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ABSTRACT 

Understanding fear and where it is generated, modulated, 
and interpreted is paramount when trying to develop our knowledge 
of anxiety and stressor type disorders and how they develop. We 
use calcium imaging as a method to record real-time neuronal 
network activity from a precise region of interest in freely behaving 
mice. However, a continual challenge with calcium imaging 
methods is (1) the background noise and artifacts within the video 
recordings, (2) the large amounts of data that need to be processed 
and analyzed for underlying structure, and (3) the inability to label 
our data to provide an interpretable output. To address the problem 
of video quality and processing, we employ several algorithms to 
denoise, demix, and extract valid data. Using tensor decomposition 
and community analysis in independent analyses, we found three 
non-orthogonal (tensor decomposition) and orthogonal 
(community analysis) populations of neurons that encoded 
information for different aspects of the behavioral paradigms, 
including a habituation population, a discrimination population 
responsive to the novel safe and threat environment presentations, 
and a familiar control environment exposure population. Overall, 
these results are informative of the neuronal activity modulation 
occurring within the recorded region of interest and provide 
valuable insight into the different populations of neurons that are 
selectively co-active during different trials and environment 
presentations. 

CCS CONCEPTS 
• Applied Computing → Life and medical sciences; • Information 
systems → Information systems applications; Data mining; 
Clustering; • Computing methodologies → Machine learning; 
Machine learning approaches; Factorization methods 

KEYWORDS 
Tensor decomposition, Community analysis, Calcium imaging, 
Brain networks 

1 Introduction 
Understanding how to investigate and quantify necessary 

neuronal networks underlying cognition and behavior is paramount 

to advancing the fields of neuroscience and psychology. Numerous 
data mining techniques have been broadly applied to several 
neuroscience datasets, mainly non-invasive, low spatial-resolution 
fMRI data. However, few data mining techniques have been 
applied to neuronal circuit-level resolution analysis to determine 
the modulatory dynamics necessary to produce specific and 
appropriate behavioral outputs. 

Previous work has investigated brain activity via fMRI signals 
with tensor methods [1] and was successful in developing an 
algorithm to extract common components from a group of subjects. 
This prior work used known, or ideal, fMRI responses to inform 
the conclusions; however, our experimental design is exploratory, 
and the data collected cannot be labeled, as its contribution to the 
respective brain circuit is unknown. Other work used similar 
calcium imaging methodology and tensor decomposition to 
discover clusters in the data representing key epochs of the 
experimental trial [2]. Our experimental design differed from this 
work by recording neuronal activity during a cognitive task that 
lacks discrete action-reaction time periods, and results in learning 
across several days.   

In this paper, we use motivation from prior work in the learning 
and memory field to guide our research techniques of large-scale 
neuronal recording in rodent models in order to address our 
hypotheses. We predict that unsupervised data mining techniques 
will uncover latent variables in the dataset that represent distinct 
epochs and environments within the behavioral paradigm the 
animals experience. 

Our contributions are summarized as follows:  
• Data collection pipeline: We gathered calcium 

imaging brain data from multiple subjects that 
represents neuronal activity during particular 
environmental exposures across several recording 
sessions and formulated an analysis pipeline with 
existing work to denoise, demix, and extract neuronal 
activity signals. The resulting data is a multi-
dimensional time series where each neuron has a 
sperate time-series. 

• Tensor analysis: We found tensor decomposition to 
be successful in discovering latent clusters of neurons 
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that are highly engaged during specific trials and 
environments. 

• Community analysis: We create a neuron-by-
neuron adjacency matrix from the time-series, where 
neurons are connected via their temporal activity 
patterns, and found community analysis was also 
suitable for uncovering neuron populations that 
provided the same overall trial and environment 
representations as tensor decomposition. 

2 Data Collection Methodology 
The following is a brief description of the behavioral paradigm 

used to address our hypotheses. We employ a contextual 
differential fear learning (cFDL) task (Figure 1) where mice must 
learn to discriminate between a threatening and a safe context [3,4]. 
Specifically, mice are exposed to three environments every day for 
a total of 11 days: a control environment that is familiar because it 
is similar to their home cage, a novel safe environment and a novel 
threatening environment, both of which are similar yet distinct. 
First, the mice are habituated to all three environments for three 
days. Then they undergo fear conditioning where they learn to fear 
the threatening environment. Finally, they are exposed to all three 
environments for eight days during the discrimination phase of the 
behavioral paradigm, where they learn to discriminate between the 
two novel, distinct environments by the end of the behavioral 
experiment.  

 

Figure 1: Schematic of behavioral paradigm. (a) Depicts 
schedule of behavioral paradigm with three environmental 
exposures (trials) every day, except on the Fear Conditioning 
day. The first three days are Habituation. Day 4 is Fear 
Conditioning where mice are conditioned to associate a tone 
(CS) with an aversive stimulus (footshock, US). The subsequent 
eight days are the contextual Fear Discrimination Learning 
phase of the paradigm where mice first generalize the novel safe 
(blue, CS-) and novel threatening (red, CS+) environments. 

However, by the end of the experiment, mice will learn to 
discriminate between the two similar, yet distinct, 
environments. (b) A hypothetical model of data presentation 
that we expect to observe during the behavioral paradigm. 
Preliminary data supports the hypothetical model. 

During this behavioral task, we record neuronal activity 
from hundreds of medial prefrontal cortex (mPFC) neurons using a 
technique called “calcium imaging” which entails chronically 
implanting a microendoscopic grin lens into mPFC and using a 
miniaturized head mounted microscope (referred to as a  
“miniscope”) to record the calcium fluorescence emitted from each 
neuron in the field of view (Figure 2) [5,6]. The resulting data are 
30 frame per second videos that are approximately 200 seconds in 
duration and display 800 neurons on average, that fluoresce when 
the neuron is active. 

 
Figure 2: Calcium Imaging Data Collection. (a) Image of a 
mouse with a head-mounted miniaturized microscope. (b) 
Example field of view of in vivo calcium imaging. Dark lines 
represent blood vessels that serve as landmarks when aligning 
video recordings across sessions. Bright spots represent active 
neurons. Neuron activity is tracked via fluorescence across the 
200 second trial. 

2.1 Data Processing 
The first step in the data processing pipeline is using a 

Normalization Correction (NormCorr) program. Each raw video of 
calcium imaging recorded during a behavioral trial in freely 
behaving animals is motion corrected by NormCorr, a non-rigid, 
piecewise motion correction algorithm [7]. This algorithm 
stabilizes the frames of the video across time and corrects for 
physiological inner frame transformations of the imaged brain 
tissue. Next step is to use a Constrained Nonnegative Matrix 
Factorization (CNMF-E), a matrix factorization technique that 
imposes a non-negativity constraint, which ultimately reduces the 
dimensionality of the data while ensuring all elements of the 
matrices are non-negative, in order to extract underlying patterns 
from calcium imaging data [8]. Last is Cell Registration (CellReg), 
which allows for the accurate tracking and registration of hundreds 
of cells across countless recording sessions [9]. This program has 
several parameters that are adjustable to best represent individual 
subjects’ calcium imaging recordings and outputs cell 
identification information that provides large amounts of crucial 
calcium imaging information that can then be mined using a variety 
of knowledge discovery techniques (Figure 3). 
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2.2 Data Description 
Our data is multidimensional time series data. Each neurons’ 

spatial location, calcium fluorescence, and determined spiking 
activity is recorded for each trial and tracked across several trials. 
In particular, the calcium fluorescence generates a trace with the 
change in fluorescent intensity on the y-axis (∆f/f) across the total 
length of the trial (200 seconds) (Figure 3). This trace and spike 
data is generated for each trial (33 trials), resulting in a calcium 
activity data that is best represented as a three-dimensional array 
with trial length on the x-axis, individual neurons’ activity on the 
y-axis, and each trail along the z-axis. An important variable within 
the threatening environment exposures is the presentation of the 
aversive stimulus (footshock) at 180 seconds into the trial. For 
example, Neuron 1 (bottom blue trace in Figure 3) can be 
categorized as an aversive stimulus responding neuron because it 
only becomes active after the footshock is delivered. 

 

 

Figure 3: Data processing representation. (a) Preprocessing 
algorithms provide aggregated characteristics of individual 
neurons across all trials in the recorded field of view, including 
spatial location. (b) Calcium fluorescence for 20 exemplar 
neurons that are active sporadically throughout the 200 second 
trial. Trial time is represented on the x-axis and change in 
calcium fluorescence for each neuron (20 example neuron 
traces shown) is represented on the y-axis. Some neurons are 
not active during this environment presentation and  therefore 
depict no change in fluorescence (e.g. flat line). Black dashed 
line denotes presentation of aversive stimulus.  

3 Tensor Decomposition 
Our data can be represented as a third-order tensor, which is a three-
dimensional array. Tensor decomposition is an unsupervised data 
mining technique to reduce the data from high dimensionality to 
low dimensionality and discover latent variables, or components, 
within the data [10]. In particular, the components encode 
information about the pattern of activity of neurons that are 
coactive during specific temporal points during the stimulus 
presentation and during the trials. We decomposed the tensor into 
three low-dimensional factors that reconstruct the original tensor 
when combined. The Neuron Factor provides information 
regarding how much each individual neuron participates in that 
specific component. The Temporal Factor informs how variable the 

activity of the clustered neurons attributed to that component are 
within the designated time bin. The Trial Factor importantly shows 
how the neurons clustered within that component participated 
throughout the trials of the behavioral paradigm. The third-order 
tensor is an element of the set of real numbers within the three 
modes, represented as, 
𝒳 ∈  ℝ𝐼 × 𝐽 × 𝐾                            (1) 

Canonical polyadic (CP) decomposition, also known as 
PARAFAC or CANDECOMP, was used because the model is 
suitable for exploratory data mining and due to the results being 
easily interpretable [11]. CP decomposition for our three-mode 
tensor is the sum of the three-way vector outer products of the 
neuron (n), time (t), and trial (a) factors, 

 𝒳 ≈  ∑ 𝑛𝑟 ∘ 𝑡𝑟 ∘ 𝑎𝑟
𝑅
𝑟=1  (2) 

where R is the number of components that adequately model the 
data.  

Specifically, we used CP nonnegative matrix factorization 
with multiplicative updates to estimate the best rank-R CP model 
of 𝒳  with nonnegative constraints on the three factors [12]. To 
determine the number of components that best model the data, we 
used the so-called “Core Consistency Diagnostic” or 
CORCONDIA (Figure 4) [13]. This diagnostic runs a specified 
number of iterations for a variety of components to find the model 
that optimally represents the complexity of the data without 
overfitting the data. CORCONDIA will ideally provide the 
maximum number of components that explain the variability in the 
model with minimal decrease of the fit of the model to the data [14]. 
We found that most of the subjects in our experimental groups were 
best represented with three components; therefore, we specified the 
number of components as three for all subjects’ data. 

 

 
Figure 4: Core Consistency Diagnostic (CORCONDIA) Plot. 
Diagnostic used to determine the appropriate number of 
components that optimally represent the data by judging the 
core consistency value (y-axis) for n number of components. 
Red dashed line represents ideal threshold of 80% consistency. 
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Figure 5: Tensor decomposition results (single subject data). (a) Neuron Factor and Temporal Factor subplots for Components 1-3. 
(b) Trial Factor subplot organized into three sections for each component. First third represents all 11 trials when the subject 
experienced the safe environment, starting from Day 1 Habituation through Day 8 of cFDL. The second third is similar to the first 
and represents when the subject experienced the threatening environment. The last third is similar to the first and represents when 
the subject experienced the familiar control environment. (c) Spike raster plot reorganized with neurons’ calcium spiking activity 
based on the Neuron Factor value of the respective component (the more the neuron contributes to component, the higher the neuron 
factor value).

3.1 Tensor Decomposition Results 
Tensor decomposition revealed groups of neurons that similarly 
engage during distinct time periods of the behavioral paradigm, and 
only when the subject is in a specific environment (Figure 5). 
Component 1 clustered neurons that were highly engaged when 
exposed to all three environments (novel safe, novel threatening, 
and familiar control) during the habituation phase of the behavioral 
paradigm. Component 2 clustered neurons that were highly 
engaged during cFDL with processing information during the novel 
safe and novel threatening environment exposures throughout the 
discrimination trials and not during the habituation phase, nor when 
experiencing the familiar control environment. Component 3 
clustered neurons that were highly engaged during the familiar 
control environment exposures throughout the discrimination 
phase of the behavioral paradigm and not during the habituation 
phase.  
       These results show that tensor decomposition is a valuable 
method to identify factors within our data that cluster groups of 
neurons highly coactive and engaged in similar activity patterns. 

4 Community Analysis 
Graphs are useful models for representing and interpreting 

complex networks, such as brain networks, by using nodes to 
signify neurons and edges to signify connections between neurons 

[15]. Graphs are also extremely versatile and offer a variety of 
modifications to be applied to the algorithm in order to adjust the 
characteristics and outputs of the graph. Each neuron detected using 
calcium imaging is designated as a node. Calcium imaging is 
unable to provide synaptic resolution information to determine if a 
neuron is directly connected to another neuron via a synapse; 
therefore, we connect neurons based on their temporal firing  
patterns. If a neuron spikes around the same time as another neuron, 
they are connected with an edge. Neurons that fire within the same 
time window as another neuron have the highest weight and 
neurons that do not fire relatively close in time with another neuron 
are not connected with an edge. Additionally, we can add 
directionality to the neuronal network graph by only connecting 
nodes with a directed edge if the neuron spikes in the same time 
window or forward in time. With node and edge information, we 
generated adjacency matrices for each subject for each trial of the 
behavioral paradigm, where the adjacency matrices represent all 
neurons and their pairwise connections to other neurons within a 
trial. All adjacency matrices for each trial are summed into a 
cumulative adjacency matrix, representing the entire network of 
neurons during the behavioral paradigm. The summed edge 
weights maintain temporal information as a greater edge weight 
denotes frequently correlated firing between neurons within the 
same time window across multiple trials. 

Next, we employed community analysis, an unsupervised 
technique to find optimized structure of nonoverlapping groups of  



 
 

 

Figure 6: Community analysis results (single subject data). (a) Spike raster plot with neurons sorted and ordered based on their 
assignment to specific communities. The x-axis is organized into three sections with the first third representing all 11 trials when the 
subject experienced the safe environment, starting from Day 1 Habituation through Day 8 of cFDL, the second third similar to the 
first, representing when the subject experienced the threatening environment, and the last third similar to the first and representing 
when the subject experienced the familiar control environment.

nodes, on the cumulative adjacency matrix, in order to discover 
populations of neurons that are highly coactive [16]. There are 
several different production-quality community detection 
algorithms that can be utilized, each with different inputs, 
parameters, and outputs. We found the Louvain community 
detection algorithm to be best for modeling our data. The Louvain 
algorithm detects communities within large networks and 
maximizes the modularity score for each community [17].  

4.1 Community Analysis Results 
Community analysis detected three communities in which 

all neurons were segregated accordingly into (Figure 6). 
Community 1 consisted of neurons that exhibited similar activity 
when the subjects experienced the novel safe, novel threatening, 
and familiar control environments during the habituation phase of 
the behavioral paradigm. Community 2 was made up of neurons 
that exhibited similar activity in the novel safe and novel 
threatening environments during the discrimination phase of the 
behavioral paradigm. Community 3 contained neurons that 
displayed similar activity in the familiar control environment 
during the discrimination phase of the behavioral paradigm.  

These results demonstrate the ability of graph-based 
community analysis to discover populations of neurons that 
exhibit similar spiking activity and segregate these neurons into 
discrete, orthogonal communities. 

5 Conclusions 
Ultimately, this research has critical implications for 

translational human research on coping with fear. Several 
techniques, such as fMRI recording on human participants, 
electroencephalogram recording on non-human primates, or 
calcium imaging on rodent models, can each be respectively 
applied to help develop our understanding of fear, ultimately 
leading to knowledge generation that can assist with the 
development of clinical solutions for fear related dysfunction, 
including generalized anxiety disorder and post-traumatic stress 
disorder [18, 19]. To investigate the large data outputs from these 
imaging techniques, we need to be able to apply knowledge 
discovery methods that can interrogate datasets, whether they are 
labeled or unlabeled. Additionally, this research aims to generate 
a path where interdisciplinary collaborations can successfully be 
applied through an application-driven development of data 
mining algorithm generation. Specifically, this work allows for 
the direct application of tensor and graph methods on 
investigating latent variables within large neuronal datasets 
currently being collected, ultimately providing the ability for 
cognitive and behavioral research to be enacted using an end-to-
end data science approach. Furthermore, this framework can be 
applied to countless disciplines, including biology, physics, and 
sociology to name a few, and encourages application-driven 
algorithm generation [20]. Data mining techniques, such as tensor 
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decomposition and community analysis, will help us investigate 
and define neuronal activity and associated network dynamics 
within the brain that are unique and necessary to guide specific 
learning and behavior outcomes, such as learning to modulate and 
control fear.  

Future directions include further investigations, using 
calcium imaging methodology and network manipulations, into 
the network activity within other structures implicated in the fear 
circuit.  Additionally, other unsupervised techniques can be 
applied to this calcium imaging data set to interrogate how these 
populations of neurons interact in order to produce the 
appropriate behavioral output. Future work aims to determine the 
precise neuronal populations necessary for generating the 
behavioral output and to understand what perturbations to the 
system cause inadequate network functioning, resulting in 
unsuccessful threat perception and safety learning. 
 
ACKNOWLEDGEMENTS 

The authors would like to thank the several graduate students in 
the laboratory for their effort in completing this experiment, 
including Kylene Shuler, Justin Pastore, Tyler Bailey and John 
H. Spiegel III. This research was supported by grants to E.K. 
from DoD/ARL W911NF-23-1-0145, Brain and Behavior 
Research Foundation, and NIH/NIMH 5R01MH106617. 
Research was also supported in part by the National Science 
Foundation under CAREER grant no. IIS 2046086. 
 

REFERENCES 
[1] Sen, B., & Parhi, K. K. (2017, March). Extraction of common 
task signals and spatial maps from group fMRI using a 
PARAFAC-based tensor decomposition technique. In 2017 IEEE 
International Conference on Acoustics, Speech and Signal 
Processing (ICASSP) (pp. 1113-1117). IEEE.  
[2] Williams, A. H., Kim, T. H., Wang, F., Vyas, S., Ryu, S. I., 
Shenoy, K. V., ... & Ganguli, S. (2018). Unsupervised discovery 
of demixed, low-dimensional neural dynamics across multiple 
timescales through tensor component analysis. Neuron, 98(6), 
1099-1115. 
[3] Corches, A., Hiroto, A., Bailey, T. W., Speigel, J. H., Pastore, 
J., Mayford, M., & Korzus, E. (2019). Differential fear 
conditioning generates prefrontal neural ensembles of safety 
signals. Behavioural Brain Research, 360, 169–184. 
https://doi.org/10.1016/j.bbr.2018.11.042 
[4] Vieira, P. A., Corches, A., Lovelace, J. W., Westbrook, K. B., 
Mendoza, M., & Korzus, E. (2015). Prefrontal NMDA receptors 
expressed in excitatory neurons control fear discrimination and 
fear extinction. Neurobiology of learning and memory, 119, 52-
62. 
[5] Ghosh, K. K., Burns, L. D., Cocker, E. D., Nimmerjahn, A., 
Ziv, Y., Gamal, A. E., & Schnitzer, M. J. (2011). Miniaturized 
integration of a fluorescence microscope. Nature methods, 8(10), 
871-878. 
[6] Cai, D. J., Aharoni, D., Shuman, T., Shobe, J., Biane, J., Song, 
W., ... & Silva, A. J. (2016). A shared neural ensemble links 

distinct contextual memories encoded close in time. Nature, 
534(7605), 115-118. 
[7] Pnevmatikakis, E. A., & Giovannucci, A. (2017). 
NoRMCorre: An online algorithm for piecewise rigid motion 
correction of calcium imaging data. Journal of neuroscience 
methods, 291, 83-94. 
[8] Zhou, P., Resendez, S. L., Rodriguez-Romaguera, J., Jimenez, 
J. C., Neufeld, S. Q., Giovannucci, A., Friedrich, J., 
Pnevmatikakis, E. A., Stuber, G. D., Hen, R., Kheirbek, M. A., 
Sabatini, B. L., Kass, R. E., & Paninski, L. (2018). Efficient and 
accurate extraction of in vivo calcium signals from 
microendoscopic video data. ELife, 7. 
https://doi.org/10.7554/elife.28728 
[9] Sheintuch, L., Rubin, A., Brande-Eilat, N., Geva, N., Sadeh, 
N., Pinchasof, O., & Ziv, Y. (2017). Tracking the same neurons 
across multiple days in CA2+ Imaging Data. Cell Reports, 21(4), 
1102–1115. https://doi.org/10.1016/j.celrep.2017.10.013 
[10] Kolda, T. G., & Bader, B. W. (2009). Tensor decompositions 
and applications. SIAM Review, 51(3), 455–500. 
https://doi.org/10.1137/07070111x 
[11] Papalexakis, E. E., Faloutsos, C., & Sidiropoulos, N. D. 
(2016). Tensors for data mining and data fusion: Models, 
applications, and scalable algorithms. ACM Transactions on 
Intelligent Systems and Technology (TIST), 8(2), 1-44. 
[12] Brett W. Bader, Tamara G. Kolda and others, Tensor 
Toolbox for MATLAB, Version 3.6, www.tensortoolbox.org, 
September 28, 2023. 
[13] Papalexakis, E. E., & Faloutsos, C. (2015). Fast efficient and 
scalable core consistency diagnostic for the PARAFAC 
decomposition for big sparse tensors. 2015 IEEE International 
Conference on Acoustics, Speech and Signal Processing 
(ICASSP). https://doi.org/10.1109/icassp.2015.7179011 
[14] Bro, R., & Kiers, H. A. (2003). A new efficient method for 
determining the number of components in PARAFAC models. 
Journal of Chemometrics: A Journal of the Chemometrics 
Society, 17(5), 274-286. 
[15] Fornito, A., Zalesky, A., & Bullmore, E. (2016). 
Fundamentals of brain network analysis. Elsevier Academic 
Press. 
[16] Rubinov, M. (2015-2016), Community Louvain code. 
University of Cambridge. 
[17] Traag, V. A., Waltman, L., & Van Eck, N. J. (2019). From 
Louvain to Leiden: guaranteeing well-connected 
communities. Scientific reports, 9(1), 5233. 
[18] Canteras, N. S., Resstel, L. B., Bertoglio, L. J., de Pádua 
Carobrez, A., & Guimaraes, F. S. (2010). Neuroanatomy of 
anxiety. Behavioral neurobiology of anxiety and its treatment, 77-
96. 
[19] Haber, S. N., Liu, H., Seidlitz, J., & Bullmore, E. (2022). 
Prefrontal connectomics: from anatomy to human imaging. 
Neuropsychopharmacology, 47(1), 20-40. 
[20] Rolnick, D., Aspuru-Guzik, A., Beery, S., Dilkina, B., Donti, 
P. L., Ghassemi, M., ... & White, A. (2024). Application-Driven 
Innovation in Machine Learning. arXiv preprint 
arXiv:2403.17381. 

https://www.tensortoolbox.org/

