN-A: The BRGAN-A generator consists of a
multi-layer perceptron (MLP) network followed by two MLP
networks. The first MLP network acts as a feature extractor
on the noise vector z and the MLP networks use it to generate
the factor matrices. This significantly reduces the number of
parameters, and we found that it converges more quickly and
performs better than without using the shared layer.

We apply tanh to the output of each network to clip values
to [0, 1]. While this does not cause each entry in the final
adjacency matrix M to be bounded to [0, 1], it does help reduce
the chance of the discriminator easily detecting fakes based on
the value of the nodes, rather than on the structure of the graph.
This helps ensure that the model continues training.

2) BRGAN-B: The BRGAN-B generator is similar to that
of BRGAN-B, with the addition of another MLP network to
generate the vector of singular values. The major difference
between BRGAN-A is that it also requires the use of a penalty
term to enforce the orthonormality of U and VT . Without this,
the rank of the generated graphs will not be bounded correctly.

B. Discriminator Architecture

The BRGAN discriminator accepts an n × n adjacency
matrix and consists of several Graph Convolutional Network
(GCN) [5] layers followed by a fully-connected layer and a
sigmoid. The benefit of using a GCN for the discriminator is
that GCNs are permutation invariant. We use residual GCN
connections by performing a max pool across all the GCN
layer outputs. As Fan and Huang [4] found, the network
performs better with these residual connections. BRGAN-A
and BRGAN-B share the same discriminator architecture.

We compare the performance of the discriminator with two
different architectures below in Table II.

IV. EXPERIMENTAL EVALUATION

In evaluating our model, we try to answer three different
questions. First, can our model generate graphs of a specific
rank? Second, do those graphs mimic real-world graphs?
Finally, is our rank penalty term effective?

Small CORA Small Citeseer

Model Name Deg Clust Orbit Deg Clust Orbit

FC-BRGAN (k = 15) 0.28 0.51 0.09 0.27 0.20 0.11
FC-BRGAN (k = 25) 0.44 0.67 0.24 0.11 0.40 0.06
FC-BRGAN (k = 35) 0.33 0.82 0.18 0.13 0.42 0.14
BRGAN (k = 15) 0.08 0.32 0.05 0.10 0.19 0.05
BRGAN (k = 25) 0.06 0.34 0.08 0.11 0.18 0.08
BRGAN (k = 35) 0.11 0.33 0.09 0.05 0.26 0.06

Table II: Comparison of a GCN-based BRGAN discriminator and a
fully-connected (FC-BRGAN) discriminator. We can see that using a
GCN results in increased realism, even across different values of k.
See Section IV-C for a detailed description of the evaluation criteria.

A. Methodology

We evaluated our model using egonets extracted from the
CORA and Citeseer citation graph datasets [14]. Each dataset
was split into a small dataset, which consists of 2-egonets
and 3-egonets with [30, 50] nodes, and a large dataset, which
consists of 3-egonets with [150, 200] nodes. We chose to use
these datasets because they were also used to evaluate LGGAN
[4], which allows us to benchmark our results against theirs.
Note that while these are the same base datasets as in You et
al. [2], we sample the egonets differently since we also wish
to compare our results with Fan and Huang [4].

While BRGAN’s discriminator uses a GCN and is node
permutation invariant, BRGAN’s generator is affected by node
ordering because it uses a MLP. As such, we use the approach
used by You et al.[2] and Fan et al.[4] and generate all possible
BFS orderings of the graph. This allows use to only have
n2 permutations per graph rather than the full n! possible
permutations. We then train on this augmented dataset.

Both the generator and discriminator were trained with the
RMSprop [15] optimizer because we found that it tends to be
more stable than Adam [16] for this case. Arjovsky et al.[11]
also suggested using RMSprop for WGANs, although Wei et
al.[13] uses ADAM. We did not perform a hyperparameter
search for the learning rate and found that our model generally
works well with any reasonable learning rate. For the CTGAN
loss function, we used λ1 = 10 and λ2 = 2—the same values
as Wei et al.[13].

The output of G is an adjacency matrix M with values in
[0, r], although values tend to be in the range [0, 1] due to
the input values also being in this range. The graphs are then
thresholded by some threshold τ . That is:

Mi,j =

{
0, if Mi,j ≤ τ
1, otherwise

(4)

τ controls the sparsity of the final graph. As τ → 0, |V | → 0
and as τ → r, |V | → m · n. For our tests, we chose τ = 0.5
because the majority of the values are in the range [0, 1] and
τ = 0.5 provides a mid-way bound.

B. Generating graphs of a specific rank

Singular Value Decomposition (SVD) can be used to find
the approximate rank of a matrix. The SVD of a matrix M
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Figure 2: BRGAN architecture with both the BRGAN-A and BRGAN-B generators shown.

is M = UΣVT , where U is a m × m orthogonal matrix,
Σ is a diagonal non-negative m × n matrix, and V is a
n × n orthogonal matrix. By convention, the singular values
σ1, σ2, . . . σm are sorted in descending order by value. Then,
the approximate rank of a matrix can be found by finding the
smallest index k where σk+1 < ε, where ε is some small
constant. In our experiments, we found that ε = 10−6 is
sufficient.

1) BRGAN-A: As theoretically expected, we found that our
bound was effective and the rank of generated matrices were
equal to or less than k. We also found that as k increases, the
median rank of the generated graphs generally also increases.
However, the median rank of the generated matrices is closer
to k when k is small. This means that k becomes a tighter
bound on the true rank of the generated graphs as k → 1.

This is because it is difficult to create a realistic approx-
imation of a high-rank matrix while maintaining low rank.
However, as the rank bound is increased, the median generated
rank does not increase linearly. This is because some of the
input graphs are already of low rank and therefore some of
the generated graphs will not be of higher rank, leading to a
lower median generated graph rank.

We also noticed that the MMD of our graph attributes do
not always uniformly improve as k increases. This is likely
because that, as the number of parameters increases as k

increases. However, the clustering MMD does improve in
almost all cases as k increases, likely because of the reasons
described in Section IV-C below.

2) BRGAN-B: BRGAN-B resulted in graphs of exactly rank
k. This makes sense because the SVD formulation was used
to generate the output graphs, which allows us to fully control
the rank of the generated graphs as long as the rank penalty
term is effective in orthonormalizing U and VT .

However, this does come at a cost in terms of the realism
of the results as described in Section IV-C below.

C. Realism of the generated graphs

To evaluate the realism of the generated graphs, we com-
pared several graph statistics of the input graphs with those
of the output graphs. We did this by calculating the Mean
Maximum Discrepancy (MMD) [17] between the degree dis-
tribution, clustering coefficient, and orbits of the two sets of
graphs. We compared this to the results of various other graph
generation methods in the tables below. The source code for
LGGAN was not available at the time of writing, so we used
the results reported in their paper [4].

1) BRGAN-A: While the results vary with the value of
k, we can see that BRGAN-A generally has similar degree
and orbit MMDs when compared to LGGAN. However, it
tends to have a higher clustering MMD. This is likely because
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matching rank k for BRGAN-B. In all of the experiments, all of the generated graphs were exactly of rank k.

lowering rank has the largest effect (out of the three tested
graph statistics) on the clustering coefficient of a graph. This
is because of the fact that we are imposing low-rank structure
on the adjacency matrix of the graph. Then, all of the nodes
live in a much lower dimension, which increases the density of
connections and therefore would also increase the clustering
coefficient.

We tested this by quantitatively calculating the MMD be-
tween graph statistics of a rank-k approximation of the graph
(calcuating using SVD) and the original graph. The highest
MMD value from this test was the one for the clustering
coefficient. We observed this behavior in both the CORA and
Citeseer datasets.

2) BRGAN-B: The MMD scores were significantly worse
than that of BRGAN-A. This is expected, however, since
we artificially inflate the rank of all the generated graphs to
values higher than that of the input distribution. The graph
attribute that is most affected is the degree distribution, which
is drastically different from that of the input graph. The effect
of this is less apparent as k gets closer to the mode of the
ranks of the input graphs.

This is because new values have to be added to the matrix
to artificially increase the rank of the generated graphs and

each such new value constitutes a new edge. Each such case
increases the degree of two nodes, further skewing the degree
distribution.

This restriction also seems to result in BRGAN-B generat-
ing similar graphs across different values of k. This is why
the MMD scores on all of the BRGAN-B models are similar.

D. Effectiveness of Rank Penalty Term

From the left side of Fig. 3 we can observe that the rank
penalty term is effective on BRGAN-A, and as λk increases,
the rank of the generated graphs also increases while still being
bounded by k. On the right side, we can see that all of the
graphs generated by BRGAN-B are of exactly rank k. Without
the penalty term, the rank of the generated graphs are not
bounded by k.

Table V show the performance of BRGAN-A with different
values of λk and k. We can note see that generally as λk
increases, model performance decreases. This is to be expected
because a high value of λk causes the variance in rank of the
generated graphs to decrease artificially, making it harder to
model the graphs in the input dataset.



Small CORA Small Citeseer

Model Name Deg Clust Orbit Deg Clust Orbit

Erdos-Renyi 0.68 0.94 0.48 0.63 0.86 0.12
Barabási–Albert 0.31 0.53 0.11 0.37 0.18 0.11
MMSB 0.21 0.68 0.07 0.37 0.18 0.11
DeepGMG 0.34 0.44 0.27 0.27 0.36 0.2
GraphRNN 0.26 0.38 0.39 0.19 0.2 0.39
LGGAN 0.13 0.08 0.03 0.17 0.13 0.04
BRGAN-A (k = 10) 0.02 0.64 0.07 0.08 0.18 0.12
BRGAN-A (k = 15) 0.02 0.56 0.04 0.11 0.22 0.08
BRGAN-A (k = 20) 0.03 0.47 0.07 0.07 0.23 0.08
BRGAN-A (k = 30) 0.09 0.39 0.11 0.09 0.28 0.07
BRGAN-A (k = 50) 0.07 0.34 0.11 0.03 0.27 0.05
BRGAN-B (k = 10) 1.32 0.17 0.75 1.40 0.30 0.85
BRGAN-B (k = 15) 1.35 0.17 0.78 0.81 1.35 0.30
BRGAN-B (k = 20) 1.38 0.18 0.80 1.40 0.28 0.86
BRGAN-B (k = 30) 1.41 0.18 0.84 1.41 0.28 0.88
BRGAN-B (k = 50) 1.41 0.18 0.85 1.43 0.30 0.92

Table III: Evaluation results for the small datasets for BRGAN-A
and BRGAN-B. For BRGAN-A, the CORA degree and orbit MMD
values are largely competitive with the other generative models, but
LGGAN has a significantly lower clustering MMD value. BRGAN-B
does poorly in terms of matching the degree distribution due to the
strict rank restriction (see Section IV-C). Note that the numbers for
other models are the ones reported by Fan and Huang [4].

Large CORA Large Citeseer

Model Name Deg Clust Orbit Deg Clust Orbit

Erdos-Renyi 0.88 1.45 0.27 0.82 1.57 0.06
Barabási–Albert 0.54 1.06 0.16 0.32 1.04 0.08
MMSB 0.12 0.68 0.09 0.08 0.5 0.11
GraphRNN 0.2 0.46 0.11 0.2 1.15 0.14
LGGAN 0.15 0.21 0.06 0.25 0.12 0.06
BRGAN-A (k = 140) 0.30 0.46 0.29 0.70 1.80 0.06
BRGAN-A (k = 170) 0.22 0.45 0.03 0.13 0.80 0.06

Table IV: Evaluation results for the large Citeseer and large CORA
dataset. Note that the numbers for other models are the ones reported
by Fan and Huang [4]

Small CORA Small Citeseer

Model Name Deg Clust Orbit Deg Clust Orbit

BRGAN-A (k = 15, λk = 0) 0.02 0.56 0.04 0.11 0.22 0.08
BRGAN-A (k = 15, λk = 0.005) 0.51 0.22 0.16 0.44 0.12 0.19
BRGAN-A (k = 15, λk = 0.01) 0.54 0.39 0.14 0.53 0.18 0.21
BRGAN-A (k = 15, λk = 0.02) 0.64 0.48 0.16 0.64 0.44 0.27

BRGAN-A (k = 25, λk = 0) 0.06 0.34 0.08 0.11 0.18 0.08
BRGAN-A (k = 25, λk = 0.005) 0.83 0.36 0.10 0.05 0.27 0.06
BRGAN-A (k = 25, λk = 0.01) 0.46 0.33 0.14 0.44 0.20 0.24
BRGAN-A (k = 25, λk = 0.02) 0.59 0.49 0.18 0.62 0.35 0.27

BRGAN-A (k = 35, λk = 0) 0.11 0.33 0.09 0.05 0.26 0.06
BRGAN-A (k = 35, λk = 0.005) 0.22 0.30 0.14 0.02 0.29 0.03
BRGAN-A (k = 35, λk = 0.01) 0.47 0.27 0.17 0.42 0.19 0.23
BRGAN-A (k = 35, λk = 0.02) 0.58 0.48 0.17 0.63 0.49 0.29

Table V: Comparison of performance of BRGAN-A on the small
Citeseer and CORA datasets for different values of k and λk. We can
see that performance generally decreases as λk increases, as expected.

V. RELATED WORK

Graph generation has been widely studied, and many dif-
ferent models exist for this task. Traditional statisical models
such as the Barabási–Albert [1] and exponential random graph
models are created to model specific graph properties and tend
to work well for only specific use cases.

One such example is the Erdös-Rényi-Gilbert random graph

Small CORA Small Citeseer

Model Name Deg Clust Orbit Deg Clust Orbit

BRGAN-A (`1) 0.63 1.06 0.18 0.68 1.06 0.30
BRGAN-A (`2) 0.06 0.44 0.09 0.08 0.22 0.06

Table VI: Performance of BRGAN-A with `1 and `2 norms with
penalty term 1. This was run with k = 25 and λ = 0.001.

model [18] [19]. The model is often referred to in the form
G(N, p) or G(N,E), where N is the number of nodes, E
is the number of edges, and p is the probability of an edge
existing between two nodes. One of the key properties of this
model is that expected number of neighbors for each node
is the same [20]. However, this property is often not true of
real-world graphs.

Several models attempt to address this limitation by at-
tempting to vary node degree and mimic more realistic node
distributions. Notably, the Barabási–Albert model [1] attempts
to address this issue by using preferential attachment, which
mimics the evolution of a scale-free graph over time and
results in the creation of “hubs” in the graph.

The stochastic block model (SBM) [21] allows for the
generation of graphs with a set number of communities. It
takes in a partition of the vertices into communities and a
matrix P, with each entry Pi,j representing the probability of
an edge existing between the ith and jth communities.

Another common family of statistical graph generation
models are the exponential random graph models (ERGMs).
An example of this are Markov graphs, for which Frank and
Strauss [22] proved the probability distributions. This was later
generalized by Wasserman and Pattison [23] in the form of p∗

models. With Markov Chain Monte Carlo (MCMC) proposed
by Hunter and Handcock [24], it is possible to estimate the
parameters of ERGMs and generate similar graphs.

However, these statistical models all share the weakness
that they attempt to model specific graph properties. Recently,
advances in neural networks and deep learning have led the
creation of several new models that learn directly from an
input distribution of one or more graph(s). Unlike traditional
models, these methods attempt to learn the structure of a graph
rather than simply attempting to match specific attributes.
Some notable methods include GraphRNN [2], NetGAN [25],
MolGAN [26], and GraphVAE [27].

NetGAN [25] takes in a graph and learns the distribution of
biased random walks using a LSTM, which allows it to easily
scale to large graphs. MolGAN [26] uses a reinforcement
learning objective with a reward network (in addition to the
standard discriminator and generator) to generate realistic
molecular graphs. GraphGAN [28] proposes a novel graph
softmax function and learns the connectivity distribution over
the vertices, but does not directly generate similar graphs.
GraphVAE [27] uses a Variational Autoencoder (VAE) to
generate graphs.

However, none of these models provide a method to bound
the rank of the generated graph. BRGAN allows a user to eas-



ily bound the rank of the generated graphs while maintaining
competitive performance.

VI. CONCLUSION

In this work, we propose two variants of the Bounded Rank
GAN (BRGAN), which both generate graphs or rank equal
to or lower than a hyperparameter k. However, BRGAN-A
only provides an upper bound on the rank. We solve this by
proposing a novel penalty term, that encourages the generation
of graphs of exactly rank k and by proposing the BRGAN-B
architecture. BRGAN-B results in graphs of almost exactly
rank k. We discuss the merits and limitations of both ap-
proaches, and evaluate the effect of different hyperparameters.
Finally, we thoroughly evaluate the performance of BRGAN
and show that it has competitive performance with existing
models and that it provides an effective bound on the rank of
generated graphs.
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[7] J. Håstad, “Tensor rank is NP-complete,” Journal of Algorithms,
vol. 11, no. 4, pp. 644–654, 12 1990. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/0196677490900146

[8] Papalexakis, Evangelos E, “Automatic unsupervised tensor mining with
quality assessment,” in SIAM SDM, 2016.

[9] Y. Tsitsikas and E. E. Papalexakis, “ NSVD : N ormalized S ingular V
alue D eviation Reveals Number of Latent Factors in Tensor Decompo-
sition ,” in Proceedings of the 2020 SIAM International Conference on
Data Mining. Society for Industrial and Applied Mathematics, 1 2020,
pp. 667–675.

[10] H. A. L. Kiers, “Towards a standardized notation and terminology
in multiway analysis,” in Towards a standardized notation and
terminology in multiway analysis, 2000. [Online]. Available:
https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/10.1002/
1099-128X(200005/06)14:3%3C105::AID-CEM582%3E3.0.CO;2-I

[11] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein GAN,” 1 2017.
[Online]. Available: http://arxiv.org/abs/1701.07875

[12] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. Courville,
“Improved Training of Wasserstein GANs,” 3 2017. [Online]. Available:
http://arxiv.org/abs/1704.00028

[13] X. Wei, B. Gong, Z. Liu, W. Lu, and L. Wang, “Improving the Improved
Training of Wasserstein GANs: A Consistency Term and Its Dual
Effect,” 3 2018. [Online]. Available: http://arxiv.org/abs/1803.01541

[14] P. Sen, G. M. Namata, M. Bilgic, L. Getoor, B. Gallagher, and T. Eliassi-
Rad, “Collective classification in network data,” AI Magazine, 2008.

[15] G. E. Hinton, N. Srivastava, and K. Swersky, “Lecture 6a- overview
of mini-batch gradient descent,” COURSERA: Neural Networks for
Machine Learning, 2012.

[16] D. P. Kingma and J. Lei Ba, “ADAM: A METHOD FOR
STOCHASTIC OPTIMIZATION,” Tech. Rep. [Online]. Available:
https://arxiv.org/pdf/1412.6980.pdf

[17] A. Gretton, K. M. Borgwardt, M. Rasch, B. Schölkopf, and A. J. Smola,
“A kernel method for the two-sample-problem,” in Advances in Neural
Information Processing Systems, 2007.
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