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Abstract—PARAFAC2 is a powerful method for analyzing
multi-modal data consisting of irregular frontal slices. In this
work, we propose POPLAR method that imposes graph Lapla-
cians constraints induced by the similarity symmetric tensor
as auxiliary information to force decomposition factors to be-
have similarly and the method is developed using AO-ADMM
for 3-way PARAFAC2 tensor decomposition. To the best of
our knowledge, POPLAR is the first approach to incorporate
graph Laplacians constraints using auxiliary information. We
extensively evaluate POPLAR’s performance in comparison to
state-of-the-art approaches across synthetic and real dataset, and
POPLAR clearly exhibits better performance with respect to the
Fitness (better 3−8%), and F1 score (better 5−20%) among the
state-of-the-art factorization method. Furthermore, the running
time for the method is comparable to the state-of-art method.

I. INTRODUCTION

In real world applications, we often encounter multi-aspect
relationships in data. For example, in social network analysis,
interactions among various users and their interactions types
are the main focus of interest. Tensors (or multi-way ar-
rays) are highly suitable representation for such relationships.
Tensor analysis methods have been extensively studied and
applied by researchers [7], [18], [22] to many real-world
problems. Regardless of recent development of traditional
tensor decomposition approaches, there are certain instances
[14], [15] wherein time modeling is difficult for the regular
tensor factorization methods, due to either data irregularity or
time-shifted latent factor appearance as shown in Figure 1.
The PARAFAC2 decomposition, proposed by Harshman [12],
is another alternative to the traditional model. The PARAFAC2
model is appropriate for 3-mode data that do not follow a
perfect trilinear structure and allows one of the modes to
vary. It has been extensively used in chemometrics [4], [25],
electronic health record [23], natural language processing [10],
and social sciences [13].

In many practical cases, we have multi-aspect information
represented as tensors (PARAFAC or PARAFAC2), and we can
compute information on the objects forming the relationships
based on various similarities. For example, in the (user, item,
time)-relationships, each user has location/calls/connectivity
information, and each item has its product/service information.
Therefore, we can consider that we have similarity measures
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that corresponds to the sets of matrices for non-variable
modes of data. Even if recently, a constraint PARAFAC2
(COPA) fitting algorithm was proposed for large and sparse
data [2], it cannot incorporate meaningful auxiliary informa-
tion on the model factors such as: a) user-user interactions,
which facilitates model interpretability and understanding, b)
product/service similarity that provides relational information
among objects.

To handle the these challenges and inspired by the work
by Narita et al. [21] which incorporates object similarity
into PARAFAC1 tensor factorization, we exploit the auxiliary
information given as similarity tensor in a regularization
framework for PARAFAC2 tensor factorization. We propose
the Parafac2 decOmPosition using auxiLiAry infoRmation
method (POPLAR), which introduces graph laplacian con-
straints/regularization in PARAFAC2 modeling that enables to
improve the prediction accuracy of tensor decomposition.

Property PARAFAC2 COPA POPLAR
Sparsity − X X

Graph Laplacian − − X
Scalability − X X

Handle irregular tensors X X X
TABLE I: Comparison of models.

Our contributions are summarized as follows:
• Novel Algorithm We propose POPLAR, a method equip-

ping the PARAFAC2 modeling with Graph Laplacian
constraints. While POPLAR incorporates a additional
auxiliary tensor for Laplacian constraints, it provides
more accuracy than baselines and it is comparable in
terms of scalability.

• Experimental Evaluation : we show experimental re-
sults on both synthetic and real datasets.
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Fig. 1: An illustration of the laplacian constraints imposed by
POPLAR on PARAFAC2 tensor decomposition.



Table [I] provides our contributions in the terms of existing
works.

II. RELATED WORK

There are multiple studies to include auxiliary information
into matrix factorization. Li et al. [19] proposed a regularizer
by a Laplacian graph for one of the factor matrices depending
on the data distribution. A similar approach is introduced by
Cai et al. [8]. Lu et al. [20] proposed using the graph Laplacian
and Kalman filter to incorporate both spatial and temporal
information. In order to incorporate side information and
enforce smoothness on factors, Adams et al. [1] extended the
probabilistic matrix factorization. Some work use the auxiliary
information as bias variables added to model parameters [27]
and not as regularization term. Narita et al. [21] incorpo-
rates auxiliary information in form of similarity matrices as
regularizer into PARAFAC1 tensor factorization. To best of
our knowledge, our work is the first attempt to incorporate
auxiliary information (tensor format) into PARAFAC2 tensor
factorization.

III. PRELIMINARIES AND NOTATION

A. Tensors and Tensor Operations

A tensor is a higher order generalization of a matrix. An
N -mode tensor is essentially indexed by N variables. In
particular, regular matrix with two variables i.e. I and J is
2-mode tensor, whereas data cube (I , J and K) is viewed as
a 3-mode tensor X ∈ RI×J×K . The number of modes is also
called ”order”. Matricization converts the tensor into a matrix
representation without altering its values. Table II contains the
symbols used throughout the paper.

TABLE II: Symbols and definitions
Symbol Definition
X ,X,x, x Tensor, Matrix, vector, scalar
X(:, i) Spans the entire ith column of X (same for tensors)
X(i, :) Spans the entire ith row of X (same for tensors)
diag(X) Diagonal of matrix X

Xk kth frontal slice of tensor X
{Xk} the set of Xk

◦, ∗ Outer and Element-wise (Hadamard) product
⊗,� Kronecker and Khatri-Rao product

B. Classic PARAFAC2 Decomposition

PARAFAC2 model [12] differs from CPD/PARAFAC [5],
[9], [11] where a low-rank trilinear model is not required.
The CP decomposition applies the same factors across all
the different modes, whereas PARAFAC2 allows for non-
linearities such that variation across the values and/or the size
of one mode as shown in Fig 1. PARAFAC2 with factors A,B
and C can be written w.r.t. the frontal slices of the tensor X
as:

Xk = AkDkB
T (1)

where k = 1, . . . ,K, Ak ∈ RIk×R, Dk = diag(C(k, :)) ∈
RR×R is diagonal matrix, and B ∈ RJ×R. Given the above

modeling, the standard algorithm to solve PARAFAC2 for data
X tackles the following optimization problem:

min
{Ak},{Dk},B

K∑
k=1

‖Xk −AkDkB
T ‖2F (2)

subject to Ak = QkH, QT
kQk = I, and Dk is diagonal

matrix. The Ak decomposed into two matrices, Qk that has
orthonormal columns and H which is invariant regardless
of k. To solve Eq (2), most common method is Alternating
Least Square (ALS) that updates Qk by fixing other factor
matrices i.e H,C, and B. The orthogonal coupling matrix
Qk can be obtained by Singular Value decomposition (SVD)
of (HCBTXT

k ) = [Pn,Σn,Z
T
n ]. With QT

k = PnZ
T
n fixed,

the rest of factors can be obtained as:

L = min
H,C,B

1

2
||QkXk −HCBT ||F2 s.t.QkQ

T
k = Ir

min
H,C,B

1

2
||Y −HCBT ||F2

(3)

The Eq. (3) is equivalent of solving CP decomposition [17],
[23] of Y using ALS method and the constrained version of
Eq. (3) can be written as:

L = min
H,C,B

1

2
||Y −HCBT ||F2 +

α

2
(R(Y;H,Dk,B)) (4)

C. AO-ADMM

A very well-suited optimization framework, that has shown
promise in other, simpler tensor models [2], [16], [26], is the
Alternating Method of Multipliers (ADMM) [6], applied in an
alternating optimization (AO) fashion. In the next subsection
we derive and describe our optimization method in detail.

D. Problem Definition

We consider exploiting auxiliary information for improving
the prediction accuracy by PARAFAC2 decomposition, espe-
cially for sparse observations. The problem that we focus on
in this paper is summarized as follows.

Given: A third-order PARAFAC2 tensor X ∈ RIk×J

and symmetric similarity tensors M ∈ RJ×J×M and
N ∈ RK×K×N , each corresponding to one of the regular
modes of X .
Find: A decomposition X defined by Eq.(2) and Eq (4).

IV. PROPOSED METHOD: POPLAR

We propose Graph Laplacians regularization for
PARAFAC2 tensors induced by the similarity tensor as
auxiliary information to force factors to behave similarly.
This a natural extension of the method proposed by Narita et
al. [21] for tensor factorization using matrix as an auxiliary
information. Consider 3-mode PARAFAC2 tensor with
auxiliary tensors M and N on its fixed (2nd and 3rd) modes.
The simple way to obtain these tensors is using various
standard similarity methods like cosine similarity, Euclidean
distance, Jaccard and ABC similarity etc. The regularization
term we propose regularizes factor matrices of PARAFAC2



for its static modes using the similarity matrices (e.g user-user
or item-item matrix). For simplicity, we explain process for
3rd mode only. Thus, regularization term for 3rd mode C is
defined as:

R(C) =

N∑
n=1

Tr(CTLnC) (5)

where L is the Laplacian Matrix induced from the similarity
tensor M for the factor C. Thus the objective function can be
written as:

L = min{Ak},{Dk},B

K∑
k=1

‖Xk−AkDkB‖2F +
α

2
(R(M)+R(N))

(6)
The regularization is imposed by using the Graph Laplacians
(GL) method on the similarity tensors (M and N ) that helps
to direct two similar objects in 2nd and 3rd mode to behave
similarly. Mathematically, Equ. (6) can be re-written as :

L = min
{Ak},{Dk},B

K∑
k=1

‖Xk −AkDkB‖2F +

α

2
(Tr(

M∑
m=1

BTLmB +

N∑
n=1

CTLnC)

(7)

where Lm and Ln are the Graph Laplacian matrices
obtained from the slices of similarity tensors M and N,
respectively. The Graph Laplacian matrix can be computed
as follows:

Ln = Degn −Nn

where Deg is degree matrix and it ith diagonal element is the
sum of all of the elements in the ith row similarity matrix and
computed as:

Degni,j
=

{∑N
j=1 Nn(i, j), i = j.

0, otherwise.
(8)

The regularization term can be simply interpreted as:

Tr(
N∑

n=1

CTLnC) =
N∑

n=1

(
K∑

i,j=1

Nni,j

R∑
r=1

(Ci,r −Cj,r)2) (9)

This term implies that, if two objects are similar to each other,
the corresponding factor vectors should be similar to each
other. Thus, when using AO-ADMM the update rule for C
is:

CT := ((HTH∗BTB)+ρI)−1(X(3)(B�H)+ρ(C+MCT ))T

C := min
C

N∑
n=1

Tr(C
TLnC) + ρ||C−CT + MCT ||2F

MCT := MCT −CT + C s.t. C = C

where MCT is a dual variable and the Lagrange multiplier ρ
is a step size related to CT factor matrix and set to minimum
value between 10−3 and Tr(HTH ∗BTB)/R to yield good
performance.

Adapting AO-ADMM to solve PARAFAC2 with Laplacians
constraints has following benefits: (1) AO-ADMM is more
general than other methods in the sense that the loss function
doesn’t need to be differentiable; (2) Simple to implement,
parallelize and easy to incorporate a wide variety of constraints
that can obtained using simple element-wise operations; (3)
computational savings gained by using the Cholesky decom-
position and (4) The splitting scheme can be applied to large-
scale data. Data can be distributed across different machines
and optimize objective locally with communication on the
primal, auxiliary and dual variables between the machines.

V. EXPERIMENTAL RESULTS

A. Data Set Description
1) Auxiliary Tensor Creation: We created Auxiliary ten-

sors using ABC similarity [24], Pearson correlation [24] , K-
NN similarity [3], Jacard similarity and Edit distance.

2) Synthetic Data: : Table III provides summary statistics
regarding all datasets used. For all synthetic data we use rank
R = 10. The entries of loading matrix B and C are Gaussian
with unit variance, and orthogonality is imposed on factors
H and Q, then a few entries are clipped to zero randomly to
create a sparse PARAFAC2 tensor. The labels are created by
selecting highest value index for each entry in matrix C.

Dataset K J max(Ik) #nnz R
SYN-I 25k 5k 1k 2.1 Mil. 10
SYN-II 50k 10k 2k 5.4 Mil. 10
ADOBE 80k 1.7k 17k 3 Mil. 10, 40

TABLE III: Summary statistics for the datasets of our experiments.
K is the number of users, J is the number of items, Ik is the number
of time observations for the kth subject, #nnz corresponds to the
total number of non-zeros in tensor X and R is rank of tensor X.

3) Real Data: : Adobe dataset is sequential data and it
consists of tutorial sequence 7 million anonymized users. The
data is structured as sequence-by-tutorial-by-user. We selected
users who watched at least unique 10 tutorials. Thus, the
dataset is of dimension [max 17k × 1.7k × 80k]. We compute
user-user tensor similarity tensors. We have semi synthetic
ground truth values for this dataset and we assigned each user
to class based on the type of tutorial watched.

B. Baselines
In this experiment, two baselines have been used as the

competitors to evaluate the performance.
• PARAFAC2 [17] : an implementation of standard fitting

algorithm PARAFAC2 with random initialization.
• COPA [2] : a scalable constrained PARAFAC2 fitting

algorithm was proposed for large and sparse data.

C. Evaluation Measures
We evaluate POPLAR and the baselines using three quan-

titative criteria: Fitness [0-1], F1-score [0-1] and CPU-Time
(in seconds). These measures provide a quantitative way to
compare the performance of our method. For Fitness and F1-
score, higher is better.
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Fig. 2: Comparison of FIT for different approaches on synthetic data
with rank R = 10 and two target ranks R = 10 and R = 40 on
real world dataset. Overall, POPLAR shows comparable fitness to
baseline while supporting additional graph laplacian constraint.

D. Results

1) Fitness and Accuracy: We run each method for 3
different random initialization and provide the average and
standard deviation of FIT as shown in Figure 2. This Figure
illustrates the impact of proposed constraint on the FIT values
across both synthetic for fixed rank R = 10 and real datasets
for two different target ranks (R=10, 40). Overall,POPLAR
achieves average 3− 8% improvement.
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Fig. 3: Comparison of F1-score for different approaches on synthetic
data with rank R = 10 and two target ranks R = 15 and R = 40 on real
world dataset. Overall, POPLAR achieves better F1 score to baseline.

Similarly, we evaluate accuracy in terms of predicting
correct labels using F1-score. We provide the average and
standard deviation of F1 score as shown in Figure 3. Overall,
POPLAR achieves significant improvement 5 − 20% over
baselines.

2) Computation time: Finally, we briefly discuss the com-
putation time of our method. Although using auxiliary tensor
as constraints slightly increases the time complexity of the
PARAFAC2 decomposition method, the actual computation
time is almost as same as that for baseline methods as shown
in Figure 4. This is partially because 1) POPLAR converges
(tolerance = 10−7) faster than baselines 2) we used medium
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Fig. 4: The CPU Time comparison (average and standard deviation)
in seconds for non-negative version of PARAFAC2 & COPA and
POPLAR for 3 different random initialization on synthetic data with
rank R = 10 and two target ranks R = 10 and R = 40 on real world
dataset. Note that even with additional processing of auxiliary tensor
POPLAR performs just slightly slower than COPA for SYN-II, which
does not support such graph laplacian constraints.

sized datasets in the experiments, and further investigation
with larger datasets (K > 105) should be made in future work.

3) Scalability: We also evaluate the scalability of our
algorithm on synthetic dataset. A PARAFAC2 tensors X ∈
Rmax1000×1000×[5k−100k] are decomposed with increasing tar-
get rank. The time needed by POPLAR increases very mod-
erately. Our proposed method, successfully decomposed the
tensor in reasonable time as shown in Figure 5.

5K 10K 25K 50K 75K 100K

K

0

300

600

900

1200

1500

1800
2000

C
P

U
 T

im
e

 (
s
e

c
o

n
d

s
)

R = 5

R = 25

R = 50

Fig. 5: The average time in seconds for varying target rank.

VI. CONCLUSIONS

This paper outlined our vision on exploring the graph
laplacian regularization on PARAFAC2 tensor decomposition
using auxiliary information to improve accuracy of factoriza-
tion. We propose POPLAR, a AO-ADMM-based framework
that is able to offer interpretable results, and we provide
a experimental analysis on synthetic as well as real world
dataset. Furthermore, this paper outlines a set of interesting
future research directions:
• How can we couple one of auxiliary tensor with

PARAFAC2 tensor to obtain better approximation?
• What other constraints, other than graph laplacian or

non-negative, for the PARAFAC2 decomposition are well
suited for various application and have potential to offer
more accurate results?

• How can we incorporate cross mode graph laplacian
regularization for PARAFAC2 decomposition?
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