UCR Time Series Classification Archive

Please reference as:

Dau, Hoang Anh, Eamonn Keogh, Kaveh Kamgar, Chin-Chia Michael Yeh, Yan Zhu, Shaghayegh Gharghabi, Chotirat Ann Ratanamahatana, Yanping Chen, Bing Hu, Nurjahan Begum, Anthony Bagnall, Abdullah Mueen and Gustavo Batista (2018). "The UCR Time Series Classification Archive." https://www.cs.ucr.edu/~eamonn/time_series_data_2018/

Welcome!

Dear Colleague,

If you are reading this, you are interested in using the UCR Time Series Classification Archive. This archive is a superset of, and completely replaces [8]. The current version, thereafter, referred to as Fall 2018 expansion, will eventually replace Summer 2015 release [9]. The archive originally was born out of our frustration with papers reporting error rates on a single data set and claiming (or implicitly suggesting) that the results would generalize [6]. However, while we think the availability of previous versions of the UCR Archive has mitigated this problem to a great extent, it may have opened other problems.

1. Several researchers have published papers on showing "we win some, we lose some" on the UCR Archive. However, there are many trivial ways to get "win some, lose some" type results on these data sets (for example, just smoothing the data, or generalizing from 1-NN to k-NN etc.). Using the archive can therefore apparently add credence to poor ideas (very sophisticated tests are required to show small but true improvement effects [3][7]). In addition Gustavo Batista has pointed out that "win some, lose some" is worthless unless you know in advance which ones you will win on! [4]. Dau et al. discuss this in detail [10].
2. It could be argued that the goal of researchers should be to solve real-world problems, and that improving accuracy on the UCR Archive is at best a poor proxy for such real-world problems. Bing Hu has written a beautiful explanation as to why this is the case [2].
Despite the above, the community generally finds the archive to be a very useful tool, and to date, more than 1,200 people have downloaded the UCR archive, and it has been referenced several hundred times.
We are therefore delighted to share this resource with you. We encourage you to read the paper accompanies this new archive expansion [10]. The password you need to unlock the data download is available in this document, read on to find it.

Best of luck with your research.

Eamonn, Anh and the Team

Data Format

Each of the data sets comes in two parts, a TRAIN partition and a TEST partition.
For example, for the Fungi data set we have two files, Fungi_TEST.tsv and Fungi_TRAIN.tsv The two files will be in the same format but are generally of different sizes.
The files are in the standard ASCII format that can be read directly by most tools/languages.
For example, to read the data of Fungi data set into MATLAB, we can type...

```
>> TRAIN = load('Fungi_TRAIN.tsv');
>> TEST = load('Fungi_TEST.tsv' );
```

...at the command line.

There is one time series exemplar per row. The first value in the row is the class label (an integer between 1 and the number of classes). The rest of the row are the data sample values. The order of time series exemplar carry no special meaning and is in most cases random. A small number of data sets have class label starting from 0 or -1 by legacy.

Sanity Check

In order to make sure that you understand the data format, you should run this simple piece of code to test SyntheticControl data set (you can cut and paste it, it is standard MATLAB).

Note that this is slow "teaching" code. To consider all the data sets in the archive, you will probably want to do something more sophisticated (indexing, lower bounding etc).

Nevertheless, we highly recommend you start here.

TRAIN = load('SyntheticControl TRAIN.tSv'); \% Only these two lines need to be changed to test a different data set. TEST = load('Syntheticcontrol_TEST.tSv'); O Only these two lines need to be changed to test a different data set.


```
TRAIN_class_labels = TRAIN(:,1);
TRAIN(:,1) = [];
TEST_class_labels = TEST(:,1);
TEST(:,1) = [];
# = Pabels = TEST(:,1); % Pull out the class label
correct = 0; % Initialize the number Remove class labels from testing set.
for i = 1 : length(TEST_class_labels) % Loop over every instance in the test set
        classify_this_object = TEST(i,:);
    predicted_class = Classification_Algorithm(TRAIN,TRAIN_class_labels, classify_this_object);
    if predicted_class == this_objec\overline{ts_actual_class}
        correct = correct + 1;
    end;
    disp([int2str(i), ' out of ', int2str(length(TEST_class_labels)), ' done']) % Report progress
end;
```



```
disp(['The dataset you tested has ', int2str(length(unique(TRAIN_class_labels))), ' classes'])
disp(['The training set is of size ', int2str(size(TRAIN,1)),', and the test set is of size ',int2str(size(TEST,1)),'.'])
disp(['The time series are of length'', int2str(size(TRAIN,2))])
disp(['The error rate was ',num2str((length(TEST_class_labels)-correct )/length(TEST_class_labels))])
```



```
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Here is a sample classification algorithm, it is the simple (yet very competitive) one-nearest
% neighbor using the Euclidean distance.
% If you are advocating a new distance measure you just need to change the line marked "Euclidean distance"
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function predicted_class = Classification_Algorithm(TRAIN,TRAIN_class_labels,unknown_object)
best_so far = inf;
    for i = 1 : length(TRAIN class labels)
        compare_to_this_objec
        distance
            if distance < best_so_far
                predicted_class = TRAIN_class_labels(i);
            best so far = distance;
        end
end;
```

```
299 out of 300 done
300 out of 300 done
The dataset you tested has 6 classes
The training set is of size 300, and the test set is of size 300.
The time series are of length 60
The error rate was 0.12
```

In this package we have produced a spreadsheet that gives basic information about the data sets (number of classes, size of train/test splits, length of time series etc)

In addition, we have computed the error rates for:

- Euclidean distance
- DTW, unconstrained
- DTW, after learning the best constraint in from the train set*
- Default rate (that is, the most probable class). To be consistent, we display default error rate, which is (1 - default_rate).
*Note that our simple method for learning the constraint is not necessary the best (as explained in the next slide).

You can download the entire spreadsheet displayed below in CSV format or Excel format.

ID	Type	Name	Train	Test	Class	Length	ED (w=0)	DTW (learned_w)	DTW ($\mathrm{w}=100$)	Default rate	Data donor/editor
1	Image	Adiac	390	391	37	176	0.3890	0.3913 (3)	0.3960	0.9591	A. Jalba
2	Image	ArrowHead	36	175	3	251	0.2000	0.2000 (0)	0.2970	0.6971	L. Ye \& E. Keogh
3	Spectro	Beef	30	30	5	470	0.3330	0.3333 (0)	0.3670	0.8000	K. Kemsley \& A. Bagnall
4	Image	Beetlefly	20	20	2	512	0.2500	0.3000 (7)	0.3000	0.5000	J. Hills \& A. Bagnall
5	Image	BirdChicken	20	20	2	512	0.4500	0.3000 (6)	0.2500	0.5000	J. Hills \& A. Bagnall
6	Sensor	Car	60	60	4	577	0.2670	0.2333 (1)	0.2670	0.6833	J. Gao
7	Simulated	CBF	30	900	3	128	0.1478	0.0044 (11)	0.0030	0.6644	N. Saito
8	Sensor	ChlorineConcentration	467	3840	3	166	0.3500	0.3500 (0)	0.3520	0.4675	L. Li \& C. Faloutsos
9	Sensor	CinCECGTorso	40	1380	4	1639	0.1030	0.0696 (1)	0.3490	0.7464	physionet.org
10	Spectro	Coffee	28	28	2	286	0.0000	0.0000 (0)	0.0000	0.5357	K, Kemsley \& A. Bagnall
11	Device	Computers	250	250	2	720	0.4240	0.3800 (12)	0.3000	0.5000	J. Lines \& A. Bagnall
12	Motion	CricketX	390	390	12	300	0.4230	0.2282 (10)	0.2460	0.8974	A. Mueen \& E. Keogh
13	Motion	CricketY	390	390	12	300	0.4330	0.2410 (17)	0.2560	0.9051	A. Mueen \& E. Keogh
14	Motion	Cricketz	390	390	12	300	0.4130	0.2538 (5)	0.2460	0.8974	A. Mueen \& E. Keogh
15	Image	DiatomSizeReduction	16	306	4	345	0.0650	0.0654 (0)	0.0330	0.6928	ADIAC project
16	Image	Distal PhalanxOutlineAgeGroup	400	139	3	80	0.3741	0.3741 (0)	0.2302	0.5324	L. Davis \& A. Bagnall
17	Image	DistalPhalanxOutlineCorrect	600	276	2	80	0.2826	0.2754 (1)	0.2826	0.4167	L. Davis \& A. Bagnall
18	Image	Distal PhalanxTW	400	139	6	80	0.3669	0.3669 (0)	0.4101	0.7194	L. Davis \& A. Bagnall
19	Sensor	Earthquakes	322	139	2	512	0.2878	0.2734 (6)	0.2806	0.7482	A. Bagnall
20	ECG	ECG200	100	100	2	96	0.1200	0.1200 (0)	0.2300	0.3600	R. Olszewski
21	ECG	ECG5000	500	4500	5	140	0.0750	0.0749 (1)	0.0760	0.4162	Y. Chen \& E. Keogh
22	ECG	ECGFiveDays	23	861	2	136	0.2030	0.2033 (0)	0.2320	0.4971	physionet.org, Y. Chen \& E. Keogh
23	Device	ElectricDevices	8926	7711	7	96	0.4483	0.3806 (14)	0.3990	0.7463	A. Bagnall \& J. Lines

Worked Example

We can use the archive to answer the following question: Is DTW better than Euclidean distance for all/most/some/any problems?
As explained in [4], if DTW is only better on some data sets, this is not very useful unless we know ahead of time that it will be better. To test this we can build a Texas Sharpshooter plot (see [4] for details).
In brief, after computing the baseline (here, the Euclidean distance) we then compute the expected improvement we would get using DTW (at this stage, learning any parameters and settings), then compute the actual improvement obtained (using these now hardcoded parameters and settings).

When we create the Texas Sharpshooter plot , each data set fall into one of four possibilities.
In our worked example, we will try to optimize the performance of DTW, looking only at the training data and predict its improvement (which could be negative), in a very simple way.

Expected Improvement: We will search over different warping window constraints, from 0% to 100%, in 1% increments, looking for the warping window size that gives the highest 1-NN training accuracy (if there are ties, we choose the smaller warping window size).

Actual Improvement: Using the warping window size we learned in the last phase, we test the holdout test data on the training set with 1-NN.

Note that there are better ways to do this (learn with increments smaller than 1%, use k-NN instead of 1-NN, do cross validation within the test set etc). However, as the next slides show, the results are unambiguous even for this simple effort.

Texas Sharpshooter Plot [4]

We expected to do worse, but we did better.	We expected an improvement and we got it!
We expected to do worse, and we did.	We expected to do better, but actually did worse.

Expected Accuracy Gain

The results are strongly supportive of the claim that "DTW better than Euclidean distance for most problems."

We sometimes have difficultly in predicting when DTW would be better/worse, but many of the training sets are tiny, making such tests very difficult.

For example, 8 is BeetleFy, with just 20 train and 20 test instances. Here we expected to do a little better, but we did a little worse.

In contrast, for 66 (LargeKitchenAppliances) we had 375 train and 375 test instances and were able to more accurately predict a large improvement.

(after plotting in MATLAB, the code is in Appendix A, you can zoom in to avoid the visual clutter seen to the right).

Suggested Best Practices/Hints

1. If you modify the data in anyway (add noise, add warping etc), please give the modified data back to the archive before you submit your paper (we will host it, and that way a diligent reviewer can test your claims while the paper is under review).
2. Where possible, we strongly advocate testing and publishing results on all data sets (to avoid cherry picking), unless of course you are making an explicit claim for only a certain type of data (i.e. classifying short time series). In the event you don't have space in your paper, we suggest you create an extended tech report online and point to it. Please see [4] (esp. Fig 14) for some ideas on how to visualize the accuracy results on many data sets.
3. If you have additional data sets, we ask that you donate them to the archive in our simple format.
4. When you write your paper, please make reproducibility your goal. In particular, explicitly state all parameters. A good guiding principle is to ask yourself: "Could a smart grad student get the exact same results as claimed in this paper with a day effort"?. If the answer is no, we believe that something is wrong. Help the imaginary grad student by rewriting your paper.
5. Where possible, make your code available (as we have done), it will make the reviewers task easier.
6. If you are advocating a new distance/similarity measure, we strongly recommend you test and report the 1-NN accuracy (as we have done). Note that this does not preclude the addition of other of tests (we strongly encourage additional test), however the 1-NN test has the advantage of having no parameters and allowing comparisons between methods.
7. Note that for 85 data sets of Summer 2015 release, the data are z-normalized by legacy. Paper [7] explains why this is very important. For 43 data sets of Fall 2018 expansion (this release), data are kept as is unless they were already z-normalized by donating source.

Suggested Reading

1. Wang, Xiaoyue, et al. "Experimental comparison of representation methods and distance measures for time series data." Data Mining and Knowledge Discovery 26.2 (2013): 275-309.
2. Hu, Bing, Yanping Chen, and Eamonn Keogh. "Time series classification under more realistic assumptions." Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics, 2013.
3. Hills, Jon, et al. "Classification of time series by shapelet transformation." Data Mining and Knowledge Discovery 28.4 (2014): 851-881.
4. Batista, Gustavo EAPA, Xiaoyue Wang, and Eamonn J. Keogh. "A complexity-invariant distance measure for time series." Proceedings of the 2011 SIAM international conference on data mining. Society for Industrial and Applied Mathematics, 2011.
5. Keogh, Eamonn, and Shruti Kasetty. "On the need for time series data mining benchmarks: a survey and empirical demonstration." Data Mining and knowledge discovery 7.4 (2003): 349-371.
6. Rakthanmanon, Thanawin, et al. "Addressing big data time series: Mining trillions of time series subsequences under dynamic time warping." ACM Transactions on Knowledge Discovery from Data (TKDD) 7.3 (2013): 10. If you are claiming that DTW is too slow... Maybe, but read this first.
7. Lines, Jason, Sarah Taylor, and Anthony Bagnall. "Time Series Classification with HIVE-COTE: The Hierarchical Vote Collective of Transformation-Based Ensembles." ACM Transactions on Knowledge Discovery from Data (TKDD) 12.5 (2018): 52.
8. Keogh, E., Zhu, Q., Hu, B., Hao. Y., Xi, X., Wei, L. \& Ratanamahatana, C. A. (2011). "The UCR Time Series Classification/Clustering Homepage".
9. Chen, Yanping, Eamonn Keogh, Bing Hu, Nurjahan Begum, Anthony Bagnall, Abdullah Mueen, and Gustavo Batista. 2015. "The UCR Time Series Classification Archive." https://www.cs.ucr.edu/~eamonn/time_series_data/
10. Dau, Hoang Anh, Anthony Bagnall, Kaveh Kamgar, Chin-Chia Michael Yeh, Yan Zhu, Shaghayegh Gharghabi, Chotirat Ann Ratanamahatana and Eamonn Keogh, "The UCR Time Series Archive." 2018 https://arxiv.org/abs/1810.07758 Early adopters (late 2018) please cite this, after early 2020, please check for a peer-reviewed version of this paper.
11. Bagnall, Anthony, et al. "The great time series classification bake off: a review and experimental evaluation of recent algorithmic advances." Data Mining and Knowledge Discovery31.3 (2017): 606-660.

Appendix A:

 Texas Sharpshooter PlotsHere is the code we used to produce the Texas Sharpshooter plots.
function [] = plot_texas_sharpshooter(result_file)
Compute a Texas Sharpshooter plot of DTW over Euclidean Distance. See Batista, Wang and Keogh (2011) A Complexity-Invariant Distance Measure for Time Series. SDM 2011
\% Last updated April 2019 by Hoang Anh Dau
For example, if we want to construct the figure for comparison between Euclidean distance (ED) and Dynamic Time Warping distance (DTW), we compute the following statistics:
expected_accuracy_gain = DTW_train_accuracy / ED_train_accuracy \% actual_ac̄curacy_gain = DTW_tēst_accuracy / ED_test_accūacy
By definition, the train accuracy of DTW is always greater than the train \% accuracy of ED, which makes expected accuracy gain meaningless in this context. Therefore, we only use ED test accuracy, considering it as the normalizing factor

In the result spreadsheet texas plot 2018.csv:
\% row 1 is header
$\frac{5}{2}$ column 1 is datataset name
\% column 2 is ED train error rate
colum 4 s.
column 5 is DTW test error rate
\% Example of usage:
result file = 'texas plot 2018.csv'.
\% plot texas sharpshooter(result file).
$\%$
$\%$
$\%$
$\%$
read in result spreadsheet
result = importdata(result_file, ',', 1).
error_rates $=$ result.data;
convert error to accuracy, by subtracting from 1
texas_values = 1 - error_rates;
expected_accuracy_gain = texas_values(:,3)./texas_values (:, 2) ;
actual_accuracy_gain = texas_values(:,4)./texas_values(:,2);
igure;
scatter (expected_accuracy_gain,actual_accuracy_gain, 20, 'r', 'filled');
Xaxis = get(gca,'XLim');
Yaxis = get(gca,'YLim');
hold on; axis square;
\% bottom left quadrant
patch([Xaxis(1) 11 Xaxis(1)],[Yaxis(1) Yaxis(1) 1 1],[0.9843 0.84710 .5765$])$; top right quadrant
patch([1 Xaxis(2) Xaxis(2) 1],[1 1 Yaxis(2) Yaxis(2)],[0.9843 0.8471 0.5765]);
scatter (expected_accuracy_gain,actual_accuracy_gain, 20, 'r', 'filled');
xlabel('Expected Accuracy Gain');
ylabel('Actual Accuracy Gain');
plot with symbol as number
for $i=1$: length(texas_values (:,1))
end
\% \% uncomment this to plot with symbol as data set name
\% note that the order of texas_names and texas_values must be the same
texas names $=$ result.textdata (2 :end, 1$)$;
for $i^{-}=1$. length (texas valus (
text (expected accuracy gain(i), actual accuracy gain(i), texas names(i,:),'rotation',+30)
\% end

Here the result summary file for making the Texas Sharpshooter plot.
texas_plot_2018.csv

- row 1 is header
- column 1 is data set name
- column 2 is ED train error rate
- column 3 is ED test error rate
- column 4 is DTW train error rate
- column 5 is DTW test error rate

Name, ED train, ED test, DTW train, DTW test
ACSF1,0.57,0.46,0.51,0.38
Adiac, $0.3949,0.3887,0.3897,0.3913$
AllGestureWiimoteX, $0.5033,0.4843,0.2833,0.2829$
AllGestureWi imoteY, $0.4433,0.4314,0.2267,0.27$
AllGestureWi imoteZ, $0.5967,0.5457,0.3667,0.3486$
ArrowHead, $0.0833,0.2,0.0833,0.2$
Beef, $0.5,0.3333,0.5,0.3333$
BeetleFly, 0.45,0.25,0.15,0.
BirdChicken, $0.3,0.45,0.15,0.3$
BME,0.1,0.1667,0,0.02
Car,0.3,0.2667,0.2833,0.2333
CBF, 0.1667,0.1478,0,0.0044
ChinaTown, 0.05,0.0466,0.05,0.0466
ChlorineConcentration, $0.3662,0.35,0.3662,0.35$
CinCECGTorso,0.15,0.1029,0.075,0.0645
Coffee, 0, 0,0,0
Computers, 0.444,0.424,0.248,0.38
CricketX,0.4026,0.4231,0.2,0.2282
CricketY,0.4564,0.4333,0.241,0.241
CricketZ,0.4231,0.4128,0.2256,0.2538
Crop,0.2928,0.2883,0.2928,0.2883
DiatomSizeReduction, $0.0625,0.0654,0.0625,0.0654$
DistalPhalanxOutlineAgeGroup, $0.1975,0.3741,0.1975,0.3741$ DistalPhalanxOutlineCorrect, 0.2167,0.2826,0.2117,0.2754 DistalPhalanxTW, 0.2475,0.3669, 0.2475, 0.3669 DodgerLoopDay, 0.5385,0.45,0.4744,0.4125 DodgerLoopGame, $0.25,0.1159,0.05,0.0725$ DodgerLoopWeekend, $0.05,0.0145,0,0.0217$ Earthquakes, $0.2578,0.2878,0.2329,0.273$ ECG200,0.14, 0.12,0.14,0.12 ECG5000,0.066,0.0751, 0.064,0.076 ECGFiveDays, $0.1739,0.2033,0.1739,0.2033$ lectricDevices,0.2911,0.4492,0.2911,0.4492
 OGVerticalsignal, $0.3398,0.558,0.2735,0.5249$ thanollevel,0.7044,0.726,0.6825,0.718 aceA1, $0.125,0.281,0.0375,0.1136$ acerucr, $0.345,0.2107,075,0.0878$ FiftyHords, $0.3644,0.3692,0,2289,0.241$ iftywords, $0.371,0.3692,0.2289,0.2418$ 1sh, $0.24,0.2171,0.2,0.1543$
FordB $0.3251,3938,0.3929,0.392$
FordB, 0.3251,0.3938,0.2929,0.3926
rese reezerSmallirain,0.1071,0.3242,0.1071,0.3242 ungi, 1774,1,0.1774
estureMidAirD1,0.4615,0.4231,0.3846,0.3615
estureMidAirD2, 0.524,0.5077,0.4375,0.4
GestureMidAirD3, 0.6635,0.6538,0.6394,0.6231 GesturePebbleZ1,0.1591,0.2674,0.0455,0.1744 GunPoint, $0.04,0.0867,0.04,0.0867$
GunPointAgeSpan, $0.0519,0.1013,0.0296,0.0348$ GunPointMaleVersusFemale, $0,0.0253,0,0.0253$ GunPointOldVersusYoung, $0.1029,0.0476,0.0221,0.0349$ Ham, $0.1468,0.4,0.1468,0.4$
Handoutlines, $0.143,0.1378,0.143,0.1378$ Haptics, $0.4839,0.6299,0.471,0.5877$ Herring, 0.5938,0.4844,0.4844,0.4688 ouseTwenty, $0.25,0.3361,0.05,0.0588$ nlineskate, 0.7,0.6582,0.58,0.6109 nsectepgregularTrain,0.2419,0.3213,0.1129,0.1727 Insectepgsmallirain, $0.4118,0.3373,0.3529,0.3052$ talyPowerDemand, $0.0448,0.0447,0.0448,0.0447$ LargeKitchenAppliances,0.384,0.5067,0.1733,0.2053 Lightning2, $0.2833,0.2459,0.1,0.1311$ Lightning $7,0.3571,0.4247,0.2,0.287$ Mallat, $0.0182,0.0857,0.0182,0.085$

The Password

- As noted above. My one regret about creating the UCR Archive is that some researchers see improving accuracy on it as a sufficient task to warrant a publication. I am not convinced that this should be the case (unless the improvements are very significant, or the technique is so novel/interesting that it might be of independent interest).
- However, the archive is in a very contrived format. In many cases, taking a real-world data set, and putting it into this format, is a much harder problem than classification itself!
- Bing Hu explains this nicely in the introduction to her paper [2], I think it should be required reading for anyone working in this area.
- The password is the missing words from this sentence "Why would ****** use the archive and not acknowledge it?
- The sentence is in the Introduction of [10]. The paper is available for download on the UCR Archive webpage or at https://arxiv.org/abs/1810.07758

Personal note from Eamonn

I am somewhat bemused by the hundreds of papers that use the UCR Archive, but do not acknowledge or thank the archivists.

Many such papers thank funding agencies, people that donated CPU time, friends that gave feedback etc. But many of these papers could not have been written without access to dozens of labeled time series data sets.

These dozens of labeled data sets were provided, completely for free! And these data sets represent (now) at least a thousand hours of work by my students and collaborators, to create or collect, to clean and annotate, to compute benchmarks etc.

It does seem like an acknowledgment would be classy ;-)

Acknowledgments

The authors would like to thank Prof. Eamonn Keogh and all the people who have contributed to the UCR time series classification archive for their selfless work. We also thank the anonymous reviewers for their valuable advice.

This work has been supported by Major Project of High Resolution Earth Observation System of China (Grant No.03-Y20A04-9001-15/16), the CNES TOSCA-VEGIDAR Program, and CAS-CNRS Joint Doctoral Promotion Program.

References

[1] Bailly, A., Malinowski, S., Tavenard, R., Guyet, T., Chapel, L., 2015. Bag-of-Temporal-SIFT-Words for time series classification. In: ECML/PKDD Workshop on Advanced Analytics and Learning on Temporal Data.
[2] Bartolini, I., Ciaccia, P., Patella, M., 2005. Warp: Accurate retrieval of shapes using phase of fourier descriptors and time warping distance. IEEE Transactions on Pattern Analysis and Machine Intelligence 27 (1), 142-147.
[3] Batista, G. E., Wang, X., Keogh, E. J., 2011. A complexity-invariant distance measure for time series. In: Proceedings of SIAM International Conference on Data Mining. Vol. 11. SIAM, pp. 699-710.
[4] Belongie, S., Malik, J., Puzicha, J., 2002. Shape matching and object recognition using shape contexts. IEEE Transactions on Pattern Analysis and Machine Intelligence 24 (4), 509-522.
[5] Bergmann, B., Hommel, G., 1988. Improvements of general multiple test procedures for redundant systems of hypotheses. In: Multiple Hypothesenprüfung/Multiple Hypotheses Testing. Springer, pp. 100-115.

About the baseline results reported Before you ask

- Did you z-normalize the data before passing to the algorithm?
- There can be different implementations of DTW. Some implementations divide the distance by the warping path length; some use a different step patterns etc. We use MATLAB implementation of DTW [r1].

```
dist = dtw(time_series_1, time_series_2, window_size, 'squared');
```

- We use MATLAB implementation of k-NN [r2]

```
mdl = fitcknn(train_data, train_label, 'Standardize', 0, 'NSMethod', 'exhaustive');
```

- We use leave-one-out cross-validation to learn the warping constraint

```
cross_validation = crossval(mdl, 'LeaveOut', 'on');
```

- For constrained warping, if the percentage of time series length results in a real number, you can round up or round down. We round up.
- We round the error rate to four decimal places. For a more comprehensive result comparison and other resources, we recommend the UEA \& UCR Time Series Classification Repository [r3].

About the baseline results reported How we handle special cases

- For time series of different lengths:
$>$ In storing data: We pad NaN (to the end) to the length of the longest time series. This makes it convenient when loading data into MATLAB.
$>$ In computing baselines: We add low amplitude random numbers (to the end) to the length of the longest time series to make all time series of equal length.

```
% pad_len is the length of the padding portion
time_series = [time_series, rand(1, pad_len)/1000];
```

- For time series with missing values
$>$ In storing data: Missing values are represented with NaN (if NaN is at the end of the time series, it is not real missing values).
$>$ In computing baselines: We use linear interpolation.
time_series = fillmissing(time_series, 'linear', 2, 'EndValues', 'nearest');
- There are 15 data sets fall into either of these special cases. No data sets is both of variable-length and with missing values. In the interest of reproducible research, we also provide the processed version (equal length, no missing values) of data that we used to produce the baseline results.

Thiago Santos Quirino, M
Pierre-Franqois Marteau,
Cosmin Bocaniala, Lancaster University, Ceguo Chen,Anthony K.H. Tung, Beng Chin Ooi, National Vernon Rego, Vernon Rego. Purdue University. Mislav Malenica, Tomislav Smuc ang Kong. Hoa Vo and David Joslin Seattle University Europe. arlotta Orsenigo, University degli Studi di Mila Carlotta Orsenigo,
Dr. Paolo Ciaccia
Xiaoqing Weng, Jiaotong Universit Longin Jan Latecki and Qiang Wang, Temple University. Tony Bagnall
Michail Vlachos, IBM
Bernard Hugueney
Sourav Mukherjee
Marcos M. Campos (Oracle)
Ludmila I. Kuncheva
Edward Omiecinski and Jun Li
Victor Eruhimov, Intel
Victor Eruhimov, In
Rob Jasper
Andre Coelho
Gernot Herbst
Vit Niennattrakul
Flavio Miguel Varejao and Idilio Drago
flavio Miguel Varejao and Idiiio Drago
HAORIANTO COKROWIOYO TIOE
Molnar Miklos
Steinn Gudmundsson and Thomas Runarsson Niall Adams and Sai Wing Man tabel Maria Marques da Silva, Maria Eduarda da Rocha into Augusto da Silva and Joaquim Fernando Pinto da
Costa

Panagiotis Papapetrou and George Kollios
Huang Tan
Sergio Guadarrama
Alicia Troncoso Lora
Pyry Avist
Peng-i Lai
ong Fu
Soheil Bahrampour
Long Yao and Meng Bo
Robert Moskovitch and Yuval Shahar
Abdellai
Puspalievi
Quppusama Dai and Songcan Chen
Lisa Gralewski
Maria Teresinha Arns Steiner a
Amir Ahmad and Galvin Brown
Abhijit Jayant Kulkarni
Xingquan (Hill) Zhu
Amol Deshpande and Qiang Qiu
Vercellis Carlo and Gianni Alberti
Pamela Nerina Llop
Tobias Scheffer
Jochen Fischer
Mao Ye and Yingying Zhu
Cintia Lera
mar U. Florez and Rohit Das
Omar U. Florez and Seungin Lim
Mykola Galushka and Dave Patterson
Rahul Sinha
Rahul Sinha
Minh Hoai Nguyen and Fernando de la Torre
GUYEN Van Ha
Lucas F . Rosada
Nicky Van Thuyne
Skopal Tomas and Michal Vajbar
Carlo Piccardi and Martiva
Muhammad Aamir Khan
Larry Deschaine
Janosa Andras
Andrew Starkey
Karthik Marudhachalam and Ansaf Salleb-Aouissi Rayner Alfred and Samry Mohd Shamrie Sainin Evins lio and Oumsis Oumsis
Hanjing, Su
Marco Cuturi
Miao Zeng and Yubao Liu Rene Vidal and Rizwan Chaudhry Susan Cheng and Min Ding
awei Han \& Manish Gupta
linstry Liang and Qin Lv
linstry Liang and Qin L
Eirik Benum Reksten Lucas Gallindo Martins Soares
Sungyoung tee and La The Vinh Sungyoung Lee and La Th
Huidong (Warren) Jin
Sant
Santiago Velasc
Jairo Cugliari
Jairo Cugliari
Hungyu Henry Lin and James Davis
Azuraliza Abu Baka Azuraliza Abu Baka and Almahdi Mohammed Almahdi
Beniamin Bustos and Victor Benjamin Bustos and Victor Sepulveda Krisztian Buza
Young Xin
Shen Wang and Haimonti Dutta
Victor Garcia-Portilla
Samir Al-Stouhi
Guo Fei
Guo Fei
Teodor Costachioiu
Stedhen Pollard
Eser Kandogn
Eser Kandogan
lida rashidi
lida rashidi
Takashi Wash
Takashi Washio and Satoshi Hara
Meizhuliu and Bable
Meizhu Liu and Baba C. Vemur
Jose Principe and Sohan Seth
Ramanuja Simha and Rahul Tripath
Rodolphe JENATTON
Rodolphe JENATTON and Francis Bach
Siladitye Jey and Ambin Siladitya Dey and Ambui Singh Mahsa Orang and Nematollaah SHIRI V. Saket Saurabh
Wu Wush
Deepti Dohare
Deepti Dohare
Subhajit Dutta.
Evgeny Pyatkov Evgeny Pyatkov
lon George TODORAN Ion Georg
Qin Zou eensmith

RIv.

 Feng Gu, Julie Greensm

Yiorgos Adamo
Zhao Xiaohui
Xue Bai
Xue Bai
Baker Abdalhaq
Baker Abdalhaq
Paria Shirani and Mohammad Abdollahi Azgomi
Paria Shirani and Mohammad
Manuel Oviedo de la Fuente.
Jiinki Pakshwar
Nikita Mishra and Somesh Kumar
Mike Jones
Mike Jones
Deák Sziilárd Nicola Rebagliati
Ira Assent and Søren Chrestensen

Marcela Svarc Bankó Zoltán

yasuko matsubara and Yasushi Sakura
Liu, Yueming and Su, Jianzhong

Meng-Jung Shih
OSman Gunay hongxiong ye
Huseyin Kaya
Hezi Halpert Huseyin Kaya
Hezi Halpert and Mark Last
Paolo Missier Hezi Halpert and Mark Last
Paolo Missier and Tudor Miy Jiandong Wang and Peng- hen
Shahriar Sharia Talkhoon
Hideo Bannai Gerard Medi nan. Dian Gon
Shenfa Mia nd A PKob
Per ona Ra

Inderjit Dhil
Adida Valls
Narayanan Chatapuram Krishnan and Sethuraman
Panchanathan
Panchanathan
Stephan Gunnemann and Thomas Seidl
Thirumaran Ekambaram and M. Narasimha Murty
Christine Preisach and Lars Schmidt-Thieme Christine Preisach and Lars Schmidt-Thieme
Dino sa and Raj
Feibao Zhuo
Frans van den Bergh
Kfir Glik
Xiao Yu
Xiao Yu
Yingying Zhu
Yingying Zhu
Rosanna Verde and Antonio Balzanella
Paul Baggenstoss
Koichi ASAKURA and Wei Fan
Lucia Sacchi and lyad Batal
Morne Neser
Luca Chiaravallo
Luca Chiaravalloti
vikram deshmukh
Harri M.T. Saarikoski
Caio Nogara Andreatta and Neusa Grando
Ying Xie
Ying Xie
Ulf Grobe
Ulf Grobekathofer
Christophe Genolini
Celine Robardet
Celine Robardet
Musa Chemisto
angen
Wangmeng Zuo
Paolo Remagnino
Soumi Ray and Tim Oates
Soumi Ray and Tim Oates
Pierre Ganarski and Francois Petitjean
Joydeep Ghosh and John Tourish Alireza-xaker
Wilfgang nejdl and ERNESTO DIAZ-AVILES
Romain Tavenard and Laurent Amsaleg
Hahn-Ming Lee, Christos Faloutsos,Hsing-Kuoh Pao, Ching
Hao (Eric) Mao
Woong-Keetoh
Woong-Kee Loh
bikesh singh
Marco Grimaldi, Cesare Furlanello and Giuseppe Jurman
Chonghui Guo
Saeid Rashidi
Saeid Rashidi
Yanchang Zhang
SR Kannan
FRANCISCO JAVIER CUBEROS GARCIA-BAQUERO
Dr. SOTIRIOS P. CHATZIS
Ming Luo and Igor G. Zurbento
Yuya Sakamoto
Yosi Keller
Yosi Keller
David Corney
Alexander Gra
Alexander Gray and Nishant Mehta
Tomoyuki Hiroyasu and Take
Blaz Strle and Martin Mozina
Yasin Bakis
Mrinal Mandal and Cheng Lu
Hendrik Blockeel and Kurt Driessens
Jonas Haustad
Julien Rabin
Oscar Gerardo Sanchez Siordia and Isaac Martin de Diego
Scott Deeann Chen
Lixia Wu
Lixia Wu
Tewari, Ashutosh
Tewari, Ashutosh
RANGEENA TV radhakrishnan
Zhou Zhou
Troy Raeder
Troy Raeder
Amit Thombre
Nhut Ta Hoang
Oisin Mac Aodha
Ali Farahpoor
Xingwang Zhao
Wu Gang
Tetsuji Hidaka
Wang He Nan
David Weston
Dr. Huayang (Jason) Xie
Jia-Lien Hsu
Saeed R. Aghabozo
Paolo Giussani
Zhenhui (Jessie) Li and Jiawei Han
Jeff Patti
Muthyala Kartheek, Navneet Goval

Philippe EsLING
Zoe falomir lansola

Cheng PoMan and Wa-kuen cham
Doin Preceap and dordan frank
Laurens van der Maaten
Laurens van der Maaten
GUSTAVO CACERES CASELLANOS
Gustavo cack
Deena rishnass
Wang jialin

Tao Quang Bang
Jeremie Mary Kai-Wei Chang and Dan Roth oan Serrà and Josep Lluis Arcos Risa Myers and Risa Myers Weng-Keen Wong and Yonglei Zheng Cássio M. M. Pereira and Rodrigo Fernandes de Mello Cássio M. M. Pere
Subutai Ahmad
Visuru Lafi Mohamed Rizny Eunice Carrasquinha, Ana Pires, Conceição Amado Huaming Huang and M
Abdulallah Balamesh Feng Zhou and Ferna
Johannes Schneider
José Manuel Benítez Sánchez (and Students) Xin Zhao and Xue Li Daniel Gordon, Danny Hendler, Lior Rokach Qing He and Dongzhi
loannis Paparrizos and Luis Gravano Marcos Quiles.
Chris Grieves and Rida E. Moustafa (Shalash) Ben Marlin
maryam tayefi
Huiping Cao and Zhe Xie
Christian Hundt and Elmar Schömer M. en C. Jorge Ochoa Somuano Goce Ristanoski, James Bailey and Wei Liu
Paul Viola (Yes as in Vioola - Jones) JYH-CHARN (STEVE) LUU and Hao Wang TSUIMOTO Takaaki and Prof. Uehara Tomás Kepic and Gabriela Kosková Eva Ceulemans
Alexis BONDU

Wong, Weng-Keen and Nick Sullivan
Qian Xu
Fengzhen Tang and Peter Tino Qiang Wang
Hesam Izakian Hesam Izakian
Witold Pedrycz Yun Chen and Yang, Hui Cauchy Lee
Chedy Raissi Chedy Raissi
BARRE Anth Yang ZHANG
Flavio Vinicius Diniz de Figueiredo Drsara Marques de Almeid Victor Romero-Cano and Juan Nieto Jianhua Zhao
Leslie S. Smith, Abdulrahman A. samuel J. Blasiak and Huzefa Rangwala
Harm de Vries and Azzopardi, G. (George) Harm de Vries and Azzopardi, G. Gea
Folly Adjogou and Alejandro Murua Dustin Harvey and Todd, Michael D.
Kilian Weinerger Kilian Weinberger
Daniel Kohlsdorf and Thad Starner engwen Mo
Tuan Dang and Leland Wilkinson Kang Li and Yun Raymond Fu Andrés Eduardo Castro Ospina
Zheng Zhang Zheng Zhang Peter fox and Yanning(yu)Chen
Jeremiah Deng and Feng Zhou Franz Pernkopf and Nikolaus Mutsam Alexey Chernyshev
Senjamin Auder
Jiawei Yuan and Shucheng Yu Heidelinde Roeder and Jan Freund Toon Calders and Thanh Lam Hoang Feixiang Gao
Nancy Pérez-C
Nancy Pérez-C
Tracy Hu H
Tracy Hu
André Gensle
Andre Gensle
zairul hadi
Beau Piccart
Tomas Pfister
John Costanzo and Nathan Cahill
Conceição Amado and Diogo Silya Zhang, Zhifei and Qi, Hairong Diego Rivera García.

Tanzy Love and Kyra Singh
Manuele Bicego and Pietro Vladimer Kobayashi Talayeh Razzaghi and Petros Xanthopoulos Mohit Sharma
Juergen Schmidh
Juergen Schmidhuber and Klaus Greff
Heriberto Avelino Heriberto Avelin
Manoj Apte Manoj Apte
Nehal Magdy Webber Chen and Dan Stashuk Huaihou Chen and Philip Reiss
Seung-Kyu Lee Seung-Kyu Lee
Marcelo de Azevedo Ávila
Subhajit Dutta and Anil K Subhajit Dutta a
MAILLARD, Bruno
Yazhou Ren and Carlotta Domenicon Eithon Cadag and Johan Grahnen
Dinkar Sitaram and Varun Shenoy Dinkar Sitaram and Varun Sheno
Chan Syin and Vuong Nhu Khue Rodrigo Araujo Mohamed Kamel Borgwardt Kamel
Barsten M. and Llinares Lopez Felipe
Jiang Liyang Jiang Liyang
Timothy Ravasi and Gregorio Alanislobato James Zhang
Heloisa de Arr Heloisa de Arruda
D.Pradeep Kumar Steffen Dienst and Stefan Kühne Christian Hahn and gudrun stockmanns
haoran xu haoran xu
Chuanlei Zhang Chuanlei ihang
Youngha Hwang Tetsuya Nakamura
 Fabio Antonio P
Damien Tessier Cuvelier Etienne

Dhaval Patel, w_{y}
Ville Hautamaki
Abhishek Sharma
shouyi wang and
shouyi wang and
Hyrum Anderson
Hyrum Ande
Qian Chen
Tomas Barto
Tomas Bartos and Topas Skopal
Vitali Loseu

A bolewski and Michal Wozniak Omid Geramifard and Xu Jianxin

Ng Wee Keong and NGUYEN HAI LONG | Ng Wee |
| :--- |
| Li Tao |

 Malsabel
Dennis Sh Dennis Shasha and!/ ite Soul
Andrew Coher
Weng-Keen Wo gan Xinze
Igesh, h thik

Katheri Anderson and Castle, Joseph P
Bressan, Stephane
Michael Böhlen and Mourad Khayati
Michael Böhlen
Yi Zheng
Yi Zheng
Lijuan Zhong
Eduardo Gerlein and Martin McGinnity
Dr.IIg. MAURICIO OROZCO-ALZATE
Kevin Shi and Layne Lori Kevin Shi and Layne Lori
Sharon Goldwater and HAIDER Adnan
Youqiang Sun
Youqiang Sun
Uttam Kumar Sarkar
Aalaa Mojiahed and Beatriz De La Iglesia
Prof. L. Zhang
Hrishav Agarwal
Hrishav Agarwal
Jimin Wang
Piyush Kumar
Qing Xie and Xiangliang Zhang
Abhay Harpale, Tianbao Yang and Daniel Marthaler
Andrew Finch
Mona Rahimi
Fred Nicolls
Paulo Borges and George Darmiton da Cunha Cavalcant
John Lach and Davis Blalock
Heggere S. Ranganath and Vineetha Bettaiah
Steve Lalley and Herbert Xiang Zhu
Behzad Mansouri
Megha Agrawal
zhihua Chen and Wangmeng Zuo
Diep Nguyen Ngoc
BATCHELOR Andrew
Jinwook Kim and Min-Soo Kim
Jarat Safin
pradeep polisetty
Houshang Darabi and anooshiravan sharabiani
Chen Qiang
Liying ZHENG
Liying ZHENG
Sarat Kr. Chettri
Graham Taylor and Ethan Buchman
Cai inglin
Anuj Srivastava and J. Derek Tucker
Kyle Johnston, and Adrian Peter
Serim Park and Gustavo Kunde Rohde
Lee Seversky and Jack M Fischer

Ahmad, Faraz and Smith, David
Velislsav Batchvarov
Velislav Batchvaro
Gautier Marti
Dimitrios Kosmopoulos
Rana Haber and Adrian Peter
Shachar Afek Kaufman and Ruth Heller
Chengzhang Qua and Jianhui Zhao
Basabi Chakraborty
Basabi Chakraborty
Grzegorz Dudek
Sindhu Ghanta and Jennifer Dy Yu Fang and Huy Xuan Do
Ali Raza Syed and Andrew
Ali Raza Syed and Andrew Rosenberg Agada Joseph
ricardo garcia r Om Prasad Patri Leonardo Nascimento Ferreira Michal Prilepok
Ke Yi and LUO
Ke Yi and LLOO,Ge
Bruno Ferraz do Amaral and Elaine Sous
Edward GONG and Si Yain-Whar
Chaoyi Pang
Vida Groznik and Aleksander Sadikov
Abdulhakim Qahtan and Xiangliang Zhang
Cao Duy Truong
Oliver Obst
Yung-Kyun Noh
Wei Song
Yu Su
Uwe Aick
Uwe Aickelin, Eugene Ch'ng, Xinyu Fu
Quang Nguyen
Or Zuk, Avishai Wagner, Tom Hope
Subhadeep Mukhopadhyay
WEN GuO
WENGUO
poyraz umut hatipoglu and Cem lyigun
Yongiie Cai
Mehdi Faramarzi
Tarhio Jorma and Chhabra Tamanna
Xiaooqing Weng
Simon Shim
Simon Shim
Yan Gao Gao and Daqing Hou
Maria
Erank Englert and Sebastian Köß
Frank Englert and Sebastian Kößler
Paul Grant
juan colonna
Elias Egho
Elias Egho
QUANG LE and
QUANG LE and Chung Pham
Jitesh Khandelwal
Karima Dyussekeneva
Wu, Ruhao and Wang, Bo
Yuki Kashiwaba
Yuki Kashiwaba
Ade Bailly
Ade Bailly
Abhinav Venkat
Michael Hauser and Asok Ray
Tuan-Minh Nguyen and Michael Bromberger
Ruako
Ruako TAKATORI
Rahul Singh and Ryan Eshleman
Laura Beggel
Tom Arodz
Victoria Sanchez
Mike Sips and Carl Witt
Segoo
Segolene Dessertine-Panhard
Zhao Xu
Lovekesh Vig
Angelo Maggioni e Silva
Abdelwaheb Ferchichi and Mohamed Saleh Gouider
Wenlin Chen and Yixin Chen
Guizi-Wen and Yuh Jye
Romain Tavenard
Chandan Gautam
Jinglin Peng
Ahlame Douzal and Jidong Yuan
Chen Jing
Chen Jing
Zeda Li and Alan J. Izenman
Peng Zhang
Hanyuan Zhang and Xuemin Tian
Georgios Giantamidis and Stavros Tripaki
Goutam Chakraborty and Takuya Kamiyama
Pipiras, Vlada and Stone, Eric
Ping Li
Adam Oliner, Jacob Leverich, Tian Chen, Tom LaGatta
Yulin Sergey
Huan Liu
Huan Liu
Vadim Vagin
Vadim Vagin
Nikolaos Passalis
Graham Mueller

43 data sets added in Fall 2018

The figures follow are intended to offer a quick inspection of the data. For readability, depending on the scenario, the data may be normalized or may be not, the number of exemplars per class may be one, three or many.

Class 0

ACSF1

One exemplar per class, with z-normalization

Class 7

Class 9
2
0
0
-2
0

AllGestureWiimoteX
Three exemplars per class, without z-normalization

Class 1

Class 5

Class 2

AllGestureWiimoteY
Three exemplars per class,
without z-normalization

Class 1
 Class 3

Class 5

Class 7

Class 2

AllGestureWiimoteZ
Three exemplars per class, without z-normalization

BME

Three exemplars per class, with z-normalization

Class 1

Class 2

Class 3

Chinatown

Three exemplars per class, with z-normalization

Crop

Three exemplars per class, with znormalization

Class 1

Class 5

Class 9

Class 13

Class 17

Class 21

Class 2

Class 6

Class 10

Class 14

Class 18

Class 22

Class 7

Class 11

Class 15

Class 19

Class 23

Class 4

Class 12

Class 16

DodgerLoopDay

One exemplar per class, with z-normalization

Class 3

Class 6

DodgerLoopGame

One exemplar per class, without z-normalization

Class 1

DodgerLoopWeekend

One exemplar per class, without z-normalization

Class 1

Class 2

EOGHorizontalSignal

Class 1

Three exemplars per class, with z-normalization

EOGVerticalSignal
Three exemplars per class, with z-normalization

Class 1

Class 4

Class 2

Class 5

Class 8

EthanolLevel

Three exemplars per class, with z-normalization

FreezerRegularTrain

Three exemplars per class, with z-normalization

Class 1

Class 2

FreezerSmallTrain

One exemplar per class, with z-normalization

Class 1

Class 2

Fungi

One exemplar per class, with z-normalization

Class 1

GestureMidAirD1

Three exemplars per class, without z-normalization

GestureMidAirD2

Three exemplars per class, without z-normalization

GestureMidAirD3

Three exemplars per class, without z-normalization

GesturePebbleZ1

Three exemplars per class, without z-normalization

GesturePebbleZ2

Three exemplars per class, without z-normalization

GunPointAgeSpan

Three exemplars per class, with z-normalization

Class 1

Class 2

Left) GunPoint recording of 2003, right) GunPoint recording of 2018. Top) Ann Ratanamahatana, bottom) Eamonn Keogh.
The female and male actors are the same individuals recorded fifteen years apart.

GunPointMaleVersusFemale

Three exemplars per class, with z-normalization

Class 1

Class 2

GunPointOldVersusYoung

Three exemplars per class, with z-normalization

HouseTwenty

One exemplars per class, with z-normalization

InsectEPGRegularTrain

Three exemplars per class, with z-normalization

Class 1

Class 3

InsectEPGSmallTrain

One exemplars per class, with z-normalization

MelbournePedestrian

Three exemplars per class, with z-normalization

Class 1

Class 2

MixedShapesRegularTrain

Three exemplars per class, with z-normalization

Class 1

MixedShapesSmallTrain

One exemplar per class, with z-normalization

Class 1

Class 3

PickupGestureWiimoteZ

Three exemplars per class, without z-normalization

Class 2

One exemplar per class, with z-normalization

PigArtPressure

One exemplar per class, with z-normalization
 without z-normalization

Class 0

Class 3

Class 6

Class 9

Class 1

Class 4

Class 7

PowerCons

One exemplar per class, with z-normalization

Rock

Three exemplars per class, with z-normalization

SemgHandGenderCh2

One exemplar per class,
with z-normalization

SemgHandMovementCh2

One exemplar per class, with z-normalization

SemgHandSubjectCh2

One exemplar per class, with z-normalization

Class 1

Class 3

Class 5

Class 4

ShakeGestureWiimoteZ

Three exemplars per class, without z-normalization

Class 5

Class 9

Class 2

Class 10

Class 7

Class 8

SmoothSubspace

Thirty exemplars per class, with z-normalization

Class 3

UMD

Three exemplars per class, with z-normalization

85 data sets from Summer 2015 release

The figures follow are intended to offer a quick inspection of the data. For readability, depending on the scenario, the data may be normalized or may be not, the number of exemplars per class may be one, three or many.

Adiac

Three exemplars per class, with z-normalization

ArrowHead

Three exemplars per class, with z-normalization

Beef

Three exemplars per class, with z-normalization

Class 1

BeetleFly

Three exemplars per class, with z-normalization

Class 1

Class 2

BirdChicken

Three exemplars per class, with z-normalization

Class 1

Car

Three exemplars per class, with z-normalization

CBF

Three exemplars per class, with z-normalization

Class 1

Class 2

Class 3

ChlorineConcentration

Three exemplars per class, with z-normalization

CinCECGTorso

Three exemplars per class, with z-normalization

Class 1

Coffee

Three exemplars per class, with z-normalization

Computers

One exemplar per class, with z-normalization

Class 1

Class 2

CricketX

One exemplar per class, with z-normalization

CricketY

One exemplar per class, with z-normalization

Class 1

Class 10

Class 2

Class 3

Class 6

Class 9

CricketZ

One exemplar per class, with z-normalization

DiatomSizeReduction

One exemplar per class, with z-normalization

DistalPhalanxOutlineAgeGroup

Three exemplars per class, with z-normalization

DistalPhalanxOutlineCorrect

Three exemplars per class, with z-normalization

DistalPhalanxTW

Three exemplars per class, with z-normalization

Earthquakes

One exemplar per class, with z-normalization

ECG200

Three exemplars per class, with z-normalization

ECG5000

One exemplar per class, with z-normalization

Class 1

Class 2

Class 3

Class 4

Class 5

ECGFiveDays

Three exemplars per class, with z-normalization

ElectricDevices

One exemplar per class, with z-normalization

FaceAll

One exemplar per class, with z-normalization

FaceFour

Three exemplars per class, with z-normalization

Class 1

FacesUCR

One exemplar per class, with z-normalization

Class 1

Class 7

Class 9

Class 11

Class 2

Class 4

Class 8

FiftyWords

One exemplar per class, with z-normalization

Fish

Three exemplars per class, with z-normalization

Class 6

FordA

One exemplar per class, with z-normalization

Class - 1

Class 1

FordB

One exemplar per class, with z-normalization

GunPoint

Three exemplars per class, with z-normalization

Class 1

Class 2

Ham

Three exemplars per class, with z-normalization

HandOutlines

Three exemplars per class, with z-normalization

Class 0

Class 1

Haptics

Three exemplars per class, with z-normalization

Herring

Three exemplars per class, with z-normalization

Class 1

InlineSkate

Three exemplars per class, with z-normalization

InsectWingbeatSound

One exemplar per class,
with z-normalization

ItalyPowerDemand

Three exemplars per class, with z-normalization

Class 1

Class 2

LargeKitchenAppliances

One exemplar per class, with z-normalization

Lightning2

One exemplar per class, with z-normalization

Lightning7

One exemplar per class, with z-normalization

Mallat

One exemplar per class, with z-normalization

Class 2

Meat

Twenty exemplars per class, with z-normalization

Class 1

Class 3

Medicallmages

One exemplar per class, with z-normalization

Class 1

Class 3

Class 5

Class 7

Class 9

Class 2

MiddlePhalanxOutlineAgeGroup

Three exemplars per class, with z-normalization

MiddlePhalanxOutlineCorrect

Three exemplars per class, with z-normalization

Class 0

Class 1

MiddlePhalanxTW

Three exemplars per class, with z-normalization

MoteStrain

One exemplar per class, with z-normalization

NonInvasiveFetalECGThorax1

One exemplar per class, with z-normalization

NonInvasiveFetaIECGThorax2

One exemplar per class, with z-normalization

OliveOil

Three exemplars per class, with z-normalization

Class 1

Class 3

Class 4

OSULeaf

One exemplar per class, with z-normalization

PhalangesOutlinesCorrect

Three exemplars per class, with z-normalization

Class 0

One exemplar per class,
with z-normalization

Plane

Three exemplars per class, with z-normalization

ProximalPhalanxOutlineAgeGroup

Three exemplars per class, with z-normalization

Class 1

ProximalPhalanxOutlineCorrect

Three exemplars per class, with z-normalization

ProximalPhalanxTW

Three exemplars per class, with z-normalization

RefrigerationsDevices

One exemplar per class, with z-normalization

Class 1

ScreenType

One exemplar per class, with z-normalization

ShapeletSim

One exemplar per class,
with z-normalization

ShapesAll

One exemplar per class, with z-normalization

SmallKitchenAppliances

One exemplar per class, with z-normalization

Class 1

SonyAIBORobotSurface1

Three exemplars per class, with z-normalization

Class 1

Class 2

SonyAIBORobotSurface2

Three exemplars per class, with z-normalization

Class 2

StarLightCurves

Three exemplars per class, with z-normalization

Class 1

Strawberry

Three exemplars per class, with z-normalization

Class 1

Class 2

SwedishLeaf

One exemplar per class, with z-normalization

Class 1

Class 4

Class 7

Class 2

Class 5

Class 8

Class 11

Class 3

Class 6

Class 12

Symbols

Three exemplars per class, with z-normalization

SyntheticControl

One exemplar per class, with z-normalization

ToeSegmentation1

One exemplar per class, with z-normalization

Class 0

Class 1

ToeSegmentation2

One exemplar per class, with z-normalization

Trace

Three exemplars per class, with z-normalization

Class 1

Class 2

Class 3

Class 4

TwoLeadECG

Three exemplars per class, with z-normalization

TwoPatterns

One exemplar per class, with z-normalization

Class 1

Class 4

UWaveGestureLibraryAll

One exemplar per class, with z-normalization

Class 1

Class 3

Class 5

Class 7

Class 2

Class 4

Class 6

UWaveGestureLibraryX

One exemplar per class, with z-normalization

Class 1

Class 2

UWaveGestureLibraryY

One exemplar per class, with z-normalization

Class 2

UWaveGestureLibraryZ

One exemplar per class, with z-normalization

Wafer

One exemplar per class, with z-normalization

Wine

Twenty exemplars per class, with z-normalization

WordSynonyms

One exemplar per class, with z-normalization

Worms

One exemplar per class, with z-normalization

Class 1

Class 3

Class 4

Class 5

WormsTwoClass

One exemplar per class, with z-normalization

Yoga

One exemplar per class, with z-normalization

Class 1

Class 2

