
SPADE: Streaming PARAFAC2 DEcomposition for Large Datasets

Ekta Gujral
UC Riverside

egujr001@ucr.edu

Georgios Theocharous
Adobe Inc.

theochar@adobe.com

Evangelos E. Papalexakis
UC Riverside

epapalex@cs.ucr.edu

Abstract

In tensor mining, PARAFAC2 is a powerful and a multi-
modal factor analysis method that is ideally suited for
modeling for batch processing of data which forms “ir-
regular” tensors, e.g., user movie viewing profiles, where
each user’s timeline does not necessarily align with other
users. However, these days data is dynamically chang-
ing which hinders the use of this model for large data.
The tracking of the PARAFAC2 decomposition for the
dynamic tensors is very pivotal and challenging task due
to the variability of incoming data and lack of online ef-
ficient algorithm in terms of time and memory.

In this paper, we fill this gap by proposing an ef-
ficient method to compute the PARAFAC2 decomposi-
tion of streaming large tensor datasets containing mil-
lions of entries, called SPADE. In terms of effective-
ness, our proposed method shows comparable results
with the prior work, PARAFAC2, while being compu-
tationally much more efficient. We evaluate SPADE
on both synthetic and real datasets, indicatively, our
proposed method shows 10 − 23× speedup and saves
17−150× memory usage over the baseline methods and
is also capable of handling larger tensor streams (≈ 7
million users) for which the batch baseline was not able
to operate. To the best of our knowledge, SPADE is
the first approach to online PARAFAC2 decomposition
while not only being able to provide on par accuracy but
also provide better performance in terms of scalability
and efficiency.

1 Introduction

The PARAFAC1 (CP) decomposition method is used
to handle multi-aspect or multi-way data, and the prin-
ciple is well researched among the data mining com-
munity, for example, by Kolda and Bader [14], Bro
[5], and Papalexakis et al. [16]. Regardless of re-
cent development on temporal data through classic ten-
sor decomposition approaches [3, 8, 15, 21, 24], there
are certain instances [11, 12] wherein time modeling
is difficult for the regular tensor factorization meth-
ods, due to either data irregularity or time-shifted la-
tent factor appearance as shown in Figure 1. The

PARAFAC2 decomposition, proposed by Harshman
[10], is another alternative to the PARAFAC1 (CP)
model. PARAFAC2 can easily handle sub-matrices of
dynamic length as opposed to the PARAFAC1 model
which requires fixed data length for which no time-
alignment is necessary. The PARAFAC2 model showed
a remarkable ability because: a) The actual structure
of each slice or sub-matrix is well approximated with-
out any additional parameters. b) As the features (tu-
torials, movies, etc.), i.e., 2nd mode, of the tensor are
uniform across all slices, PARAFAC2 is able to extract
the common characteristics by employing such unifor-
mity, which is important in the click-stream problem.
c) The PARAFAC2 allows one mode to be irregular
(See Figure 1) that is particularly suitable for chromato-
graphic data [2, 19] and electronic health records[18]. d)
Similar to the PARAFAC1/CP decomposition method,
the PARAFAC2 method provides unique solutions un-
der certain mild assumptions [22, 20], but this model
is more loosely constrained and hence, provides more
relevant details than PARAFAC1/CP[13].

Figure 1: An illustration of the tensor decomposition on
streaming PARAFAC2 data.

In the era of information explosion, the data of
diverse variety is generated or modified in large volumes.
In many cases, data may be added or removed from
any of the dimensions with high velocity. When using
tensors to represent this dynamically changing data, an
instance of the problem is of the form of a “streaming”,
“incremental”, or “online” tensors. Considering an
example of Electronic Health Records [18] data as shown
in Figure 1, where we have K number of subjects for
which we observe J features and we permit each kth

subject to have Ik observations. As time grows, a
number of subjects M is added with more or fewer
observations. Each such subject is a new incoming

Copyright c© 2020 by SIAM
Unauthorized reproduction of this article is prohibited

slice(s) to the tensor Xk on its N th mode, which is seen
as a streaming update. Additionally, the tensor may be
growing in all of its N -modes, especially in complex and
evolving environments such as online social networks.
As shown in Figure 1, PARAFAC2 approximates entire
data (old + new) as: Xk ≈ Uk′Sk′V

T , where k
′ ∈

[1, (K + M)], Uk′ ∈ RI
k
′×R, Sk′ is a diagonal R ×

R , V ∈ RJ×R and R is the target rank of the
decomposition.

Streaming PARAFAC2 decomposition is a challeng-
ing task due to the following reasons. First, to fit the
PARAFAC2 model, alternating least squares (ALS) is
commonly used. For 3-mode tensor, the estimations of
all the three modes are done alternatively and itera-
tively until no significant changes are observed or local
minimum solution is achieved and thus its main draw-
back is very slow convergence for large datasets that
is often observed due to expensive recalculations for
the entire tensor. Second, for PARAFAC2 tensor data,
any pre-processing to accumulate across any mode may
lose significant information. Third, maintaining high-
accuracy (competitive to decomposing the full tensor)
using significantly fewer computations than the full de-
composition calls for innovative and, ideally, sub-linear
approaches. Lastly, operating on the full ambient data
space, as the tensor is being updated online, leads to an
increase in time and space complexity, rendering such
approaches is hard to scale, and thus calls for efficient
methods that work on memory spaces which are signif-
icantly smaller than the original ambient data dimen-
sions.

To handle the above challenges, in this paper, we
propose a method to decompose online or incremental
tensors based on PARAFAC2 decomposition. Our goal
is, given an already computed PARAFAC2 decompo-
sition, to track the PARAFAC2 decomposition of an
online tensor, as it receives streaming updates, 1) ef-
ficiently, being much faster than re-computing the en-
tire decomposition from scratch after every update, and
utilizing smaller amount of memory, and 2) accurately,
incurring an approximation error that is as close as pos-
sible to the decomposition of the full tensor. Answer-
ing the above questions, we propose SPADE (Streaming
PARAFAC2 DEcompistion) framework. Our SPADE
achieves the best of both worlds in terms of speed
and memory efficiency: a) it is faster than a highly-
optimized baseline in all cases considered for both real
(Figure 3) and synthetic (Table 3, 4, 5) datasets, achiev-
ing up to 10 − 23× performance gain; b) at the same
time, SPADE is more scalable, in that it can execute
in reasonable time for large problem instances when
the baseline fails due to excessive memory consump-
tion (Figure 2). For exposition purposes, we focus on

the streaming scenario, where a 3-mode tensor grows
on the third mode, however, our work extends to cases
where more than one modes are online.

To the best of our knowledge, no work has as-
sessed streaming or online PARAFAC2 for large-scale
dense/sparse data, as well as the challenges arising by
doing so. Our contributions are summarized as fol-
lows:
• Novel Scalable Online Algorithm: We intro-

duce SPADE, a scalable and effective algorithm for
tracking the PARAFAC2 decompositions of online
tensors that admits an efficient parallel implemen-
tation. We do not limit to 3-mode tensors, our
algorithm can easily handle higher-order tensor de-
compositions. We make our Matlab implementa-
tion publicly available on the link1.

• Extensive Evaluation We evaluate the scalabil-
ity of SPADE using datasets originating from two
different application domains, namely a sequential
user viewing patterns dataset by Adobe and a time-
evolving movie ratings dataset, which is publicly
available. Additionally, we perform extensive syn-
thetic data experiments.

• Real-world case study We performed a case
study of applying SPADE on the dataset by Adobe
which consists of a sequence of tutorials watched
by ≈ 7Million users . The communities discovered
were evaluated by an expert from Adobe.

2 Background

In this Section, we provide the necessary background
for notations and tensor operations. Then, we briefly
discuss the related work regarding the classical and
sparse method for PARAFAC2 for tensor factorization.
Table 1 contains the symbols used throughout the
paper.

Symbols Definition

X,X,x, x Tensor, Matrix, Column vector, Scalar

XT ,X−1,X† Transpose, Inverse, Pseudo-inverse
diag(X) Extract diagonal of matrix X

Xk shorthand for X(:, :, k) (k-th frontal slice of X)

X(n), X(n) mode-n matricization of X, matrix X at mode-n
‖A‖F , ‖a‖2 Frobenius norm, `2 norm
◦, ©∗ , ⊗, � Outer, Hadmard, Kronecker and Khatri-Rao product

OoM Out of Memory
MTTKRP Matricized tensor times Khatri-Rao product[14]

Table 1: Table of symbols and their description

2.1 PARAFAC1 (CP) Decomposition Tensor
decomposition is a general tool for tensor analysis. Us-
ing tensor decomposition, we find latent factor or re-
lations within data. One of the most popular and
extensively used tensor decompositions is the Canoni-

1http://www.cs.ucr.edu/~egujr001/ucr/madlab/src/SPADE.

zip

Copyright c© 2020 by SIAM
Unauthorized reproduction of this article is prohibited

http://www.cs.ucr.edu/~egujr001/ucr/madlab/src/SPADE.zip
http://www.cs.ucr.edu/~egujr001/ucr/madlab/src/SPADE.zip

cal Polyadic (CP) or CANDECOMP/ PARAFAC1 de-
composition [6, 5, 4, 14] referred as CP decomposition.
Given a N-mode tensor X of dimension RI1×I2×...IN ,
its CP decomposition can be written as U(n) ∈ RIn×R,
where n = (1, 2, . . . N) and R represents the number of
latent factors or upper bound rank on tensor X. The
N -mode CP decomposition of tensor X can be written
as
(2.1)

L =argmin
1

2
||X(n) − [U

(n)
(U

(N) · · · �U
(n+1) �U

(n−1) �U
(1)

)
T ||2F

= argmin
1

2
||X(n) − [U

(n)
(�N

i6=nU
(i)

)
T ||2F ∀i ∈ [1, N]

The direct fitting of Eq. (2.1) is difficult. The most
common fitting for CP decomposition is by using ALS
(Alternating Least Squares). The main idea behind
ALS is the following: when we fix all factor matrices
except for one, the problem reduces to a linear least
squares problem which can be solved optimally. We
refer the interested reader to several well-known surveys
that provide more details on tensor decompositions and
its applications [14, 16].

2.2 Classic PARAFAC2 Decomposition The
PARAFAC2 model was first developed by Harshman
[10] to handle the situation where the number of ob-
servations (row dimension) in each Xk may vary e.g
study of phonetics. In his work, Harshman described a
way to factorize multiple matrices simultaneously given
that one factor was not exactly the same in all those
matrices. This can be solved by imposing orthogonal-
ity constraints on a linear transformation as a coupling
relationship between the similar factors to ensure iden-
tifiability. Hence, the PARAFAC2 model for 3-mode
tensor Xk ∈ RIk×J is given by:

(2.2)
L =argminU,S,V

1

2
||Xk −UkSkVT ||F2 ∀k

subject to Uk = Qk ∗H and QkQT
k = Ir

where Uk ∈ RIk×R are coupled matrices, H ∈ RR×R

is coefficients matrix, Qk ∈ RIk×R are left-orthogonal
coupling matrices to ensure uniqueness of factors and
W = Sk ∈ RR×R is set of diagonal matrix. The Equ
(2.2) in form of orthogonal form can be re-written as :

(2.3)
L =argminQ

1

2
||Xk −QkHWVT ||F2 ∀k

subject to QkQT
k = Ir

To solve Eq (2.3), most common method is Alternating
Least Square (ALS) that updates Qk by fixing other
factor matrices i.e H,W, and V. The orthogonal
coupling matrix Qk can be obtained by Singular Value
decomposition (SVD) of (HWVTXT

k) = [Pn,Σn,Z
T
n].

With QT
k = PnZT

n fixed, the rest of factors can be
obtained as:
(2.4)

L =argminH,W,V

1

2
||QkXk −HWVT ||F2 s.t.QkQT

k = Ir

argminH,W,V

1

2
||Y −HWVT ||F2

The Eq. (2.3) is equivalent of solving CP decomposition
of Y using ALS method. The classic method of
PARAFAC2 is limited to small sized dense data and
require large amount of resources (time and space) to
process big data. The author [18] proposed method
namely SPARTAN (Scalable PARAFAC2) for large and
sparse tensors. The speed up of the process is obtained
by modifying core computational kernel.The author [1]
proposed constrained version of Scalable PARAFAC2.
But these methods are limited to static data. In this
era, data is growing very fast and a recipe for handling
the limitations is to adapt existing approaches using
online techniques. To our best knowledge, there is no
work in the literature that deals dynamic PARAFAC2
tensor decomposition. To fill the gap, we propose a
scalable and efficient (time and space) method to find
the PARAFAC2 decomposition for streaming large-scale
high-order PARAFAC2 data and maintain comparable
accuracy.

3 Proposed Method: SPADE

In this section, we introduce our proposed method for
tracking the PARAFAC2 decomposition of data in an
incremental setting. For presentation purposes, initially
a 3-mode irregular tensor case will be discussed. Then,
we further present our proposed method to handle
higher mode tensors. Here, we assume that only last
mode of a tensor is increasing over time and other modes
remain unchanged over time. Formally, the problem
that we solve is the following:

Problem 1. Given (a) an existing set of
PARAFAC2 decomposition i.e. Uold,Vold and
Wold factor matrices, having R latent components,
that approximate tensor Xold ∈ RIk×J×K at time
t , (b) new incoming slice (s) in form of tensor
Xnew ∈ RIn×J×N at any time ∆t,
Find updates of Unew,Vnew and Wnew incre-
mentally to approximate PARAFAC2 tensor
X ∈ RI(k+n)×J×(K+N) after appending new slice(s)
at t = t1 + ∆t in last mode while maintaining
a comparable accuracy with running the full
PARAFAC2 decompositon on the entire updated
tensor X.

Copyright c© 2020 by SIAM
Unauthorized reproduction of this article is prohibited

3.1 The Principle of SPADE To address the on-
line PARAFAC2 problem, SPADE follows the same al-
ternating update schema as ALS, such that only one
factor matrix is updated at one time by fixing all oth-
ers.

Assumptions:
• The factor matrices Uold,Vold and Wold for old

data (Xold) at time stamp t1 is available. Uold is
obtained using product of Qk and Hold.

• We have pre-existing supporting matrices Lold and
Mold from old data.

• There is no rank or concept drift[17] in the data.

3.1.1 CP slice-wise tensor Y formulation Initi-
ate Wrand random linear combinations of columns of
the existing Wold factor matrix. To formulate CP ten-
sor Y, we obtain SVD of existing factors and new in-
coming data as follows:

(3.5)
[Pn,Σn,Zn] =SV D[Hold × diag(Wrand(n, :))

× (Xnewn
×Vold)T]

Given the SVD of above equation, the minimum of Eq.
(2.3) over left-orthonormal Qn is given by Qn = ZnPT

n .
This equivalence implies that minimizing the objective
Equ. (2.4) is achieved by executing the decomposition
on a tensor Y = QT

nXnew(n) ∈ RR×J×N with frontal
slices as :

(3.6) LS = argmin
1

2
||Y − [[Hnew; Vnew; Wnew]]||2F

Note that our loading or factor matrices for CP
tensor decomposition in Eq. 3.6 are: Hnew ∈
RR×R,Vnew ∈ RJ×R and Wnew ∈ RN×R.

3.1.2 Initialization of Supporting Matrices M
can be initialized as MTTKRP [14, 18] w.r.t 1st and 2nd

mode of tensor. We use the notation M(i) to denote
the MTTKRP corresponding to the ith tensor mode.
For example, for mode-1, it is computed as M(1) =
Y(1) ∗ (V � W)T and so on. Similarly, supporting
matrix L for mode ’n’ can be computed as Hadmard
product of all factor matrices expect the n-mode factor
matrix. For example, for mode-1 , it can be written as
L(1) = (WTW ∗VTV) and so on.

3.1.3 Update temporal factor Consider first the
update of factor W

′
obtained after fixing Vold and Hold,

and solving the corresponding minimization in Equ 3.7.

(3.7) argminW

1

2
||Y(3)

new −Wrand(Vold �Hold)T)||F2

where Wrand ∈ RN×R is random linear combina-
tions of columns of the existing Wold matrix. The W̃

can be obtained after minimizing above equation as :
(3.8)

W̃ = Y(3)
new ∗ ((Vold �Hold)T)†

= Y(3)
new ∗ (VT

oldVold ∗HT
oldHold)† ∗ (Vold �Hold)

As the term (VT
oldVold ∗HT

oldHold) is invertible, so
its pseudo-inverse is its inverse and Equ (3.9) can be
written as:

(3.9) W̃ =
Y(3)

new ∗ (Vold �Hold)

(VT
oldVold ∗HT

oldHold)

The existing MTTKRP is expensive process [18, 23].
Thus the accelerated MTTKRP [18] regarding the mode-
3 could be written as the inner product between the
corresponding rth columns of Hold and [Y(3)

new Vold],
respectively. Thus, in order to retrieve a row M(3)(n, :),
we can simply operate as:

(3.10) M(3)(n, :) = dot(Hold,Y
(3)
newVold)

The arising sub-problem, after manipulation can be re-
written as:

(3.11) W̃ =
M

(3)
new

(VT
oldVold ∗HT

oldHold))

Wnew is updated by appending the projection Wold of

previous time stamp, to W̃ of new time stamp, i.e.,

(3.12) Wnew =

[
Wold

M(3)
new

(VT
oldVold∗HT

oldHold))

]
=

[
Wold

W̃

]

where the MTTKRP, M
(3)
new is parallelizable and is

efficiently calculated in linear complexity to the number
of non-zeros in Y.

3.1.4 Update factor non-temporal factors We
update Hnew by fixing Vold and Wnew. We set
derivative of the loss LS w.r.t. H to zero to find local
minima as :

(3.13)
δ([Y(1)

new −Hnew(Wnew �Vold)T]

δHnew
= 0

By solving above equation, we obtain:
(3.14)

Hnew =
Y(1) ∗ (Wnew �Vold)T

(Wnew �Vold)T (Wnew �Vold)

=
Y

(1)
old ∗ (Vold �Wold)T + Y(1)

new ∗ (W̃ �Vold)T

(WT
oldWold ∗VT

oldVold) + (W̃TW̃ ∗VT
oldVold)

=
M

(1)
old + Y(1)

new ∗ (W̃ �Vold)T

L
(1)
old + (W̃TW̃ ∗VT

oldVold)

Copyright c© 2020 by SIAM
Unauthorized reproduction of this article is prohibited

Algorithm 1: SPADE Update Framework

Input: Xnew ∈ RIk×J2×···×JN−1 ∀k = [1,K], old data
factors (U,A(1),A(2), . . . ,A(N−1),A(N)), supporting
matrices [Lold , Mold] , Rank R.

Output: Updated factor matrices
(U,A(1),A(2), . . . ,A(N−1),A(N)),

1: Initialize A
(N)
rand ∈ RK×R from A

(N)
old

2: for k ← 1 to K do
3: [Pk,Σk,Zk]← SVD(A(1)A

(N)
rand

(k)XT
newk

�N−1
i=2 A(i)) with

Rank R.
4: Qk = ZkPT

k

5: Yk = QT
k Xnewk

6: end for
7: Update temporal modes of CP tensor Y

A(N) =

[
A

(N)
old

A
(N)
new

]
=

 A
(N)
old

M(N)

©∗ N−1
i=1 A(i)

 ∀i ∈ [1, N]

8: for n← 1 to N − 1 do
9: Update other modes of CP tensor Y

A(i) =
M

(i)
old

+�N
i6=nA(i)

L
(i)
old

+©∗ N
i6=nA(i)

∀i ∈ [1, N]

10: end for
11: Update first mode of PARAFAC2 tensor Xnew

U =

[
Uold

Qn ∗A(1)

]
12: return Updated (U,A(1),A(2), . . . ,A(N−1),A(N))

As classic MTTKRP Y(1)
new ∗ (W̃�Vold)T is expensive,

therefore modified and accelerated MTTKRP can be ex-
pressed as a summation of block matrix multiplications:

(3.15) M(1)
new =

N∑
n=0

YnewTn = (YnewVold) ∗W
′

where Tn is nth vertical block of the Khatri Rao
Product (Vold � W

′
). The above computation can

be easily parallelized over N independent sub-problems
and summing the partial results. Other efficient way is
by computing the slice wise matrix product YnewVold

and for each row of the intermediate result of size RR×R,
we compute the Hadamard product with W

′
(n, :) as

described in [18]. Hence Hnew can be updated as :

(3.16) Hnew =
M

(1)
new

L
(1)
new

=
M

(1)
old + (YnewVold) ∗W

′

L
(1)
old + (W′T W′ ∗VT

oldVold)

In this way, the factor update equation and support-
ing matrices update consist of two parts: the historical
part; and the new data part that makes computation
fast.

Similarly, Vnew can be updated with accelerated
MTTKRP for mode-2 as M(2) =

∑N
n=0 YT

newTn as :
(3.17)

Vnew =
M

(2)
new

L
(2)
new

=
M

(2)
old + (YT

newHnew) ∗W
′

L
(2)
old + (HnewHnew ∗W′T W′)

3.1.5 Update factor U Finally, we update mode-
1 factor of PARAFAC2 tensor Xnew by appending the

projection Uold of previous time step, to Ũ obtained
from factor matrix Hnew and Qn as given below:

(3.18) Unew =

[
Uold

Qn ∗Hnew

]
Summary: Our proposed algorithm, SPADE, consist
of three parts: First, it obtains slice wise CP tensor
Y from incoming tensor data Xnew using existing non-
temporal factor or loading matrices i.e Hold and Vold

and matrix created from random linear combinations of
columns of the existing temporal factor matrix Wold,
Second, we initialize two small set of supporting matri-
ces Lold and Mold with the old tensor and its factors by
using accelerated MTTKRP[18]. In last step, the new
incoming tensor data Xnew is processed by our proposed
effective, parallel and fast incremental update method
presented in Algorithm 1.

3.2 Extending to Higher-Order Tensors
We now show how our approach is extended
to higher-order cases. Consider N-mode tensor
Xold ∈ RIm×J2×···×JN−1 . The factor matrices are

(Uold,A
(1)
old,A

(2)
old, . . . ,A

(N−1)
old ,A

(T1)
old) for PARAFC2 de-

composition with N th mode as new incoming data. A
new tensor Xnew ∈ RIk×J2×···×JN−1 is added to Xold to
form new tensor of RIt×J2×···×JN−1 where t = k + m.
In addition, supporting matrices L(1), ...,L(N−1) and
M(1), ...,M(N−1) are stored, where M(n) and L(n), n ∈
[1, N − 1] are the supporting matrices for mode n. Ad-
ditionally, the Khatri-Rao and Hadamard products of
a sequence of N matrices are denoted by �N

i 6=nA(i) and

©∗ N−1
i=1 A(i), respectively. The subscript i 6= n indicated

the nth matrix is not included in the operation.
The Temporal mode can be updated as :

(3.19) A(N) =

[
A

(N)
old

A
(N)
new

]
=

[
A

(N)
old

M(N)

©∗ N−1

i=1 A(i)

]
The Non-Temporal modes can be updated as:

(3.20) A(i) =
M

(n)
old +�N

i6=nA(i)

L
(n)
old +©∗ N

i 6=nA(i)

where i ∈ [1, N − 1].
The dynamic or first mode of PARAFAC2 tensor

can be updated as:

(3.21) U =

[
Uold

Qn ∗A(1)

]
We obtain the general version of update rule of our

SPADE for N-mode tensor, as presented in Algorithm
1. NOTE: Line 3-5 can be executed in parallel.

Copyright c© 2020 by SIAM
Unauthorized reproduction of this article is prohibited

Dataset
Statistics (K: Thousands M: Millions)
Imax J K Batch #nnz

I 1K 3K 10K 500 3M

II 2K 6K 50K 500 60M

III 5K 8K 100K 450 133M

IV 5K 10K 500K 50 239M

V 10K 12K 1M 10 507M

ML 21 28K 139K 1K 20M

Adobe 2K 17K 6.8M 10K 35M

Table 2: Details for the datasets. K is the number
of subjects, J is the number of features, Imax is the
number of observations for the k-th subject and #nnz
corresponds to the total number of non-zeros.The rank of
tensors is R = 15. Density is between [10−3, 10−5]. ML:
MovieLens

SYN PARAFAC2 SPARTan SPADE

I 1649.2 ± 0.1 1649.9± 0.1 1659.7± 0.1
II 16601.3 ± 9.4 16611.3± 7.3 16652.2± 2.2
III 4453.1± 2.7 4443.9 ± 2.5 4454.1± 3.7
IV [OoM] 3107.6± 3.3 3099.5 ± 3.2
V [OoM] [OoM] 1777.6 ± 9.5

Table 3: Mean LOSS over complete tensor data. The
boldface means the best results.

4 EXPERIMENTAL EVALUATION

In this section we extensively evaluate the performance
of SPADE on five synthetic and two real datasets,
and compare its performance with state-of-the-art ap-
proaches. Note that all comparisons were carried out
over 5 iterations each, and each number reported is an
average with its standard deviation attached to it.

4.1 Experimental Setup

4.1.1 Synthetic Data Generation : The specifica-
tions of each synthetic dataset are given in Table 2. For
all synthetic data we use rank R = 15. The entries of
loading matrix V and W are Gaussian with unit vari-
ance, and orthogonality is imposed on factors H and Q,
then a few entries are clipped to zero randomly to cre-
ate a sparse PARAFAC2 tensor. The MATLAB script
is provided on link1.

4.1.2 Real Data Description : We evaluate the
performance of the proposed method SPADE against
the state-of-art methods for the real datasets as well.
In our experiments, we include MovieLens - 20M[9]
and Adobe dataset. MovieLens-20M dataset is widely
used in recent literature. For this dataset, we created
tensor as year-by-movie-by-user i.e each year of ratings
corresponds to a certain observation for each user’s
activity. Adobe dataset is sequential data and it consists
of tutorial sequence of anonymous 7 million users. The
data is structured as sequence-by-tutorial-by-user. We
have semi synthetic ground truth values for each user

SYN PARAFAC2 SPARTan SPADE

I 7.4± 1.5 4.47± 2.5 1.3± 0.3
II 725.7± 9.2 290.8± 2.3 21.9 ± 2.7
III 1158.7± 10.7 330.5± 4.6 22.3 ± 1.4
IV [OoM] 672.4± 7.5 36.7± 1.3
V [OoM] [OoM] 144.7 ± 1.8

Table 4: Mean CPU TIME (mins) over all batches of third-
order datasets. The boldface means the best results.

SYN PARAFAC2 SPARTan SPADE

I 1490.3± 0.1 393.9± 0.2 133.3 ± 0.3
II 21978.5± 0.1 16003.5± 0.3 1737.7± 0.2
III 12813.7± 0.1 8835.3± 0.1 739.2± 0.4
IV [OoM] 10785.4± 0.1 622.1± 0.1
V [OoM] [OoM] 545.4± 0.1

Table 5: Average MEMORY USAGE (MBytes) for decom-
position. The boldface means the best results.

based on tutorial watched.

4.1.3 Evaluation Measures We evaluate SPADE
and the baselines using three criteria: approximation
loss, CPU time in minutes and memory usage in
Megabytes. These measures provide a quantitative way
to compare the performance of our method. For all
criterias, lower is better.

4.1.4 Baselines In this experiment, two baselines
have been used as the competitors to evaluate the
performance.
• PARAFAC2 [13] : an implementation of standard

fitting algorithm PARAFAC2 with random initial-
ization.

• SPARTan [18] : a scalable PARAFAC2 fitting
algorithm was proposed for large and sparse data.

Note: Our proposed method is natural extension of
scalable PARAFAC2[18].

4.2 SPADE is fast and memory-efficient

4.2.1 Synthetic data results First, we remark that
SPADE is both more memory-efficient and faster than
the state-of-art methods. In particular, the state-of-art
methods fail to execute in the two largest problems i.e.
SYN-VI and SYN-V for given target rank due to out
of memory problems during the formation of the slice
wise CP tensor Y. This improvement stems from the
fact that state-of-art methods attempt to decompose
in full tensor, whereas SPADE can do the same in
streaming mode, thus having higher immunity to large
data volumes in short time interval and small memory
space with comparable accuracy.

From the results shown in Table (3), it can be
concluded that, the SPADE best performance is on
par to the state-of-the-art (i.e. classic PARAFAC2 as

Copyright c© 2020 by SIAM
Unauthorized reproduction of this article is prohibited

Algorithm
MovieLens Adobe

R=10 R=50 R=10 R=50

T
im

e SPARTan 257.8± 8.3 5673.4± 4.1 [OoM] [OoM]
SPADE 51.9± 3.3 609.6± 5.6 80.1± 4.6 824.9± 9.1

M
em

.

SPARTan 66474.8± 0.1 250212± 0.1 [OoM] [OoM]
SPADE 2092.7± 34.9 10346.3± 23.7 690.7± 37.1 3409.3± 56.8

Table 6: The average and standard deviation of memory usage and time metric comparison on MovieLens and Adobe
using two different target for five random initialization.

2 6 10 14 18 22 26 30 34 40
Rank R

0

200

400

600

800

1000

1200

C
P

U
 T

im
e

(m
in

s)

SPADE SPARTAN

~10x

2 6 10 14 18 22 26 30 34 40
Rank R

103

104

105

106

M
em

o
ry

 U
sa

g
e

(M
B

yt
es

) SPADE SPARTAN

~150x

3 4 5 6 7 8 9 10

Temporal Slices (1 10x)

100

101

102

103

C
P

U
 T

im
e

(m
in

s)

SPADE SPARTAN

3 4 5 6 7 8 9 10

Temporal Slices (1 10x)

100

101

102

103

104

105

M
em

o
ry

 u
sa

g
e

(M
B

yt
es

)

SPADE SPARTAN

Figure 2: The average time in minutes and memory usage in MBytes for varying target rank (1st,2nd) of synthetic data
of size (1000× 1000× 105) and varying number of subjects(K) (3rd, 4th) for synthetic data of size (100× 100× [103, 1010]).

well as scalable PARAFAC2 (SPARTAN)), algorithm
best performance, in terms of approximation loss and
SPADE performances are significantly better in CPU
time and memory usage as shown in Table (4, 5). Most
importantly, however, SPADE performed very well on
SYN-IV and SYN-V datasets, arguably the hardest of
the five synthetic datasets we examined where none
of the baselines was able to run efficiently (under 10
hours). Overall, it is clear that the state-of-the-art
approaches cannot fully handle the large data of size
15 − by − 12K − by − 1Mil as it requires > 1TB
memory and surpasses the available storage capacity of
our system. On the contrary, SPADE properly performs
for all the datasets considered in a reasonable amount
of time, since it only operates directly on the incoming
tensor slice(s). In particular when tested on SYN-IV
dataset, for R = 40, SPADE is up to 13× faster than the
state-of-the-art method. Even for a lower target rank of
R = 5, SPADE obtains up to 20× faster computation.
These results show that SPADE is able to handle large
dimensions in reasonable time and memory.

4.2.2 Real data results We evaluate the perfor-
mance of the proposed SPADE approach against the
baseline method for the real datasets as well. The em-
pirical results in terms of CPU time and Memory us-
age is given in Table (6). There is no significant dif-
ference is observed in their effectiveness in terms of ap-
prox.loss. The baseline method has 1 − 2% less ap-
prox.loss as compared to our proposed method. How-
ever, the time and memory saving with SPADE is sig-
nificant in case of Movielens data. For Adobe dataset,
baseline is unable to create intermediate slice wise CP
tensor of size 10×17K×6.8Mil. Our proposed method

took only < 14 hours for computing factors for it. Our
proposed algorithm, SPADE, shows very promising re-
sults in speed and space utilization and showing that it
is less sensitive to the size of the data, and thus, having
better performance.

4.2.3 Scalability Evaluation We also valuate the
scalability of our algorithm on synthetic and real
dataset. Firstly, a tensor X ∈ R1000×1000×105 is de-
composed with increasing target rank.The baseline ap-
proach consumes more time as we increase the target
rank as shown in Figure 2 (1st, 2nd). On the contrary,
the time needed by SPADE increases very moderately.
Overall, our method achieves up to 10× gain regarding
the time required and 150× gain over memory usage.
Second, we create a tensor X ∈ R100×100×1010 of small
slice size but long 3rd dimension. We decomposed it
using fixed target rank R = 5. The baseline method
runs upto 107 slices and runs out of memory for fur-
ther data. However, our proposed method, successfully
decomposed the tensor in reasonable time as shown in
Figure 2 (3rd, 4th).

We also evaluate scalability using both real dataset.
The SPADE saved up to 23×memory used and achieved
17× speedup over the baseline approach for the Movie-
Lens dataset as shown in Figure 3. The baselines unable
to run for Adobe dataset because of high computation
requirements for intermediate CP tensor creation. How-
ever, our proposed SPADE successfully able to decom-
pose the tensor (Figure 3) and shows effectiveness over
large irregular datasets. In terms of batch size, it is
observed that the time consumed by our method is lin-
early increasing as the batch size grows. However, their
slopes vary with different rank used. The analysis is not

Copyright c© 2020 by SIAM
Unauthorized reproduction of this article is prohibited

5 10 15 20 30 40 50
Rank R

0

1000

2000

3000

4000

5000

6000

C
P

U
 T

im
e

(m
in

s)

MovieLens-20M

SPADE SPARTAN

5 10 15 20 30 40 50
Rank R

103

104

105

106

M
em

o
ry

 U
sa

g
e

(M
B

yt
es

)

MovieLens-20M

SPADE SPARTAN

5 10 15 20 30 40 50
Rank R

0

200

400

600

800

1000

C
P

U
 T

im
e

(m
in

s)

Adobe

SPADE

5 10 15 20 30 40 50
Rank R

102

103

104

M
em

o
ry

 U
sa

g
e

(M
B

yt
es

)

Adobe

SPADE

Figure 3: The average time in minutes and memory usage in MBytes for varying target rank for both the real datasets.
For Adobe dataset baseline method runs out of memory.

included due to limitation of space here.

5 Community discovery on Adobe data

5.1 Motivation: Here, we discuss the usefulness of
PARAFAC2 towards extracting meaningful communi-
ties or clusters of users from Adobe data. The challenge
in community detection of such large data (≈ 7 million
users) is to capture behaviour regarding the sequential
click of the tutorials for each user. In this dataset, there
is no real alignment in the ”time” mode, since every view
of a tutorial can happen anywhere in time, therefore,
we care about the sequence followed by each user and
it cannot be modeled as a regular online tensor decom-
position methods. Therefore, there is a serious need to
learn richer and more useful representation. Below, we
describe how SPADE can be used to successfully handle
this challenge.

5.2 Model Interpretation: the model interpreta-
tion towards the target challenge:

• Incremental factor: Each column of factor or
loading matrix W represents a community and
each row represents the importance of community
membership for a user to each one of the R com-
munities. Therefore, an entry W (i, j) represents
the membership of user i to the jth community.
We consider non-overlapping communities based on
type of tutorial watched by user. So we normal-
ize the matrix w.r.t row between [0,1] and highest
value indicates the community membership to cor-
responding user.

• Irregular dimension factor: Each Uk loading
matrix gives the sequential signature of each user
i.e. each rth column of Uk reflects the evolution
of the community r for all Ik tutorial watched
sequences for user k.

• Non-incremental factor: The factor matrix V
reflects the community definition based on tutorials
and each row indicates a tutorial features.

5.3 Qualitative Analysis: For this case study, we
decompose tensor in batch of 50K users to extract
communities. For this experiment, we set the Rank
R = 24 based on semi-synthetic ground truth labels.
We compute Kull-back Leibler divergence or simply KL-
div [7] to evaluate the communities quality.

In order to present the use of SPADE towards com-
munity detection, we focus our analysis on a subset
of tutorials(s) watched by each community in Adobe
dataset. Figure 4(a) shows the top 5 (based on num-
ber of users) community’s most frequent tutorial(s) se-
quence watched. Conceptually, those users share simi-
lar interest in terms of learning, domain knowledge or
interests. As a result, it becomes a very important
challenge to accurately cluster the users. Neverthe-
less, SPADE achieves significantly good performance
in terms of KL − div i.e ≈ 0.553. In Figure4(b), we
show top 5 communities of the dataset as clustered by
SPADE with R = 24. Qualitatively, we see that the
methods output concurs with the communities that ap-
pear to be strong on the spy-plots. These communi-
ties are connected strongly within the group and have
very few connections outside the group. As any of the
baseline is unable to execute the entire data, our pro-
posed method gives advantage to decompose the data
in streaming fashion in reasonable time.

[6, 81, 122] [1 ,3] [2, 28, 74] [50, 87] [3, 119, 66]
Frequent Sequence

0

2

4

6

8

#U
se

rs

104

C1

C2

C3

C4

C5

Figure 4: For top 5 communities (a) frequent sequence of
tutorials watched (b) spy-plot of user-user view.

6 Conclusion

We propose SPADE, a novel online PARAFAC2 de-
composition method. We demonstrate its efficiency

Copyright c© 2020 by SIAM
Unauthorized reproduction of this article is prohibited

and scalability over synthetic and real datasets. The
SPADE provides comparable approximation quality to
baselines and it is both fast (10 − 23×) and memory-
efficient (17− 150×) than the baseline approaches. Ex-
tensive experiments with Adobe dataset have demon-
strated that the proposed method is capable of handling
larger dataset in incremental fashion for which none of
the baseline performs due to lack of memory. Future
directions include, but are not limited to: a) extension
of the proposed method for multi-aspect-streaming ten-
sors, b) incorporate various constraints e.g smoothness,
sparsity and non-negativity for more applications.

7 Acknowledgements
Research was supported by an Adobe Data Science Research Faculty Award,

the Department of the Navy, Naval Engineering Education Consortium un-

der award no. N00174-17-1-0005, and the National Science Foundation

Grant no. 1901379. Any opinions, findings, and conclusions or recom-

mendations expressed in this material are those of the author(s) and do not

necessarily reflect the views of the funding parties.

References

[1] A. Afshar, I. Perros, E. E. Papalexakis, E. Searles,
J. Ho, and J. Sun. Copa: Constrained parafac2
for sparse & large datasets. In Proceedings of the
27th ACM Int. Conf. on Information and Knowledge
Management, pages 793–802. ACM, 2018.

[2] J. M. Amigo, M. J. Popielarz, R. M. Callejón, M. L.
Morales, A. M. Troncoso, M. A. Petersen, and T. B.
Toldam-Andersen. Comprehensive analysis of chro-
matographic data by using parafac2 and principal
components analysis. Journal of Chromatography a,
1217:4422–4429, 2010.

[3] W. Austin, G. Ballard, and T. G. Kolda. Parallel
tensor compression for large-scale scientific data. In
PDPS, 2016 IEEE Int., pages 912–922. IEEE, 2016.

[4] B. W. Bader, T. G. Kolda, et al. Mat-
lab tensor toolbox version 2.6. available on-
line.(february 2015). URL http://www. sandia.
gov/˜ tgkolda/TensorToolbox/index-2.6. html, 2015.

[5] R. Bro. Parafac. tutorial and applications. Chemomet-
rics and intelligent laboratory systems, 38, 1997.

[6] J. D. Carroll and J.-J. Chang. Analysis of individual
differences in multidimensional scaling via an n-way
generalization of eckart-young decomposition. Psy-
chometrika, 35:283–319, 1970.

[7] A. Gorovits, E. Gujral, E. E. Papalexakis, and P. Bog-
danov. Larc: Learning activity-regularized overlap-
ping communities across time. In Proceedings of
the 24th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pages 1465–
1474. ACM, 2018.

[8] E. Gujral, R. Pasricha, and E. E. Papalexakis. Sam-
baten: Sampling-based batch incremental tensor de-
composition. In Proceedings of the 2018 SIAM Int.
Conf on Data Mining, pages 387–395. SIAM, 2018.

[9] F. M. Harper and J. A. Konstan. The movielens

datasets: History and context. Acm transactions on
interactive intelligent systems (tiis), 5:19, 2016.

[10] R. A. Harshman. Parafac2: Mathematical and tech-
nical notes. UCLA working papers in phonetics,
22:122215, 1972.

[11] J. C. Ho, J. Ghosh, S. R. Steinhubl, W. F. Stewart,
J. C. Denny, B. A. Malin, and J. Sun. Limestone:
High-throughput candidate phenotype generation via
tensor factorization. Journal of biomedical informatics,
52:199–211, 2014.

[12] J. C. Ho, J. Ghosh, and J. Sun. Marble: high-
throughput phenotyping from electronic health records
via sparse nonnegative tensor factorization. In Proc.
of the 20th ACM SIGKDD Int. Conf on Knowledge
discovery and data mining. ACM, 2014.

[13] H. A. Kiers, J. M. Ten Berge, and R. Bro. Parafac2part
i. a direct fitting algorithm for the parafac2 model.
Journal of Chemometrics: A Journal of the Chemo-
metrics Society, 13:275–294, 1999.

[14] T. G. Kolda and B. W. Bader. Tensor decompositions
and applications. SIAM review, 51:455–500, 2009.

[15] D. Nion and N. D. Sidiropoulos. Adaptive algorithms
to track the parafac decomposition of a third-order ten-
sor. IEEE Transactions on Signal Processing, 57:2299–
2310, 2009.

[16] E. E. Papalexakis, C. Faloutsos, and N. D. Sidiropou-
los. Tensors for data mining and data fusion: Models,
applications, and scalable algorithms. TIST, 2016.

[17] R. Pasricha, E. Gujral, and E. E. Papalexakis. Identi-
fying and alleviating concept drift in streaming tensor
decomposition. In Joint European Conference on Ma-
chine Learning and Knowledge Discovery in Databases,
pages 327–343. Springer, 2018.

[18] I. Perros, E. E. Papalexakis, F. Wang, R. Vuduc,
E. Searles, M. Thompson, and J. Sun. Spartan: Scal-
able parafac2 for large & sparse data. In Proceedings of
the 23rd ACM SIGKDD Int. Conf. on Knowledge Dis-
covery and Data Mining, pages 375–384. ACM, 2017.

[19] T. Skov, D. Ballabio, and R. Bro. Multiblock vari-
ance partitioning: A new approach for comparing vari-
ation in multiple data blocks. Analytica chimica acta,
615:18–29, 2008.

[20] A. Stegeman and T. T. Lam. Multi-set factor analysis
by means of p arafac2. British Journal of Mathematical
and Statistical Psychology, 69:1–19, 2016.

[21] J. Sun, D. Tao, S. Papadimitriou, P. S. Yu, and
C. Faloutsos. Incremental tensor analysis:theory and
applications. ACM Trans. Knowl. Discov. Data, 2008.

[22] J. M. ten Berge and H. A. Kiers. Some uniqueness
results for parafac2. Psychometrika, pages 123–132,
1996.

[23] S. Zhou, S. Erfani, and J. Bailey. Online cp decompo-
sition for sparse tensors. In 2018 IEEE Int. Conf. on
Data Mining (ICDM), pages 1458–1463. IEEE, 2018.

[24] S. Zhou, N. Vinh, J. Bailey, Y. Jia, and I. Davidson.
Accelerating online cp decompositions for higher order
tensors. In 22nd ACM SIGKDD. ACM, 2016.

Copyright c© 2020 by SIAM
Unauthorized reproduction of this article is prohibited

	Introduction
	Background
	PARAFAC1 (CP) Decomposition
	Classic PARAFAC2 Decomposition

	Proposed Method: SPADE
	The Principle of SPADE
	CP â•œslice-wiseâ•š tensor Y formulation
	Initialization of Supporting Matrices
	Update temporal factor
	Update factor non-temporal factors
	Update factor U

	Extending to Higher-Order Tensors

	EXPERIMENTAL EVALUATION
	Experimental Setup
	Synthetic Data Generation
	Real Data Description
	Evaluation Measures
	Baselines

	SPADE is fast and memory-efficient
	Synthetic data results
	Real data results
	Scalability Evaluation

	Community discovery on Adobe data
	Motivation:
	Model Interpretation:
	Qualitative Analysis:

	Conclusion
	Acknowledgements

