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Abstract

In recent years, multi-graphs have been gaining increasing popular-
ity due to their ability to better capture the multi-faceted informa-
tion of real-world graphs. This, in turn, has consistently provided
superior insights and performance in related machine learning
tasks. However, the analysis of real-world multi-graphs and the
development of multi-graph methods is currently stifled by a few
limitations. On one side, researchers often struggle to properly eval-
uate the performance of multi-graph methods they design due to a
lack of high-quality benchmarks, but also a lack of tools that allow
for efficient and seamless experimentation. On the other side, prac-
titioners aiming to analyze real-world multi-graphs often struggle
obtaining robust insights due to a lack of high-quality multi-graph
methods. To this end, we present Multi-Graph Explorer: a MATLAB
software designed to offer a user-friendly yet comprehensive, flexi-
ble, and extensible workflow for multi-graph analysis, aiming to
break these barriers and accelerate progress in machine learning
tasks involving multi-graphs.
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Figure 1: Examples of different types of graphs visualized
as a series of adjacency matrices, each corresponding to a
different view. Darker colors represent lower edge weights,
and all edges connecting nodes in the same node cluster have
the same color hue.

1 Introduction

Due to their superior modelling capabilities, graphs that allow for
more than one type of edge, also known as multi-graphs, have been
steadily becoming a crucial tool for properly modelling the increas-
ing complexity of real-world graphs [6]. Multi-view graphs are a
popular subtype of multi-graphs where all nodes can be related with
each other by all edge types, and each sub-graph corresponding to
a specific edge type is called a graph view. Important real-world
examples of such graphs include time-evolving graphs where the
connections between nodes are altered as time passes [10], and
multi-relational knowledge graphs which aim to describe the dif-
ferent types of relationships between entities [8]. Also, although
the relevant literature has for the most part focused on graphs
whose views all have the same structure as depicted in Figure 1b
[5].[4].[2],[9], there has recently been increased research activity
on multi-view graphs with the more complex structures as depicted
in Figure 1c [7],[3],[1].

However, despite this progress, the development of multi-graph
modelling methods has been arguably stifled by a few important
factors. First, in contrast to traditional graph modelling, there are
currently very few multi-graph datasets whose structure is both
complex enough and accompanied by sufficiently comprehensive
ground-truth. In turn, this can pose an important obstacle in evalu-
ating the performance of multi-graph methods. Second, the lack of
appropriate development tools can impede the speed at which such
methods can be developed while also making them potentially less
effective and impactful due to inadequately evaluated algorithmic
design choices. Particularly, design choices in data pre-processing,
embedding generation, embedding post-processing, and methods
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for clustering the embeddings can often be hard to justify on a well-
founded theoretical basis, and, therefore, researchers often resort
to handwavy design choices that are mostly based on intuition. In
light of this, we are presenting Multi-Graph Explorer, which is a
MATLAB software with the following core features:

o Artificial multi-graph generator: A tool that enables the
user to define and generate artificial multi-graphs in a suc-
cinct yet flexible and comprehensive manner.

o Efficient large-scale Monte Carlo experiments with
non-standard parameter sweeps: Users can quickly and
intuitively define value ranges for arbitrary value combi-
nations of parameters and their subparameters, which en-
ables the thorough and systematic study of the multi-graph
analysis workflow. Also, note that calculating, storing and
accessing the relevant results can be quite computationally
expensive, and, therefore, considerable effort has been dedi-
cated to performance optimizations.

¢ High-quality method implementations and extensibil-
ity: Users can readily experiment with optimized implemen-
tations of existing multi-graph methods, while also being
able to augment any part of the workflow with their own
method implementations.

o Powerful exploration of experimental results: We pro-
vide a modular graphical user interface consisting of a series
of diverse and interconnected graph visualizations which
may be further augmented or modified by the user. This tool
also doubles as an interactive environment for efficiently
adjusting the graph structure and the model parameters.

We make our software publicly available !.

2 Proposed Framework

In this section, we discuss in detail the various components of our
software.

2.1 Artificial Graph Generator

An important aspect of designing graph methods is the ability to
generate artificial graphs that closely resemble real-world graphs.
This allows researchers to better analyze and understand the behav-
ior of their method, which could in turn enable them to improve its
design. Our generator aims to provide a flexible tool for creating
complex multi-view graphs with features such as:

o Distinct groups of views, each corresponding to a different
clustering of nodes.

e Various types of node clusters such as clique, star etc.

o Directed and undirected edges.

e Edge sparsity and noise on various levels of resolution such
as per view cluster, per view and per node cluster.

For instance, in Listing 1 we see how we can define and generate
an artificial multi-structure multi-view graph similar to the one
shown in Figure 1c. In this example, we define 3 view clusters with
2 views each, and 3, 2 and 2 node clusters, respectively. Also, each
view cluster is assigned its own edge sparsity level. In the end, we
get the adjacency tensor X whose frontal slices correspond to the
adjacency matrices of the views of the graph.
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size_all = { {60,40,20}, {100,20}, {20,100} };
sparsity_level_all = [0.94 0.93 0.92];

num_of_view_clusters = numel(size_all);
G = graph_tree_root;
for i = 1:num_of_view_clusters

G.Children(i) = graph_tree_node;
current_child = G.Children(i);
current_child.slices_num = 2;
current_child.noise_level = 0.01
current_child.sparsity_level = sparsity_level_all(i);
num_of_node_clusters = numel(size_all{i});
for j = 1:num_of_node_clusters
current_child.Children(j).type = 'clique';
current_child.Children(j).size = size_all{i}{j};
end
end
X = create_graph(G);

Listing 1: Example of artificial multi-view graph generation.

2.2 Advanced Parameter Sweeps

Due to the nature of various parameters potentially having arbitrary
subparameters, generating the various combinations of parameter
values is not as straightforward as a traditional grid search. For
instance, consider the scenario shown in Listing 2 which aims to
combine an embedding generation method having 2 parameters,
with 2 embedding clustering methods which have their own pa-
rameters too. In this case, all 6 possible combinations of parameter
values are stored in variable comb, whose structure is similar to
what someone would get by defining all individual combinations
manually as shown in Listing 3. Additionally, the exploration of
such complex parameter spaces is performed with high efficiency
thanks to the tight integration with MATLAB’s Parallel Computing
Toolbox and our many optimizations around storing, retrieving and
manipulating the large volumes of data produced by experiments.

prm.embedding_method.comclus.beta = [0.7 0.8]
prm.embedding_method.comclus.rho = 0.4
prm.clustering_method.kmeans.clusters_num = "3 2 2"
prm.clustering_method.large_inner_prod.thres = [0.7 0.9]
comb = generate_combinations(prm)

Listing 2: Compact generation of combinations.

comb (1) .embedding_method.comclus.beta = 0.7

comb (1) .embedding_method.comclus.rho = 0.4
comb(1).clustering_method.kmeans.clusters_num = "3 2 2"
comb (2).embedding_method.comclus.beta = 0.8

comb (2).embedding_method.comclus.rho = 0.4
comb(2).clustering_method.kmeans.clusters_num = "3 2 2"
comb (3).embedding_method.comclus.beta = 0.7

comb (3).embedding_method.comclus.rho = 0.4
comb(3).clustering_method.large_inner_prod.thres = 0.7
comb (4).embedding_method.comclus.beta = 0.8

comb (4).embedding_method.comclus.rho = 0.4

comb (4).clustering_method.large_inner_prod.thres = 0.7
comb (5) . embedding_method.comclus.beta = 0.7

comb (5).embedding_method.comclus.rho = 0.4

comb (5).clustering_method.large_inner_prod. thres
comb (6).embedding_method.comclus.beta = 0.8

comb (6).embedding_method.comclus.rho = 0.4

comb (6).clustering_method.large_inner_prod.thres = 0.9

1
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©

Listing 3: Explicit generation of combinations.
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Figure 2: Single-Combination Parameter Explorer.

2.3 Multi-Graph Explorer

Here we present a flexible tool consisting of interconnected visual
modules that allow the user to interactively generate and navigate
multi-graphs, and explore the outputs of multi-graph methods. We
separate this tool into two distinct parts: one focusing on detailed
qualitative overviews of embeddings and clusterings corresponding
to a particular combination of parameter values, and the other pro-
viding high-level quantitative performance comparisons between
different combinations of parameter values.

2.3.1 Single-Combination Parameter Explorer. This tool provides
an interactive graphical user interface as shown in Figure 2. This
interface is split into the bottom part which allows the user to spec-
ify the desired parameters for the entire graph analysis workflow,
and the upper part which contains the various interconnected vi-
sual modules. Our implemented graph analysis workflow currently
provides interactive adjustment of the following features:

e Graph properties: Effectively a graphical user interface for
the graph generator discussed in subsection 2.1.

o Graph preprocessing: Normalized Laplacian for both directed
and undirected graphs.

e Embedding generation: High-quality implementations for
ComClus [7], CMNC [1] and a customized Richcom [3].

e Embedding postprocessing: Various methods of modifying
the embeddings before clustering them.

e Embedding clustering: k-means, maximum likelihood, and
inner-product thresholding.

o Clustering quality measures: Normalized Mutual Informa-
tion (NMI), Adjusted Rand Index (ARI), Adjusted Mutual
Information (AMI), Macro Silhouette Coefficient, Micro Sil-
houette Coefficient.

As for the visual modules, the "Original Adjacency Matrix" and
"Original Graph" modules visualize a specific view of the graph,
where darker colors represent lower edge weights, and the dif-
ferent color hues represent different ground-truth labels for the
corresponding nodes. Similarly, we have the "Clustered Adjacency
Matrix" and "Clustered Graph" modules. However, color hues here
represent the calculated labels of nodes instead of the ground-truth
ones, and the adjacency matrix is permuted so that nodes assigned
to the same calculated cluster are next to each other. Additionally,
since the permutations can make comparisons with the "Original
Adjacency Matrix" difficult, the "Clustered Adjacency Matrix" also
includes a colored horizontal bar that indicates the ground-truth
labels of the nodes. Next, we have the two vertical colored bars,
with the one at the left indicating the ground-truth labels of the
views, and the one at the right showing their calculated labels. The
first view is located at the top and the last one at the bottom, and the
black line indicates the view that the user is currently inspecting.
Note that the color hue of each calculated node and view cluster is
selected to be the same as the color hue of the ground-truth clus-
ter that it is the most similar to. Then, the 2D multi-dimensional
scaled node embeddings of the selected calculated view cluster are
visualized for a more direct and intuitive analysis of their quality
and clustering structure. Also, we have the "Clustering quality”
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Figure 3: Multi-Combination Parameter Explorer.

module which allows the user to perform basic parameter sweeps
of individual parameters. In turn, this enables the user to further
fine-tune the value of any parameter via the use of quantitative
clustering quality measures. Lastly, note that one of our goals is to
enable users to introduce their own custom visual modules as well,
and seamlessly integrate them with the existing ones.

2.3.2  Multi-Combination Parameter Explorer. Note that although
the previous interface can provide very nuanced information about
a graph, it is by design primarily focused on the analysis of a single
combination of parameter values at a time. However, this could be
an issue when a high-quality combination is not known a priori.
To this end, we developed a tool that can offer a more holistic view
of the results by simultaneously visualizing the clustering quality
for multiple combinations of parameter values in a condensed and
organized way. Specifically, each parameter can be assigned to the
following visual dimensions:

o horizontal axis of each figure

e line color

e line marker

o different figures horizontally

o different figures vertically

e aggregated as median, 25-th and 75-th percentiles

Figure 3 illustrates a simple case study of how this tool enables
the user to gain multiple insights into various parts of the clustering
workflow. Specifically, we can see from the two NMI figures that
ComClus identifies the ground-truth node clusters much better
than Symmetric Richcom. However, based on the Silhouette Co-
efficient figures, we observe that it does not necessarily generate
embeddings with a more pronounced clustering structure. Then, we

observe that, with respect to NMI, k-means tends to provide better
clustering performance compared to inner-products thresholding,
although this advantage disappears when looking at the Silhou-
ette Coeflicient. Another useful observation is that preprocessing
the graph with the Normalized Laplacian leads to better robust-
ness against overfitting as the number of components increases, as
shown in the Silhouette Coefficient plots. Lastly, note that, although,
as measured by NMI, the clustering of the nodes becomes more
similar to the ground-truth clustering as the number of components
increases, their intrinsic clustering structure, as measured by the
Silhouette Coefficient, tends to worsen.

3 Conclusions & Future Work

Due to the complexities of real-world multi-graphs and the chal-
lenges that these complexities impose on the design of relevant
graph modeling methods, we proposed and developed Multi-Graph
Explorer. This is a MATLAB software whose goal is to provide both
researchers and practitioners with a comprehensive and efficient
analysis workflow for navigating real-world multi-graph problems.
In the future, we aim to further increase the modularity and aug-
mentability of the software, along with expanding the scope of
its applications. Additionally, porting the software to Python is
high in our priorities as a means to increase its accessibility and its
integration with existing popular machine learning workflows.
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