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Abstract—What does the space learned by a Convolutional
neural network look like? Can we automatically extract high-
level concepts that concisely summarize this space in a human-
understandable manner? Can we, then, use those concepts for
neural network interpretability? In this work, we define a concept
to be a co-cluster of data instances (e.g., images), raw features
(e.g., pixels), and neuron activations per hidden layer. Such
a co-clusters links human-understandable characteristics like
data instances and raw features with the architectural elements
like neurons of the neural network. In order to extract such
multi dimensional concepts, we propose a framework based on
regularized and constrained coupled matrix factorization, where
the goal of regularization is to force the latent factors to cor-
respond to the sought-after concepts. Our proposed framework
is unsupervised since it only requires unlabeled data instances
and their activations as an input. Through extensive qualitative
and quantitative experimentation on a number of datasets and
architectures we show that our proposed framework is able to
extract coherent and human-understandable concepts. Finally,
we demonstrate the flexibility and versatility of our proposed
framework in its ability to be leveraged as an additional tool
which complements the existing state-of-the-art neural network
interpretability methods.

I. INTRODUCTION

As the field of deep neural network emerged and rose to
being the prominent machine learning paradigm [1] a common
issue that has plagued their widespread adoption is the lack of
interpretability of these models. As the spectrum of domains
where deep learning replaces traditional and orthodox methods
expands, and deep-learning percolate to areas of immediate
applicability to daily life, understanding what networks do
takes on a more central role. Future challenges that machine
learning engineers will face, won’t just be limited to improving
model accuracy, but also debugging [2] and training networks
in order to make them conform to ever evolving regulations
concerning ethics [3] and privacy [4].

Most literature in the area of explainable AI focuses on
providing explanations for pre-trained networks [5], [6], [7],
[8], [9], [10], [11], [12], [13], [14]. While some methods focus
on constructing models which are inherently interpretable
[15], [16], [17], [18], [19], [20]. Our work belongs to the
former category and focuses on providing explanation for
already trained models, or what is colloquially called post-
hoc explanation. Within the strata of post-hoc explanations,
there exist multiple evolutionary branches, some focus on
interpreting the features [21], and others like [22] interprets

the network by breaking down an input prediction into se-
mantically interpretable components and works like [23] focus
on interpreting neurons based on their behaviour when they
activate for entities like different textures, colours and images.
We focus on unsupervised discovery of concepts learned by
the network by trying to cluster the neurons, input features
and inputs themselves in the same latent space. The moti-
vation for doing so comes from works like [24] where it
has been conjectured that natural images usually lie on a
manifold and that a neural network embeds this manifold as a
subspace in its feature space. A Coupled Matrix Factorization
Framework is the most natural choice to model such multi-
modal data and provides the most straightforward framework
to learn structures that depend on multi-faceted inputs, which
in this case happen to be pixels, neurons and input data.
The work that is most aligned with ours goals is ACE[6],
though it being a supervised framework, renders it tangential
to our approach, thus justifying the need for existence of an
unsupervised approach like ours. The goal in ACE[6] is to
explain the prediction of neural networks not in terms of
individual neurons, but rather, by focusing on learning the
concepts utilized by the network that are most sensitive for
a successful prediction, and learning of such concepts is a
supervised process. ACE[6] utilizes existing algorithms or
manual annotations to curate a set of concepts, feed it to the
network and measure the sensitivity of the network to those
concepts using TCAV[25], whereas we try to simultaneously
learn meaningful and coherent concepts[6] already present
in the activation space of the network. ACEs[6] solution,
though elegant relies heavily on domain expert annotators or
additional pre-trained tools. ACE[6] relies upon TCAVs[25]
ability to back-propagate through the network for each input
concept prototype, while we learn our concepts from analyzing
forward propagated internal activations for each input and
don’t assume access to other aspects of the black-box network
nor to other pre-existing tools, unlike ACE. Another line of
work in TCAV[25] focuses on learning vectors which when
measured for their effects on class prediction, align with high-
sensitivity directions in the latent space of the network. We
also utilize TCAV[25] as a means to validate our approach
in section VII and make our case as a viable unsupervised
alternative for network interpretation in domains which lack
access to rich labeled data and in cases where the only



computation available on the network is a forward propagation
through the layers, i.e. evaluation or inference phase.

Our approach aims to find a latent representation for neu-
rons, input features and examples in a common subspace,
where co-clustering them aims to elicit meaningful insights
about the network. Using such a tri-factor clustering, we can
analyze intersections between groups of neurons which fire for
different classes, focus on which input features provide a basic
structure upon which the model discerns its inputs and analyze
an individual example based on their similarity and differences
to other examples. We model our problem as a coupled matrix
factorization, where the model is constrained to appropriate
constraints like non negativity, which aid in interpretability
[26] and the possibility of adding regularizations like group
sparsity, orthogonality etc. to encode meaningful priors into
the model. Given the uniqueness of our approach and a lack
of any framework that can be compared head-to-head, We
compose a demonstrative case-study in section VII where
we analyze the behaviour of a network on a set of images
previously unseen, for this, we train with CIFAR-10 and
evaluate its characteristics by testing it on CIFAR-100. As
there are no established metrics for this problem and a lack
of an analogous work to facilitate a comparison, we use
TCAV [25], LIME[5], GradCAM[7] and GradCAM++[10] to
demonstrate the coherence and validity of our framework. Our
raison d’etre is to approach the problem of concept discovery
in an unsupervised manner, in order to bridge a gap unfulfilled
by [6] and [23]. In doing so develop an unsupervised method-
ology which can seed or supplement other interpretability
methods.

II. RELATED WORK

In our work we aim to interpret a learned model using a set
of images which may or may not have been a part of the set
of training classes of the network. Our work comes in stark
contrast with most existing literature, since the goal in our
work is not to evaluate the network on just a feature or sample
basis as in works like [27], [28], [29], [30], [7], [8], [9], [10].
Works such as [27] visualize a network based on images that
maximize the activation of hidden units and works like [31]
use back-propagation to generate salient features of an image.
Works like [15], [16], [18] focus on explaining a network
by proposing a new framework where the network is forced
to learn concepts and demonstrate their relevance towards
a prediction. This framework relies on prior constraints and
encoding for what is thought to be a concept. In [22], [9] the
focus is on explaining each prediction made by the network
by decomposing the activations of a layer in the network into
a basis of pre-defined concepts, where each explanation a
weighted sum of these concepts, where the weights determine
the impact each concept has towards prediction. Our work has
similarities in philosophy with the previous works, but unlike
SeNN[15] we don’t focus on learning an interpretable model,
instead we focus on unsupervised explanation of an already
trained network. And unlike [23] we do not have a pre-made
notion of concepts, instead we let the model learn underlying

concepts based on the set of examples fed in the analysis. Our
work is orthogonal to both in different aspects and this way
our approach is application agnostic.
Recent work on Network Dissection [32] tries to provide a
framework where they can tie up a neuron in the network
to a particular concept for which the neuron activates. These
concepts can be elements like colour, texture. They accom-
plish this through a range of curated and labeled semantic
concepts whereas our work is unsupervised. Another work
which relies on interpreting the network through the lens of
abstract concepts is TCAV[33]. This work tries to provide
an interpretation into network’s workings in terms of human
interpretable concepts. Like our work, they too rely on the
internal representation of the network to determine the net-
work’s behaviour, but unlike us they utilize manual/pre-defined
concepts and test the network’s sensitivity towards it. The
work presented in SVCCA[34] uses a variant of canonical
co-relational analysis and focuses on learning the complexity
of the representations learned by the network to determine
the dynamics of learning, our work differs as we use the
structure of the learned representation as a guideline for our
factorization framework and don’t comment on the inherent
complexity.
In ACE[6] the authors seek to automatically discover concepts
learned by the network which are of high predictive value, as
measured by their TCAV score [33]. As described earlier the
approach relies on pre-trained tools to process inputs and on
being able to forward and back-propagate over inputs given to
the network.
In Figure 1 we contextualize our work to other works in the
area, most of which are tangential to our approach. While the
axioms of interpretable machine learning are an ever evolving
set of principles, we do so on a few features that help us
highlight the differences between our work and its closest
Neighbours in this space. Our work is the only unsupervised
method in this space of model interpretability which helps
us discover concepts learned by the network in terms of the
examples clustered by the network. ACE[6], SeNN[15] learn
concepts but either by utilizing explicit supervision or by em-
ploying pre-existing trained models, whereas works like [23]
require detailed human labeling of neurons and image pixels
and patches, thus making the process slow and sluggish for
adaptation to a new domain. LIME[5] on the other hand tries to
visualize a linear decision boundary across an input, which we
also approximate by the input’s K-Nearest Neighbours, refer
to Section IV-A3, but unlike our work LIME cannot discover
abstract concepts learned by the network without significant
modifications.

III. PROPOSED METHOD

In this section we begin by outlining the motivation for our
methodology, we then proceed to outline the implementation
schema and optimization problem for our model. Subsequently
we present the model details and lay down the groundwork for
evaluation protocols suited for this method.



Fig. 1: Relevant Work Comparison
Model Features ACE[6] [7],[5],[10] [15],[20] [23],[25] Our work

Post-Hoc Interpretability 3 3 7 3 3

Unsupervised 7 7 Partial 7 3

Multi-Aspect Analysis 7 7 7 7 3

Analysis of Representation Space 7 Inputs Only 7 Inputs Only 3

A. Motivation

Our goal is to visualize the latent representation space
learned by a Neural Network by comparing and contrasting
the behaviour of the network on different types of inputs.
We want to accomplish this in a framework where we can
explain the learned concepts in terms of the inputs that are
used to probe the network. In doing so we can assess the
generalization ability of the network, both to familiar and
unseen datasets, thus providing insights to human evaluators
about the health of the trained network and its suitability
to a particular domain. This is possible because there are
no restrictions on what qualifies as a legitimate dataset for
evaluating network behaviour, thus in theory, we can evaluate
a network on a dataset which is different from its training
dataset and assess the suitability of the architecture to learn
atomic concepts (which may be valid across domains) from
the training data instead of learning its idiosyncrasies.

B. Proposed Model

Given these goals in mind, we lay down the model prin-
ciples behind our objectives. Our approach is a method that
relies on a coupled factorization framework where we compute
embeddings of features like pixels,test examples and individual
neurons in a shared latent space. Our method relies on only
having access to activations of internal layers of a network for
a given input. Additionally, for ease of modeling, we assume
that these activations are non-negative in nature. In case
these assumptions don’t hold for the network, we can relax
the Non-Negativity Constraints on some Factor matrices of
each factorization with the use of semi-NMF[35]. With these
principles as its building block, our model does not introduce
any external learning constraints while training the network,
thus lending it universality. We probe various layers of a
network with a set of test examples, and for each test example,
we store the network’s response across all observed layers. We
do so with an aim to breakdown the process of interpretability
into a process of finding common local structures across
various evaluation examples, where each dimension in the
latent representation is constrained to capture a latent semantic
concept. Thus, through the lens of our model we can hopefully
view individual concepts as a ranked over evaluation examples.
In the following subsections we describe model construction
and provide mathematical details of implementation.

1) Model Construction: For our analysis we need construct
a set of matrices where each matrix Aj in the set is a matrix
∈ R

a j×N
+ , where aj is the number of neurons in layer j of

the network, and N is the number of examples on which
our analysis is conducted. Each column k of matrix Aj , is a

vectorized activation of layer j of the network for a given test
sample k, denoted using NumPy notation by Aj[:, k]. Along
similar lines we construct another set of matrices where each
Matrix Di ∈ R

Si×N
+ where Si is number of pixels in the ith

channel of input images. On the same lines as before, each
column k of matrix Di , is the k th test sample’s ith channel
vectorized.

2) Model: The objective function for our proposed method
is as follows:

L =
C−1∑
i=0
‖Di − PiF‖2F +

L−1∑
j=0
‖Aj −O jF‖2F +

C−1∑
i=0

λP ‖Pi ‖
2
p+

L−1∑
j=0

λO ‖O j ‖
2
p + λF ‖F‖

2
p s.t . Pi,O j, F, ∈ R

Si×d
+ ,R

a j×d
+ ,Rd×N+

optional constraints − ||P[:, i]| |22 = 1, | |O[:, i]| |22 = 1 ∀i, j
(1)

In Equation 1, C is the number of channels in input data, L is
the number of layers of the network being analyzed - as we
can select the non-negative layers we want to analyze and are
not obligated to include all the layers of any architecture. p is
usually 2 for 2−Norm regularization although for the purposes
of some experiments we instead normalize the column norms
of the Pixel and Neural Factor matrices to unity. We do so
by normalizing the respective matrices to unit column norm
after obtaining the new iterates based on the update steps in
Equation 2.
For each matrix Di in Equation 1, its k th column is the input
data’s channel i vectorized as input. Thus for instance, for a
3-channel image, with image number j of the test set, D0[:, j]
is the vectorized 0th channel of the j th image and so on.
Each Pi in the first term of the summation in equation 1 is a
latent representation matrix for each pixel in channel i. That is,
Each row of Pi , for instance Pi[k, :] is the latent representation
of channel i’s k th pixel in the latent space.
For each matrix Aj in Equation 1, its k th column is the
activation of layer j of the network for k th test input. Thus
for instance, image number j of the test set, A0[:, j] is the
activation of layer 0 of the network for image j. Please note
that the higher index of the layer, the deeper we are in the
network, though index j doesn’t necessarily correspond one-
to-one with layers in the network.
As each matrix Aj encodes the activity of neurons of layer j
for test inputs. Therefore, each O j in the factorization encodes
the latent representation of neurons of layer j in its rows. That
is, O j[k, :] is the latent representation of k th neuron of layer
j. Similarly, the matrix F encodes in its columns, the latent



representation of each test example fed to the network. That is,
F[:, k] is a d-dimensional latent representation of test sample
k. Each factor matrix in the objective function obeys non-
negativity constraints, and we use multiplicative update rules
as described in [36] to solve for the factor matrices.

Update Steps for solving the factor matrices in Equation 1
are as presented in the following Equation 2 :-

F ← F ∗

∑
i

PT
i Di +

∑
j

OT
j Aj∑

i
PT
i PiF +

∑
j

OT
j O jF + λFF

Pi ← Pi ∗
DiFT

PiFFT + λPPi

O j ← O j ∗
AjFT

O jFFT + λOO j

(2)

After each iteration of multiplicative updates for Pi and O j ,
if need be, we normalize their columns to unit squared norm.

3) Model Intuition: We now provide some intuition for our
modeling choices. Our goal is to identify hidden patterns or
concepts that the network learns. To achieve this our model
clusters the test examples, neurons and pixels in the same inner
product space. We achieve this clustering by incorporating a
coupled non-negative matrix factorization framework. In our
learned representation of these 3 types of objects, a high
value along a latent dimension indicates that a particular
latent concept participates in explaining the behaviour of the
object. By constraining the model to adhere to a non negative
framework, we encourage an interpretable sum-of-concepts
based representation[26].

Further elaborating on the learned factor matrices, Each
column j of Matrix Pi ∈ R

Si×d
+ is the activation of the pixels

of channel i for the concept discovered in latent factor j. Col-
lecting such information over all input channels i for a given
j in the respective factor matrices we can uncover the average
activation of pixels across channels for a given concept. This
representation can be thought of as a channel-wise mask over
features in the input, analogous to [5], [12], [37], [38], among
others, but instead we discover a latent concept level mask
as opposed to an input level mask. Matrix F ∈ Rd×N+ is the
input representation matrix where each column k of F is a
vector in Rd+ representing the k th example in the same latent
space as Pixels and Neurons. For any input k, A high value
along any component j of its d-dimensional representation
indicates a high affinity of this input towards the latent concept
encoded in the dimension j. P0[: j]-P2[: j] together help us
visualize the pixel activation mask for this latent concept j
as discussed earlier. Collecting all the highest affinity inputs
for each latent factor, we obtain a visual approximation of
the concept learned in this latent dimension. Exploiting the
ability of a Multi-Aspect Factorization framework to rank
inputs to form concepts is how we propose to solve the
problem of concept discovery. Given the unsupervised nature
of this model, it extremely well suited for concept discovery
for neural networks, akin to a similar role played by ACE
[6] for TCAV [25]. Matrices O j’s embed neurons of a layer

j in the same latent space as inputs and features and help us
visualize which neurons in a layer activate for which concept,
we do this by demonstrating the similarity of latent concepts
when measured w.r.t. neurons of a layer. We can also look
at the behaviour of neurons across layers by observing the
cohesiveness of latent space as the neurons go deeper in the
network.

IV. EXPERIMENTAL EVALUATION

In the following subsections we will present the analysis of
the latent space learned by a ResNet-18 [39] when trained on
CIFAR-100 images [40], The Accuracy of the trained network
is around 74% on top-1 classification. Our analysis touches all
the modalities captured by our model, i.e. Analysis of Pixels,
Analysis of Neurons and Analysis of Examples. We present
this analysis in 3 subsections for a given network. We also
released the code1 for verification.

A. Analysis of A ResNet-18 on CIFAR-100 Dataset:

In the following subsections we analyze the behaviour
of a ResNet-182 trained and analyzed on CIFAR-100. Each
subsection represents a modality of analysis, namely, inputs,
Neurons, and input features or pixels themselves.

1) Analysis of Input representations: In this section we
present the analysis of representations learned in the input
representation Matrix F in Table I. We begin by considering
each latent dimension i, which we will represent as a row
in Table I. We compute the total class-wise activation score
of inputs in the row F[i, :] and present the top activated
classes along that latent dimension in the first column of the
corresponding row, top -20 images which had the highest
affinity in this latent dimension and most activated super-
classes in column 2 and 3 respectively. The Images in column
2 of a row are presented in descending order of their affinity
for a particular latent dimensions. The motivation behind ana-
lyzing super class labels is to validate our assertion that each
latent factor captures an abstract concept that is predominantly
present in the member images. We reiterate that these super
class labels were not used in training of the network but only
used as a means to assign a pseudonym to each concept or
latent factor, the validity of which can be verified by looking
at the topmost activated images and the group of top most
activate classes and super classes in Table I. The total number
of Latent Dimensions or Latent concepts for this experiments
was 20, but some latent factors are omitted from Table I for
brevity.

2) Layer-wise Analysis of Neuron representations: In this
section we try to quantify the behaviour of neurons as a cluster
and across layers. We utilize the neuron embedding matrix for
a given layer j, as denoted by O j ∈ R

N j×d
+ , where Nj is the

number of neurons in layer j, whereas d is the number of
latent factors in the factorization. Next we compute pairwise
cosine similarity between the columns of a matrix O j and we

1Code and Data: Link to Code and Data
2 A Pytorch Code Repository for ResNets



TABLE I: Matrix-F Latent Factor Analysis For ResNet-18: Each row of the table corresponds to a row in F and visualizes a latent dimension
of the factorization. The first column shows a few of classes whose images have the highest alignment in this latent direction. The second
column shows top 20 images that have the highest affinity in descending order. The third column shows the top most superclass membership
of images activated along this direction. Such a superclass label helps us assign a pseudonym to the concept collectively represented by
highest affinity images along each latent direction.

Factor: Top Classes Top Images Top 1-2 Super Class

1: kangaroo,beaver,bear large omnivores and herbivores

2: mountain,castle,bridge large man made outdoor things

3: willow, maple, pine, oak trees

4: shark,dolphin,whale fish and aquatic mammals

5: bee,beetle,spider insects

6: tulip,rose,poppy flowers

10: boy,woman,girl,baby people

11: aquarium fish,trout fish

14: sea,plain,could,mountain large natural outdoor scenes

16: apple,orange,pear fruit and vegetables

(a) Cosine Similarity: Layer 0 (b) Cosine Similarity: Layer 1 (c) Cosine Similarity: Layer 2

Fig. 2: Plots of Cosine Similarity of Latent Factors in Layers 0,1,2 of ResNet-18. This highlights the layerwise learning dynamics of the
network and helps us visualize with concepts and classes occupy similar neural regions in a given layer of a network and how they evolve as
we go deeper into the network. In fact, we observe that as we go deeper into the network, the similarity becomes diagonal, showing higher
separation of the latent concepts

do this ∀ j as shown in Figure 2a - Figure 2c. Here Layer
0,1,2 refer to 3 layers analyzed in the ResNet-18 in increasing
order of depth and are not necessarily the first,second and
third layers of the network. In these plots a high value at any
entry (i, j) indicates a higher overlap between the number of
neurons which fire for inputs belonging in the 2 super classes
best approximated by latent factor i and latent factor j. As
indicated in Figures 2a - 2c the activations tend to be more
intra-superclass, a result similar in nature to one observed by
SVCCA[34] , i.e. more concentrated along the diagonal of the
Similarity Matrix as we go deeper down the layers. This is also
borne out by the eigen values of these Similarity Matrices, as
the matrices tend to get closer to Identity, the lower the mean
of first-K eigen-values as shown in 3a.

3) Co-Analysis of Pixels and Inputs: In this section we
analyze the pixel space along with inputs. The Matrices Pi’s
∈ RSi×d+ hold the input representation of pixels in the input
channel i where Si is the number of Pixels in Input Channel-
i, or the vectorized size of the channel. Each column of a
matrix Pi represents a feature activation score of all the pixels
in channel i for the given latent factor. Therefore for e.g.,

by collecting information from column 2 of P0,P1 and P2
and resizing them appropriately we get an average pattern of
activation across the pixel space for all the images that belong
to Latent Factor 2, as shown in Figure 4a, and for Latent-
Factor-6 in Figure 5a. This functionality is very similar to
LIME [5], GradCAM[7] and GradCAM++[10] but instead of
individual images we operate on pixel representations which
represent learned concepts. We then take these Latent-Images,
and create a mask where we assign a value of 1 at a pixel
location if it’s activation value is above the median activation
value for the Latent Image and 0 otherwise and overlay it
with the topmost images of the Latent Factor as found in
our analysis of Matrix-F in Table I. To continue the analysis
further we also take around 30 Nearest Neighbours of the input
image as determined by the Latent Space of Matrix-F and give
a distribution over the Latent Concepts of those Neighbouring
images, thereby helping us achieve interpretability on an input-
by-input basis by being able to say that a given image is
close to another, in terms of their concept distribution. Next,
via 2 examples we present a per example case study of
interpretability analysis possible by the use of this model.



(a) Eigenvalues of Similarity Matrices of ResNet-18

Fig. 3: Plots of Eigenvalues of Similarity Matrix for ResNet-18 .
This plot shows increasing independence of learned latent concepts
w.r.t. neurons as we go deeper in the non-classification layers of the
network. The closer the a matrix is to Identity the closer the average
of it’s eigen values is to 1 and vice versa. The last layer in each of
the 2 figures is the output of pre log softmax of the network, which
is usually a much lower dimensional space than the previous layers

In Figures 4a - 4d For Latent Factor-2 we present the La-
tent Representations of Pixels, The topmost Image in Latent
Factor-2, The top 50% activated pixels super imposed on
the original image, and the Latent Concept Distribution of
top-30 Nearest Neighbours of the image 4b, respectively. As
noted previously in Table I, Latent Factor 2 Represents classes
like mountain, bridge, castles, skyscrapers etc, leading to its
topmost super class being ”large man-made outdoor things”.
On average, the most activated pixels for images belonging to
this superclass tend to be blue pixels towards the top, green
towards the middle and red towards the bottom. And the set
of top-30 nearest-neighbours for this particular image of a
Mountain also has members belonging to Latent Factor 3 and
7, 2 concepts which have a high affinity for inputs belonging
to super class of trees. In Figures 5a - 5d we do the same
for Latent Factor-6. Latent Factor-6 represents entities like
tulips, rose, poppy - all belonging to super class ”flowers”.
As we observe, the most activated pixels tend to be around
the body of the tulip, encapsulating the petals, an appropriate
evaluation for entities belonging to the super class ”flowers”.
The set of top-30 nearest-neighbours for this particular image
of a Tulip also has members belonging to Latent Factor-16,
concepts which have a high affinity for inputs belonging to
super class of fruits and vegetables. Which is semantically a
plausible conclusion.

A note on hyper-parameters : Hyper-parameters values for
λP , λO, λF for the aforementioned experiment were 0.0001,
0.0001, 1 respectively. We also show the robustness of out-
put to variations in λF by varying the value of the hyper-
parameter and comparing the similarity of different outputs in
the resulting matrix F obtained via different hyper-parameter
values. For 2 different values of λF , say λ1 and λ2, we
obtain the respective factor matrices F1 and F2. Given that
each F is a matrix that is a column wise collection of latent

(a) Latent-Factor:2 (b) Image:Mountain (c) Filtered Image

(d) Top-30 Nearest Neighbours of this Image
Fig. 4: Analysis of Topmost Image from Latent-Factor:2

(a) Latent-Factor:6 (b) Image: Tulip (c) Filtered Image

(d) Top-30 Nearest Neighbours of this Image
Fig. 5: Analysis of Topmost Image from Latent-Factor:6

representation of input samples, we compute the dot product
kernels FT

1 F1, FT
2 F2 and compute the similarity of these

kernels using Centered-Kernel-Alignment [41]. We present the
results for all pairwise combinations of various values of λF
ranging from 0.001 to 1 in Table II. As we can observe in
Table II, the relationship between input examples is fairly
stable regardless of the value of hyper parameters as shown
by the high similarity of dot-product kernels over a wide
range of λF . A note on running time: The running time of
the experimental setup once given a trained neural network,
where we analyze 3 separate layers over 3000 examples is less
than 15 minutes.



(a) Factor-0 (b) Factor-1 (c) Factor-2 (d) Factor-3 (e) Factor-4 (f) Factor-5

Fig. 6: Explanations given by LIME for topmost images of Latent Factors 0,1,2,3,4,5 of a ResNet-18 trained on 128x128 CIFAR-100 Images.

(a) Factor-0 (b) Factor-1 (c) Factor-2 (d) Factor-3 (e) Factor-4 (f) Factor-5

Fig. 7: Superimposition of latent pixel representation obtained by our method on the topmost images of Latent Factors 0,1,2,3,4,5 of the
same ResNet-18 trained on 128x128 CIFAR-100 Images.

λF 1 0.1 0.01 0.001
1 1 0.96 0.96 0.95

0.1 0.96 1 0.96 0.95
0.01 0.96 0.96 1 0.96
0.001 0.95 0.95 0.96 1

TABLE II: Hyperparamter Similarity : CKA Similarity Scores for
different configurations of λF . λP , λO are set to 0.0001

V. EXPERIMENTAL COMPARISONS WITH LIME

In this section we present comparisons of pixel space repre-
sentations obtained by our method with explanations obtained
by LIME [5]. We couldn’t get LIME to work with 32x32
images used for analysis in section IV, so we train a ResNet-
18 on 128x128 CIFAR-100 images and run our analysis to
obtained top images for every latent factors following the same
methodology as described in section IV. We then analyze the
topmost image of a latent factor with LIME and obtain its
explanation for a positive prediction and compare it with the
its masked counter part, where the latent factor masked image
is obtained using the same protocols as described in section IV.
The resulting explanations obtained via LIME for 6 images,
each being the topmost image of its latent factor is shown
in Figure 6a-Figure 6f. Corresponding to each explanation
by LIME, From Figure 7a-Figure 7f, we show the output of
our latent pixel analysis on the same corresponding topmost
images of each latent factor. In contrast to the approach taken
by LIME where the the algorithm receives super-pixels using
pre-existing algorithm, the latent pixel representations yielded
by our method are learned from the data in an unsupervised
manner and the learned pixel representations are over each
channel of the image.

VI. EXPERIMENTAL COMPARISONS WITH GRADCAM AND
GRADCAM++

Continuing our qualitative comparisons further, we next
juxtapose our work with a family of Class Activation Map-
ping based methods, namely GradCAM[7] and its extension

GradCAM++[10]3. We perform this analysis on a ResNet-
18 trained on CIFAR-10, we then analyze the network using
our approach and take the topmost images from each latent
factor , 10 in case of CIFAR-10, and overlay it top 50% of
the most activated pixel locations as determined by analyzing
the matrices Pi’s. For the purposes of analyzing GradCAM
and GradCAM++ we take the output of the final convolution
layer of the network and seek explanations w.r.t. to true label
of the image. Figure 8a-Figure 8j are the images which will
be analyzed by all the 3 methods. From Figure 9a-Figure 9j
we present the analysis of our model along the lines of
SectionIV-A3, where we mask the most active image along a
latent factor with the top 50% most active pixels for that latent
factor. In our analysis we notice that for same factors, the most
activated pixels indeed capture the object of the image, but for
some latent factors like in Figure 9e, more emphasis might be
on the background.
We would like to re-iterate that our method’s explanation is on
a concept level, an aggregate of the most commonly activated
pixels for this concept. Unlike CAM based models, we don’t
have access to the gradients for each image w.r.t. different class
labels and thereby don’t proclaim to solve the same problem
but still try to offer an insight into the flexibility of our multi-
modal factorization based approach to offer similar insights to
more supervised and invasive methods like GradCAM[7] and
GradCAM++[10]. In Figure 10 and Figure 11 we show the
results of GradCAM and GradCAM++ on the same images.
As can be noted by observation, the performance of these
methods are very similar, partly because they rely on first and
second order gradients for each input w.r.t. an output class.
Compared to GradCAM and GradCAM++ we observe that
our method does mostly highlight objects of the said class
label e.g. Figure 9c,Figure 9d, however for some factors like
Figure 9e and Figure 9f, the highlighted features of the image

3Code Here : Pytorch Repo for GradCAM and other methods
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(d) Factor-3
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cat

(f) Factor-5
truck

(g) Factor-6
ship

(h) Factor-7
horse
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dog

Fig. 8: Topmost images of Latent Factors 0-9, where each image’s label is under the Factor Number. Net : ResNet-18 on CIFAR-10.

(a) Factor-0 (b) Factor-1 (c) Factor-2 (d) Factor-3 (e) Factor-4 (f) Factor-5 (g) Factor-6 (h) Factor-7 (i) Factor-8 (j) Factor-9

Fig. 9: Explanations given by our method for topmost images of Latent Factors 0-9 of a ResNet-18 trained on CIFAR-10 Images.

(a) Factor-0 (b) Factor-1 (c) Factor-2 (d) Factor-3 (e) Factor-4 (f) Factor-5 (g) Factor-6 (h) Factor-7 (i) Factor-8 (j) Factor-9

Fig. 10: Explanations given by GradCAM for topmost images of Latent Factors 0-9 of a ResNet-18 trained on CIFAR-10 Images.

(a) Factor-0 (b) Factor-1 (c) Factor-2 (d) Factor-3 (e) Factor-4 (f) Factor-5 (g) Factor-6 (h) Factor-7 (i) Factor-8 (j) Factor-9

Fig. 11: Explanations given by GradCAM++ for topmost images of Latent Factors 0-9 of a ResNet-18 trained on CIFAR-10 Images.

tend to belong to the background. An observation of a similar
nature has also been made in [42].

VII. CASE STUDY WITH TCAV AND MODEL EXTENSIONS
AND EXPERIMENTS

In this section we present some possible extensions to the
model in order to demonstrate its flexibility to work as a frame-
work that can embedded 3-Modes, namely, Neurons, Features
and Data points, all in the same space, while incorporating
constraints. We then present an experiment to demonstrate
flexibility of this framework to analyze neural networks. We
take a network trained on CIFAR-10, and analyze its behaviour
on CIFAR-100, the goal in doing so is to demonstrate the
ability of this framework to be adept at discovering hidden
structures in the latent representations of the neural network.
The extensions we propose allow the model to imbibe priors
in the form of structured regularizations like Group Sparsity,
based on [43] and Total Variation Norms, based on [44],
[45], [46]. The motivation behind both sets of extensions is
to encourage disjoint usage of the latent factors by examples
that are fundamentally different in nature. This helps avoid
any diffusion of concept across an excessive number of latent
factors. Group Sparsity Constraint is useful when the number
of different groups are known and Total Variation (TV) norm

penalty coupled with a soft orthogonality regularization is
useful in case no such information is available.

(a) TCAV scores for Group Sparsity based model - Inputs Included
Fig. 12: TCAV scores for Group Sparsity based Models

In the following experiment, we use a ResNet-18 that has
been Trained on CIFAR-10 but we try to analyze the concept
space learned by the network by probing it with CIFAR-100
inputs. This setup aims to find how a network trained on
CIFAR-10, provides a meaningful clustering over classes, if



TABLE III: Latent Factor Analysis Group Sparsity - Abridged

Factor: Classes Top Images Latent Image

2: dolphin,whale,plain

4: pickup truck,lawn mower, telephone

8: girl,lion,boy

11: plain,mountain,sea

any, in CIFAR-100, thereby demonstrating its ability to truly
generalize. We do this with both regularization schemes, and
in-order to validate and attest the results for generalization, we
take the latent concepts learned by the model over CIFAR-100
and evaluate their TCAV[25] scores 4 for each combination of
latent concept and input class of CIFAR-10. This experiment
also serves to accomplish in principle the ability of our method
to synergize with existing interpretability methods like TCAV
by providing them with seed concepts and help provide a
solution to the issue of cold starts and generalization to
domains with limited labeled data. We present the results of
this experiment, first for the coupled factorization model with
Group Sparsity Regularization in Table III, and its correspond-
ing TCAV scores in Figure 12a. Just as in IV-A1, We display
some latent factors out of 20 for brevity. We provide additional
implementation details and data on Group Sparsity analysis
in Table IV, Total Variation Analysis in Table V and their
corresponding TCAV analysis in Figure 13a and Figure 13b
respectively. All included in section A to ensure verifiability
and encourage reproducibility.
In Table III, Upon gleaning the latent-factors for CIFAR-
100 classes deemed similar by the pre-trained ResNet-18,
we observe that the network clusters CIFAR-100 classes like
dolphin, whale and plain - as seen in latent factor 2. Looking
further into the CIFAR-10 classes that had the highest TCAV
scores for images in latent factor 2, we observe that CIFAR-
10 classes like ship, airplane and bird had a high influence
in the network’s output for images in latent factor 2. Such a
correspondence does fall in line with intuition as images of
ships, airplanes and birds tend to be against a blue backdrop.
Such a feature is common in images of dolphins and whales
as they live in the ocean and also to images of outdoor empty
plains which are normally set against the backdrop of the
sky. Pursuing this investigation further we come across latent
factor 4 in Table III where the network clusters CIFAR-100
classes like Pickup truck, Lawn mower as similar.The highest
activated Classes in CIFAR-10 for latent factor 4 happen to
be Automobile and Truck, which further lends credence to the
belief that the network tries to activate its pathways that learn
features present in vehicles. Next we perform an analogous
but brief analysis on the concepts learned via the factorization
model involving TV Regularization with orthogonality, the
Results of which are in Table V and the corresponding TCAV
scores in Figure 13b. Having a look at the first row in Table V
, i.e. Latent Factor 2, we learn that the network deems CIFAR-

4PyTorch Implementation of TCAV

100 classes Train, Bridge and Castle to be similar in nature and
the most prominent CIFAR-10 classes that have the highest
TCAV for Latent Factor 2 happen to be Truck, Airplane
and Ship. All Vehicular classes in CIFAR-10. Latent Factor
9 displays similar behaviour. Next we look at Latent Factor
5, where the networks clusters CIFAR-100 classes of large
animals like Cattle, Elephant and Camel together. A look at the
maximally scored TCAV classes from CIFAR-10 demonstrates
that network pathways related to CIFAR-10 animal classes like
Cat, Deer and Horse have their highest Activations for Latent
Factor 5.

VIII. CONCLUSIONS

In this paper, we introduced an unsupervised framework
based on coupled matrix factorization for exploration of the
representations learned by a CNN. Our proposed method is
the first such framework to allow for joint exploration of the
representations that a CNN has learned across features (pixels),
activations, and data instances. This is in stark contrast to
existing state-of-the-art works, which are typically restricted
to one of those three modalities, as shown in Fig. 1. As a
result, our proposed framework offers maximum flexibility
and bridges the gap between existing works. Case in point,
in this paper, we demonstrate a number of applications of our
framework drawing parallels to what existing work can offer
compared to our results, including the extraction of instance-
based interpretable concepts (Sec. IV-A1), and based on those
concepts we provide insights on the the behavior of neurons
in different layers (Sec. IV-A2), and instance-level pixel-based
insights (Sec. IV-A3). In future work, we will investigate the
adaptation to our framework to different architectures.
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APPENDIX

In this supplementary section we present details of
the extensions to the framework proposed in section VII.
Equation 3 specifies the model with group sparsity constraints,
and Equation 4 is the model with Soft-Orthogonality and
Total Variation Norm regularization.
In Equation 3 and Equation 4, C is the number of channels
in input data, L is the number of layers of the network that
are part of analysis - as we can select the non-negative layers
we want to analyze and are not obligated to include all the
layers of any architecture.

L =
C−1∑
i=0
‖Di − PiF‖2F +

L−1∑
j=0
‖Aj −O jF‖2F + λF ‖F‖1,2

s.t. Pi,O j, F, ∈ �
Ai×d
+ ,�

A j×d
+ ,�d×N

+ , | |F[i, :]| |1 = 1 ∀i, j

(3)

The update steps for group sparsity in Equation 3 is pro-
vided in the code released alongside this paper.

L =
C−1∑
i=0
‖Di − PiF‖2F +

L−1∑
j=0
‖Aj −O jF‖2F + λF1 ‖F‖TV

+λF2 tr(FT SF) s.t. Pi,O j, F, ∈ �
Ai×d
+ ,�

A j×d
+ ,�d×N

+ ∀ i, j,

S = 11T − I ∈ �N×N, | |F[i, :]| |1 = 1 ∀i
(4)

The following are the update steps for Equation 4. In the
update for matrix F, lap(F) refers to the laplacian of F and
sgn(F) refers to the spatial gradient norm of F.

F = F ∗

∑
i

PT
i Di +

∑
j

OT
j Aj + λTV lap(F)/sgn(F)∑

i
PT
i PiF +

∑
j

OT
j O jF + λortho(ST F + SF)

Pi = Pi ∗
DiFT

PiFFT

O j = O j ∗
AjFT

O jFFT

Note : The time complexity for the update of F in Equa-
tion 1 is O(Nd +

∑
i
(dSiN) +

∑
j
(dajN) +

∑
i
(d2Si) +

∑
i
(d2N) +∑

j
(d2aj) +

∑
j
(d2N)), for Pi is O(Sid + Sid2 + Sid3), for O j is

O(ajd + ajd2 + ajd3).
Continuing our discussion from the case study of sec-

tion VII, Next we present a more complete set of the same
results from Group Sparsity framework of Equation 3 in
Table IV and the results from TV Norm framework of Equa-
tion 4 in Table V. The corresponding TCAV scores for the
2 frameworks are presented in Figure 13a and Figure 13b
respectively.

(a) TCAV scores for Group Sparsity based model - Inputs Included (b) TCAV scores for TV based model - Inputs Included
Fig. 13: TCAV scores for Group Sparsity and Total variation based Models



TABLE IV: Latent Factor Analysis Group Sparsity

Factor: Classes Top Images Latent Image

0: leopard,kangaroo,shrew,tiger

1: woman,man,camel,girl

2: dolphin,whale,plain

3: chair,wardrobe,streetcar

4: pickup truck,lawn mower, telephone

5: lamp,telephone,apple

6: apple,cockroach,orange

7:mountain,oak,pine

8: girl,lion,boy

9: oak,tank,tractor

10: orange,flatfish,shark

11: plain,mountain,sea

12: lion,plate,hamster

13: dolphin,cockroach,otter

14: elephant,cattle,palm tree

15: snail,leopard,porcupine

16: chair,telephone,pickup truck

17: sunflower,tulip,poppy,rose

18: wardrobe,streetcar,bus

19: squirrel,shrew,rabbit

TABLE V: Latent Factor Analysis Total Variation Norm - Inputs Included

Factor: Classes Top Images Latent Image

0: streetcar, bus,wardrobe

1: apple,chair,lamp

2: train,bridge,castle

3: hamster,wolf,baby

4: cloud,shark,trout

5: cattle,elephant,camel

6: cockroach,chair,plain

7: caterpillar,lizard,shrew

8: oak,maple,beetle,pine

9: sea,mountain,cloud,rocket

10: chair,telephone,wardrobe

11: cockroach,whale,dolphin

12: kangaroo,fox,rabbit

13: rose,tulip,sweet pepper

14: bus,house, pickup truck

15: chimpanzee,girl,lion

16: apple,pear,bottle,orange

17: hamster,beaver,lion,leopard

18: wolf,lion,girl

19: crab,beaver,porcupine


