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ABSTRACT 

Most algorithms for music information retrieval are based 

on the analysis of the similarity between feature sets ex-

tracted from the raw audio. A common approach to as-

sessing similarities within or between recordings is by 

creating similarity matrices. However, this approach re-

quires quadratic space for each comparison and typically 

requires a costly post-processing of the matrix. In this 

work, we propose a simple and efficient representation 

based on a subsequence similarity join, which may be 

used in several music information retrieval tasks. We ap-

ply our method to the cover song recognition problem 

and demonstrate that it is superior to state-of-the-art algo-

rithms. In addition, we demonstrate how the proposed 

representation can be exploited for multiple applications 

in music processing. 

1. INTRODUCTION 

With the growing interest in applications related to music 

processing, the area of music information retrieval (MIR) 

has attracted huge attention in both academia and indus-

try. However, the analysis of audio recordings remains a 

significant challenge. Most algorithms for content-based 

music retrieval have at their cores some similarity or dis-

tance function. For this reason, a wide range of applica-

tions rely on some technique to assess the similarity be-

tween music objects. Such applications include segmen-

tation [8], audio-to-score alignment [4], cover song 

recognition [15], and visualization [23]. 

 A common approach to assessing similarity in music 

recordings is achieved by utilizing a self-similarity matrix 

(SSM) [5]. This representation reveals the relationship 

between each “snippet” of a track to all the other seg-

ments in the same recording. This idea has been general-

ized to measure the relationships between subsequences 

of different songs, as in the application of cross-

recurrence analysis for cover song recognition [16]. 

 The main advantage of similarity matrices is the fact 

that they simultaneously reveal both the global and the 

local structure of music recordings. However, this repre-

sentation requires quadratic space in relation to the length 

of the feature vector used to describe the audio. For this 

reason, most methods to find patterns in the similarity 

matrix are (at least) quadratic in time complexity. In spite 

of this, most information contained in similarity matrices 

is irrelevant or has little impact in its analysis. This ob-

servation suggests the need for a more space and time ef-

ficient representation of music recordings. 

 In this work, we extend the subsequences all-pairs-

similarity-search, also known as similarity join, in order 

to assess the similarity between audio recordings for MIR 

tasks. As with the common similarity matrices, represent-

ing the entire subsequence join requires a quadratic 

space, and also has a high time complexity, which is de-

pendent on the length of the subsequences to be joined.  

 However, in this work we show that we can exploit a 

new data structure called matrix profile which allows a 

space efficient representation of the similarity join matrix 

between subsequences. Moreover, we can leverage recent 

optimizations in FFT-based all-neighbor search that allow 

the matrix profile to be computed efficiently [10]. For 

clarity, we refer to the representation presented in this 

paper as Similarity Matrix ProfiLE (SiMPle). 

 Figure 1 illustrates an example of two matrices repre-

senting the dissimilarities within and between recordings 

and their relative SiMPle, which correspond to the mini-

mum value of each column of the similarity matrices. 
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Figure 1. Similarity matrix within (left) and between different 

songs (right) and their respective SiMPle. 

 In summary, our method has the following ad-

vantages/features: 

 It is a novel approach to assess the audio similarity 

and can be used in several MIR algorithms; 

 We exploit the fastest known subsequence similarity 

search technique in the literature [10], which makes 

our method fast and exact; 

 It is simple and only requires a single parameter, 

which is intuitive to set for MIR applications; 

 It is space efficient, requiring the storage of only 

O(n) values; 

 Once we calculate the similarity profile for a dataset 

it can be efficiently updated, which has implications 

for streaming audio processing. 
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2. SiMPle: SIMILARITY MATRIX PROFILE 

We begin by describing the operation for producing the 

matrix profile, a similarity join. For clarity, we use the 

term time series to refer to the ordered set of features that 

describe a whole recording and subsequence to define 

any continuous subset of features from the time series. 

Definition 1: Similarity join: given two time series A 

and B with the desired subsequence length m, the sim-

ilarity join identifies the nearest neighbor of each sub-

sequence (with length m) in A from all the possible 

subsequence set of B. 

 Through such a similarity join, we can gather two 

pieces of information about each subsequence in A, 

which are: 1) the Euclidean distance to its nearest neigh-

bor in B and 2) the position of its nearest neighbor in B. 

Such information can be compactly stored in vectors, re-

ferred as similarity matrix profile (SiMPle) and similarity 

matrix profile index (SiMPle index) respectively. 

 One special case of similarity join is when both input 

time series refer to the same recording. We define the op-

eration that handles this specific case self-similarity join. 

Definition 2: Self-similarity join: given a time series A 

with the desired subsequence length m, the self-

similarity join identifies the non-trivial nearest neigh-

bor of each subsequence (with length m) in A from all 

the possible subsequence set of A. 

 The only major difference between self-similarity join 

(Definition 2) and similarity join (Definition 1) is the 

exclusion of trivial matched pairs when identifying the 

nearest neighbor. The exclusion of trivial matches is cru-

cial as matching a subsequence with itself (or slightly 

shifted version of itself) produces no useful information.  

 We describe our method to calculate SiMPle in Algo-

rithm 1. In line 1, we record the length of B. In line 2, we 

allocate memory and initialize SiMPle PAB and SiMPle 

index IAB. From line 3 to line 6, we calculate the distance 

profile vector D which contains the distances between a 

given subsequence in time series B and each subsequence 

in time series A. The particular function we used to com-

pute D is MASS (Mueen’s Algorithm for Similarity 

Search), which is the most efficient algorithm known for 

distance vector computation [10]. We then perform the 

pairwise minimum for each element in D with the paired 

element in PAB (i.e., min(D[i], PAB[i]) for i = 0 to 

length(D) - 1.) We also update IAB[i] with idx when D[i] ≤ 

PAB[i] as we perform the pairwise minimum operation. 

Finally, we return the result PAB and IAB in line 7. 

Algorithm 1. Procedure to calculate SiMPle and SiMPle index 

Input: Two user provided time series, A and B, and the desired subse-
quence length m 

Output: The SiMPle PAB and the associated SiMPle index IAB  

1 
2 

3 

4 
5 

6 

7 

nB ← Length(B) 
PAB ← infs, IAB ← zeros, idxes ← 1:nB-m+1 

for each idx in idxes 

          D ← MASS(B[idx:idx+m-1], TA) // c.f. [10] 
          PAB, IAB ← ElementWiseMin(PAB, IAB, D, idx) 

end for 

return PAB, IAB 

 Note that the Algorithm 1 computes SiMPle for the 

general similarity join. To modify it to compute the self-

similarity join SiMPle of a time series A, we simply re-

place B by A in lines 1 and 4 and ignore trivial matches in 

D when performing ElementWiseMin in line 5. 

 The method MASS (used in line 4) is important to 

speed-up the similarity calculations. This algorithm has a 

time complexity of O(n log n). For brevity, we refer the 

reader interested in details of this method to [10].  

 In this work, we focus on demonstrating the utility of 

SiMPle on the cover song recognition task. Given that the 

cover song recognition is a specialization of the “query-

by-similarity” task, we believe that it is the best scenario 

to evaluate a similarity method. Specifically, we propose 

a SiMPle-based distance measure between a query and its 

potential original version. 

3. COVER SONG RECOGNITION 

“Cover song” is the generic term used to denote a new 

performance of a previously recorded track. For example, 

a cover song may refer to a live performance, a remix or 

an interpretation in a different music style. The automatic 

identification of covers has several applications, such as 

copyright management, collection organization, and 

search by content.  

 In order to identify different versions of the same 

song, most algorithms search for globally [20] or locally 

[15][18] conserved structure(s). A well-known and wide-

ly applied algorithm for measuring the global similarity 

between tracks is Dynamic Time Warping (DTW) [11]. 

In spite of its utility in other domains, DTW is not gener-

ally robust to differences in structure between the record-

ings. A potential solution would be segmenting the song 

before applying the DTW similarity estimation. However, 

audio segmentation itself is also an open problem, and the 

error on boundaries detection can cause a domino effect 

(compounded errors) in the whole identification process. 

 In addition, the complexity of the algorithm to calcu-

late DTW is O(n2). Although methods to fast approxi-

mate the DTW have been proposed [13], there is no error 

bound for such approximations. In other words, it is not 

possible to set a maximum error in the value obtained by 

it in relation to the actual DTW. 

 Algorithms that search for local similarities have been 

successfully used to provide structural invariance to the 

cover song identification task. A widely used method for 

music similarity proposes the use of a binary distance 

function to compare chroma-based features followed by a 

dynamic programming local alignment [15]. Despite its 

demonstrated utility to recognize cover recordings, this 

method has several parameters, that are unintuitive to 

tune, and is slow. Specifically, the local alignment is es-

timated by an algorithm with similar complexity to DTW. 

Plus, the binary distance between chroma features used in 

each step of the algorithm relies on multiple shifts of the 

chroma vectors under comparison. 

3.1 SiMPle-Based Cover Song Recognition 

In this work, we propose to use SiMPle to measure the 

distance between recordings in order to identify cover 

songs. In essence we exploit the fact that the global rela-

tion between the tracks is composed of many local simi-
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larities. In this way, we are able to simultaneously take 

advantage of both local and global pattern matching. 

 Intuitively, we should expect that the SiMPle obtained 

by comparing a cover song to its original version is com-

posed mostly of low values. In contrast, two completely 

different songs will result in a SiMPle constituted mainly 

by high values. For this reason, we adopted the median 

value of the SiMPle as a global distance estimation. For-

mally, the distance between a query B and a candidate 

original recording A is defined in Equation 1. 

 

 dist(A,B)=median(SiMPle(B,A)) (1) 

 

 Note that several other measures of statistics could be 

used instead of the median. However, the median is ro-

bust to outliers in the matrix profile. Such distortions may 

appear when a performer decides, for instance, to add a 

new segment (e.g., an improvisation or drum solo) to the 

song. The robustness of our method to this situation, as 

well as other changes in structure, is discussed in the next 

section. 

3.2 On the Structural Invariance 

The structural variance is a critical concern when com-

paring different songs. Changes in structure may occur by 

insertion or deletion of segments, as well as changes in 

the order that different excerpts are played. From a high-

level point of view, SiMPle describes a global similarity 

outline between songs by providing information of local 

comparisons. This fact has several implications in our 

distance estimation, which makes it largely invariant to 

structural variations: 

 If two performances are virtually identical, except for 

the order and the number of repetitions of each rep-

resentative excerpt (i.e., chorus, verse, bridge, etc.), 

all the values that compose SiMPle are close to zero; 

 If a segment of the original version is deleted in the 

cover song, this will cause virtually no changes in 

the SiMPle; 

 If a new feature is inserted into a cover, this will 

have as consequence a peak in the SiMPle that will 

cause only a slight increase in its median value. 

4. EXPERIMENTAL EVALUATION 

The evaluation of different choices of features sets is not 

the main focus of this paper. For this reason, we fix the 

use of chroma-based features in our experiments, as it is 

the most popular feature set to analyze music data. In or-

der to provide local tempo invariance, we used the chro-

ma energy normalized statistics (CENS) [12]. Specifical-

ly, for the cover song recognition task, we adopted the 

rate of two CENS per second of audio.  

 In addition, we preprocessed the feature sets in each 

comparison to provide key invariance. Before calculating 

the similarity between songs, we transpose one of them in 

order to have the same key using the optimal transposi-

tion index (OTI) [14].  

 We notice that we are committed to the reproducibil-

ity of our results, and we encourage researchers and prac-

titioners to extend our ideas and evaluate the use of the 

SiMPle in different MIR tasks. To this end, we created a 

website [19] with the complete source code used in our 

experiments and videos highlighting some of the results 

presented in this work. 

4.1 Datasets 

We evaluate our method in different scenarios regarding 

music styles and size of the databases. Specifically, we 

tested the proposed distance measure’s utility for as-

sessing both popular and classical recordings. 

 The first database considered is the YouTube Covers 

[18], composed of 50 different compositions, each one 

containing 7 different recordings obtained from YouTube 

videos. The data was originally split into training and 

testing partitions, in which the training set is composed of 

the original recording in studio and a live version per-

formed by the same artist. To allow comparisons to the 

literature, we follow the same configuration. 

 The second dataset we consider is the widely used 

collection of Chopin’s Mazurkas. The set of Mazurkas 

used in this work contains 2,919 recordings of 49 pieces 

for piano. The number of recordings of each song varies 

from 41 to 95. 

4.2 Results and Discussion 

In order to assess the performance of our method, we 

used three commonly applied evaluation measures: mean 

average precision (MAP), precision at 10 (P@10), and 

mean rank of first correctly identified cover (MR1). Note 

that for MR1, smaller values are better. 

 For both the YouTube Covers and Mazurkas datasets, 

we compared our algorithm using results previously pre-

sented in the literature. For the former case, in addition to 

comparing to the results presented in the paper for which 

the dataset was created [18], we carefully implemented 

the algorithm for local alignments based on the chroma 

binary distance [15]. Table 1 shows the results. 

 

Table 1. Mean average precision (MAP), precision at 10 

(P@10), and mean rank of first correctly identified cover 

(MR1) on the YouTube Covers dataset. Given that this dataset 

has only two recordings per song in the training set, the maxi-

mum value to P@10 is 0.2. 

 Our method achieved the best results in this experi-

ment. In addition, we note that our method is notably 

faster than the second best (Serrà et al.). Specifically, 

while our method took 1.3 hours, the other method took 

approximately one week to run on the same computer1. 

                                                           
1 In our experiments, we used an 8-core Intel® Core ™ i7-6700K CPU 

@ 4.00GHz with 32GB of RAM memory running Windows 10®. All 
our codes were implemented and executed using Matlab R2014a®. 

Algorithm MAP P@10 MR1 

DTW 0.425 0.114 11.69 

Silva et al. [18] 0.478 0.126 8.49 

Serrà et al. [15] 0.525 0.132 9.43 

SiMPle 0.591 0.140 7.91 
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We acknowledge that we did not invest a lot of effort op-

timizing the competing method. However, we do not be-

lieve that any code optimization is capable of significant-

ly reducing the performance gap. 

 We also consider the Mazurkas dataset. In addition to 

the results achieved by DTW, we report MAP results 

documented in the literature, which were achieved by re-

trieving the recordings by structural similarity strategies 

using this data. Specifically, the subset of mazurkas used 

in this work is exactly the same as the used in [2] and 

[17] and has only minor differences to the dataset used in 

[6]. Although [15] is considered the state-of-the-art for 

cover song recognition, we do not include its results due 

to the high time complexity. Table 2 shows the results. 

Algorithm MAP P@10 MR1 

DTW 0.882 0.949 4.05 

Bello [2] 0.767 - - 

Silva et al. [17] 0.795 - - 

Grosche et al. [6]  0.819 - - 

SiMPle 0.880 0.952 2.33 

Table 2. Mean average precision (MAP), precision at 10 

(P@10), and mean rank of first correctly identified cover 

(MR1) on the Mazurkas dataset. 

 The structures of the pieces on this dataset are re-

spected in most of the recordings. In this case, DTW per-

forms similar than our algorithm. However, our method is 

faster (approximately two times in our experiments) and 

has several advantages over DTW, such as its incremen-

tal property, discussed in the next section. 

4.3 Streaming Cover Song Recognition 

Real-time audio matching has attracted the attention of 

the community in the last years. In this scenario, the input 

is a stream of audio and the output is a sorted list of simi-

lar objects in a database.  

 In this section, we evaluate our algorithm in an online 

cover song recognition scenario. For concreteness, con-

sider that a TV station is broadcasting a live concert. In 

order to automatically present the name of the song to the 

viewers or to synchronize the concert with a second 

screen app, we would like to take the streaming audio as 

input to our algorithm and be able to recognize what song 

the band is playing as soon as possible. To accomplish 

this task, we need to match the input to a set of (previous-

ly processed) recordings. 

 In addition to allowing the fast calculation of all the 

distances of a subsequence to a whole song, the proposed 

algorithm has an incremental property that can be ex-

ploited to estimate cover song similarity in a streaming 

fashion. If we have a previously calculated SiMPle, then, 

when we extract a new vector of (chroma) features, we 

do not need to recalculate the whole SiMPle from the be-

ginning. Instead, just two quick steps are required: 

 Calculation of the distance profile to the new subse-

quence, i.e., the distance of the last observed subse-

quence (including the new feature vector) to all the 

subsequences of the original song; 

 Update of SiMPle by selecting the minimum value 

between the new distance profile and the previous 

SiMPle for each subsequence. 

 These steps are done by the Algorithm 2. 

Algorithm 2. Procedure to incrementally update SiMPle and SiMPle 
index  

Input: The current time series A and B, the new chroma vector c, the 

desired subsequence length m, and the current SiMPle PAB and SiMPle 
index IAB 

Output: The updated SiMPle PAB,new and the associated SiMPle index 

IAB,new  

1 

2 
3 

4 

5 
6 

newB ← Concatenate(B,c), nB ← Length(newB) 

D ← MASS(newB[nB-m+1: nB], A) // c.f. [10] 

PAB, IAB ← ElementWiseMin(PAB, IAB, D, nB-m+1) 

PAB,last, IAB,last ← FindMin(D) 

PAB,new← [PAB, PAB,last], IAB,new ← [IAB, IAB,last] 

return PAB,new, IAB,new 

 To evaluate the ability of our method for streaming 

recognition, we performed a simple experiment simulat-

ing the previously described scenario. First, we extracted 

features from each track in the dataset of original record-

ings. For clarity, we will refer to this database as the 

training set. Then, we randomly chose another recording 

as our query and processed it according to the following 

steps. We begin extracting features from the first three 

seconds of the query in order to calculate the first dis-

tance estimation to each training object. After this initial 

step, for each second of the query, we repeat the process 

of extracting features and re-estimating the distance 

measure to the training set.  

 In this experiment, we used the Mazurkas dataset with 

two CENS per second. The training set is composed of 

the first recording (in alphabetical order) of each piece. 

We used a performance with approximately 275 seconds 

as a query, and we were able to maintain the process fast-

er than real-time. Specifically, the updates took approxi-

mately 0.7 seconds to extract the features, update SiMPle, 

and recalculate the distance for all the training objects.  

 Figure 2 visualizes the changes in distance estimation 

in an audio streaming query session. In this case, we used 

a recording of the “Mazurka in F major, Op. 68, No. 3” 

as query. In the first estimation, its training version ap-

pears as the sixth nearest neighbor. However as we see 

more evidence, it quickly becomes the best match. 
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Op. 33, No. 3
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Distance to the training recording  
Figure 2. Changes in the distance when querying a recording 

of the “Mazurka in F major, Op. 68, No. 3” in a streaming 

fashion. The graphs represent the top 6 matches after pro-

cessing 3 (left), 5 (middle), and 10 (right) seconds of the audio. 
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 Another strategy that can be used in this scenario is an 

amnesic sliding window, in order to forget old values and 

further speedup the matching of new subsequences. For a 

given window length w, we can maintain just the last w 

values in the SiMPle. In this way, a change in the distri-

bution of the distance estimates may assist in the identifi-

cation of the ending and beginning of a song. At the same 

time, the positions of the most recently matched sections 

can be used as estimation of the moment in the current 

song. These ideas may help to identify songs being se-

quentially played in a random or unknown order. 

5. EXPANDING THE RANGE OF APPLICATIONS 

OF SiMPle 

In this work, we focus on assessing music similarity by 

joining subsequences. While we evaluate our method on 

the cover song recognition task, we claim that the SiMPle 

is a powerful tool for other music processing tasks. To 

reinforce this argument, we present insights on how to 

use SiMPle in different application domains, as well 

some initial results. The methods presented in this section 

have room for improvements, but they are simple yet ef-

fective. We intend to further explore and evaluate SiMPle 

in (at least) the tasks listed below. 

 In contrast to the previous experiments, when we use 

the self-similarity join to highlight points of interest in a 

recording, we apply ten CENS per second.  

5.1 Motifs and Discords 

The SiMPle from a self-similarity join has several ex-

ploitable properties. For example, the lowest points cor-

respond to the locations of the most faithfully repeated 

section (i.e., the chorus or refrain). Between several defi-

nitions of motifs in the literature, such as harmonic or me-

lodic motifs, its simplest definition is the closest pair of 

subsequences. As noted in the time series literature, given 

the best motif pair, other definitions of motifs can be 

solved by minor additional calculations [9]. 

 On the other hand, the highest point on the SiMPle 

corresponds to the “most unique” snippet from the re-

cording. The procedure to search for such a subsequence 

that is the furthest from any other, known as discord dis-

covery, can be used in music processing to find interest-

ing segments in recordings. For example, it can be used 

to identify a solo, improvisation segments or the bridge. 

 For example, consider the song “Let It Be” by The 

Beatles. Figure 3. shows the SiMPle obtained for this 

track and points to their discord and pair of best motifs.  
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Best motifs at 3m9s 

and 3m23s

Discord at 1m54s

 
Figure 3. The pair of best motifs in a recording is determined 

by the subsequences starting at the positions of the minimum 

values of its SiMPle. At the same time, the position of the 

highest value points to the beginning of the discord excerpt. 

 While the motifs point to refrains, the discord in-

cludes bridge and the beginning of the guitar solo. 

5.2 Audio Thumbnailing 

Audio thumbnails are short representative excerpts of au-

dio recordings. Thumbnails have several applications in 

music information retrieval. For example, they can be 

used as the snippet shown the result of a search to the us-

er. In a commercial application, they can be used as the 

preview to a potential costumer in an online music store.  

 There is a consensus in the MIR community that the 

“ideal” music thumbnail is the most repeated excerpt, 

such as the chorus [1]. Using this assumption, the appli-

cation of SiMPle to identify a thumbnail is direct. Con-

sider the SiMPle index obtained by the self-join proce-

dure. The thumbnail is given by the subsequence starting 

in the position that is most used as a nearest neighbor. In 

other words, the beginning of the thumbnail is given by 

the position related to the mode of SiMPle index. 

 To illustrate this idea, we considered the song “New 

York, New York” by Frank Sinatra. Looking for a 30 sec-

onds thumbnail, we found an excerpt that is comprised of 

the last refrain, as well as the famous (brass) instrumental 

basis of the song. Figure 4 shows the histogram of the 

SiMPle index found in this experiment. 

The position of the mode corresponds to 

approximately 2 minutes and 49 seconds

0
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0 30 60 90 120 150
Time (s)  

Figure 4. Histogram of SiMPle index for the song “New York, 

New York”. Each bar counts how many times the subsequence 

starting at that point was considered the nearest neighbor of any 

other. We consider the subsequence represented by the most 

prominent peak as the thumbnail for this recording. 

5.3 Visualization 

The visualization of music structure aids the understand-

ing of the music content. Introduced in [21], the arc dia-

gram is a powerful tool to visualize repetitive segments in 

MIDI files [22] and audio recordings [23]. This approach 

represents a song by plotting arcs linking repeated seg-

ments. 

 All the information required to create such arcs are 

completely comprised on the SiMPle and the SiMPle in-

dex obtained by a self-join. Specifically, SiMPle provides 

the distances between subsequences, which can be used 

to determine if they are similar enough to exist a link be-

tween them and to define the color or transparency of 

each arc. The SiMPle index can be used to define both 

the positions and width of the arcs.  

 Figure 5 shows the scatter plot of the SiMPle index 

for “Hotel California” by Eagles. In this figure, there is a 

point (x,y) only if y is the nearest neighbor of x. The clear 

diagonals on this plot represent regions of n points such 

that the nearest neighbors of [x,x+1,…,x+n-1] are approx-

imately [y,y+1,…,y+n-1]. If the distance between such 

excerpts is low, then these regions may have a link be-

tween them. For this example, we defined the mean value 

of the SiMPle in that region as the distance threshold be-

tween the segments, in order to resolve if they should 
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stablish a link. Such threshold has direct impact on the 

number of arcs plotted. 
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Figure 5. Scatter plot of the SiMPle index for the song “Hotel 

California”. The (light) gray area indicates a possible link, but 

only the values in the (dark) green area represent subsequences 

with distance lower than the threshold.  

 By using a simple algorithm to spot such diagonals, 

we only need to define a threshold of distance and mini-

mum length of the linkages. We set the width of the links 

in our experiment to be greater than or equal to 5 sec-

onds. Figure 6 shows the resulting arc plot for the exam-

ple shown in Figure 5. 
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Figure 6. Arc plot for the song “Hotel California”. These plots 

show the difference between using the mean value of SiMPle 

as distance threshold (above) and no distance threshold at all 

(below). The color of the arcs are related to their relevance, i.e., 

as darker the arc, closer the subsequences linked by it. 

5.4 Endless Reproduction 

Consider a music excerpt s1, which starts at the time t1 of 

a specific song, has a small distance to its nearest neigh-

bor s2, which starts at time t2. When the reproduction of 

this song arrives t1, we can make a random decision to 

“skip” the reproduction to t2. Given that s1 and s2 are sim-

ilar, this jump may be imperceptible to the listener. By 

creating several points of skip, we are able to define a se-

quence of jumps that creates an endless reproduction of 

the song. A well-known deployed example of this kind of 

player is the Infinite Jukebox [7]. 

 The distance values obtained by the self-join repre-

sent how similar each subsequence is to its nearest neigh-

bor in another region of the song. Adopting a small 

threshold to the distance between subsequences, we can 

use SiMPle to define the jumps. These characteristics 

may be explored in order to create a player for endless 

reproduction. We refer the interested reader to the sup-

porting website [19] for examples of this functionality. 

5.5 Sampling Identification 

In addition to providing a global distance estimation be-

tween different songs, SiMPle is also powerful to exam-

ine local similarities. An interesting application that may 

exploit this ability is the automatic identification of sam-

ples. Sampling is the act of “borrowing” the instrumental 

basis or main melody from another song. This is a com-

mon approach in electronic and hip-hop music. 

 In contrast to cover versions, sampling is used as a 

virtual “instrument” to compose new songs. However, 

algorithms that look only for local patterns to identify 

versions of the same track may classify a recording using 

samples as a cover song. Using SiMPle, we can discover 

that the sampling excerpts have small distance values. In 

contrast, the segments related to the new song have sig-

nificantly higher values. 

 Figure 7 shows an example of the usage of SiMPle to 

spot sampling. In this case, we compare the song “Under 

Pressure” by Queen and David Bowie with “Ice Ice Ba-

by” by Vanilla Ice. Most of the continuous regions with 

values lower than the mean refer to the sampling of the 

famous bass line of the former song. 
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Figure 7. SiMPle (in blue) obtained between the songs “Ice Ice 

Baby” and “Under Pressure”. The continuous regions below the 

mean value (in red) represent the excerpts sampled by Vanilla 

Ice from Queen’s song. 

6. CONCLUSIONS 

In this paper, we introduced a technique to exploit subse-

quences joins to assess similarity in music. The presented 

method is very fast and requires only one parameter that 

is intuitively set in music applications. 

 While we focused our evaluation on the cover song 

recognition, we have shown that our approach has the po-

tential for applications in different MIR tasks. We intend 

to further investigate the use of matrix profiles in the 

tasks discussed in Section 5 and the effects of different 

features in the process.  

 The main limitation of the proposed method is that 

the use of only one nearest neighbor may be sensitive to 

hubs, i.e., subsequences that are considered the nearest 

neighbor of many other snippets. In addition, SiMPle 

cannot be directly used to identify regions where several 

subsequences are next to each other, composing a dense 

region. For this reason, we intend to measure the impact 

of the reduction in the amount of information in different 

tasks. Given that, we plan to explore how to incorporate 

additional information to SiMPle with no loss of time and 

space efficiency. 

 We have encouraged the community to confirm our 

results and explore or extend our ideas by making the 

code freely available [19]. 
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