

SIMPLE: ASSESSING MUSIC SIMILARITY USING

SUBSEQUENCES JOINS

Diego F. Silva1,2, Chin-Chia M. Yeh2,Gustavo E. A. P. A. Batista1, Eamonn Keogh2
1 Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, Brazil

2 Department of Computer Science and Engineering, University of California, Riverside, USA
diegofsilva@icmc.usp.br,myeh003@ucr.edu,gbatista@icmc.usp.br,eamonn@ucr.edu

ABSTRACT

Most algorithms for music information retrieval are based

on the analysis of the similarity between feature sets ex-

tracted from the raw audio. A common approach to as-

sessing similarities within or between recordings is by

creating similarity matrices. However, this approach re-

quires quadratic space for each comparison and typically

requires a costly post-processing of the matrix. In this

work, we propose a simple and efficient representation

based on a subsequence similarity join, which may be

used in several music information retrieval tasks. We ap-

ply our method to the cover song recognition problem

and demonstrate that it is superior to state-of-the-art algo-

rithms. In addition, we demonstrate how the proposed

representation can be exploited for multiple applications

in music processing.

1. INTRODUCTION

With the growing interest in applications related to music

processing, the area of music information retrieval (MIR)

has attracted huge attention in both academia and indus-

try. However, the analysis of audio recordings remains a

significant challenge. Most algorithms for content-based

music retrieval have at their cores some similarity or dis-

tance function. For this reason, a wide range of applica-

tions rely on some technique to assess the similarity be-

tween music objects. Such applications include segmen-

tation [8], audio-to-score alignment [4], cover song

recognition [15], and visualization [23].

 A common approach to assessing similarity in music

recordings is achieved by utilizing a self-similarity matrix

(SSM) [5]. This representation reveals the relationship

between each “snippet” of a track to all the other seg-

ments in the same recording. This idea has been general-

ized to measure the relationships between subsequences

of different songs, as in the application of cross-

recurrence analysis for cover song recognition [16].

 The main advantage of similarity matrices is the fact

that they simultaneously reveal both the global and the

local structure of music recordings. However, this repre-

sentation requires quadratic space in relation to the length

of the feature vector used to describe the audio. For this

reason, most methods to find patterns in the similarity

matrix are (at least) quadratic in time complexity. In spite

of this, most information contained in similarity matrices

is irrelevant or has little impact in its analysis. This ob-

servation suggests the need for a more space and time ef-

ficient representation of music recordings.

 In this work, we extend the subsequences all-pairs-

similarity-search, also known as similarity join, in order

to assess the similarity between audio recordings for MIR

tasks. As with the common similarity matrices, represent-

ing the entire subsequence join requires a quadratic

space, and also has a high time complexity, which is de-

pendent on the length of the subsequences to be joined.

 However, in this work we show that we can exploit a

new data structure called matrix profile which allows a

space efficient representation of the similarity join matrix

between subsequences. Moreover, we can leverage recent

optimizations in FFT-based all-neighbor search that allow

the matrix profile to be computed efficiently [10]. For

clarity, we refer to the representation presented in this

paper as Similarity Matrix ProfiLE (SiMPle).

 Figure 1 illustrates an example of two matrices repre-

senting the dissimilarities within and between recordings

and their relative SiMPle, which correspond to the mini-

mum value of each column of the similarity matrices.

0
50 100 150 200 250 300

2

4

6

8

50

100

150

200

250

300

5

10

15

20

25

50 100 150 200 250 300 350

50

100

150

200

250

300

0

5

10

15

20

50 100 150 200 250 300

50 100 150 200 250 300 350
0

5

10

15

20

Figure 1. Similarity matrix within (left) and between different

songs (right) and their respective SiMPle.

 In summary, our method has the following ad-

vantages/features:

 It is a novel approach to assess the audio similarity

and can be used in several MIR algorithms;

 We exploit the fastest known subsequence similarity

search technique in the literature [10], which makes

our method fast and exact;

 It is simple and only requires a single parameter,

which is intuitive to set for MIR applications;

 It is space efficient, requiring the storage of only

O(n) values;

 Once we calculate the similarity profile for a dataset

it can be efficiently updated, which has implications

for streaming audio processing.

 © Diego F. Silva, Chin-Chia M. Yeh, Gustavo E. A. P. A.
Batista, Eamonn Keogh. Licensed under a Creative Commons Attribu-

tion 4.0 International License (CC BY 4.0). Attribution: Diego F. Sil-

va, Chin-Chia M. Yeh, Gustavo E. A. P. A. Batista, Eamonn Keogh.

“SiMPle: Assessing Music Similarity Using Subsequences Joins”, 16th

International Society for Music Information Retrieval Conference, 2016.

23

2. SiMPle: SIMILARITY MATRIX PROFILE

We begin by describing the operation for producing the

matrix profile, a similarity join. For clarity, we use the

term time series to refer to the ordered set of features that

describe a whole recording and subsequence to define

any continuous subset of features from the time series.

Definition 1: Similarity join: given two time series A

and B with the desired subsequence length m, the sim-

ilarity join identifies the nearest neighbor of each sub-

sequence (with length m) in A from all the possible

subsequence set of B.

 Through such a similarity join, we can gather two

pieces of information about each subsequence in A,

which are: 1) the Euclidean distance to its nearest neigh-

bor in B and 2) the position of its nearest neighbor in B.

Such information can be compactly stored in vectors, re-

ferred as similarity matrix profile (SiMPle) and similarity

matrix profile index (SiMPle index) respectively.

 One special case of similarity join is when both input

time series refer to the same recording. We define the op-

eration that handles this specific case self-similarity join.

Definition 2: Self-similarity join: given a time series A

with the desired subsequence length m, the self-

similarity join identifies the non-trivial nearest neigh-

bor of each subsequence (with length m) in A from all

the possible subsequence set of A.

 The only major difference between self-similarity join

(Definition 2) and similarity join (Definition 1) is the

exclusion of trivial matched pairs when identifying the

nearest neighbor. The exclusion of trivial matches is cru-

cial as matching a subsequence with itself (or slightly

shifted version of itself) produces no useful information.

 We describe our method to calculate SiMPle in Algo-

rithm 1. In line 1, we record the length of B. In line 2, we

allocate memory and initialize SiMPle PAB and SiMPle

index IAB. From line 3 to line 6, we calculate the distance

profile vector D which contains the distances between a

given subsequence in time series B and each subsequence

in time series A. The particular function we used to com-

pute D is MASS (Mueen’s Algorithm for Similarity

Search), which is the most efficient algorithm known for

distance vector computation [10]. We then perform the

pairwise minimum for each element in D with the paired

element in PAB (i.e., min(D[i], PAB[i]) for i = 0 to

length(D) - 1.) We also update IAB[i] with idx when D[i] ≤

PAB[i] as we perform the pairwise minimum operation.

Finally, we return the result PAB and IAB in line 7.

Algorithm 1. Procedure to calculate SiMPle and SiMPle index

Input: Two user provided time series, A and B, and the desired subse-
quence length m

Output: The SiMPle PAB and the associated SiMPle index IAB

1
2

3

4
5

6

7

nB ← Length(B)
PAB ← infs, IAB ← zeros, idxes ← 1:nB-m+1

for each idx in idxes

 D ← MASS(B[idx:idx+m-1], TA) // c.f. [10]
 PAB, IAB ← ElementWiseMin(PAB, IAB, D, idx)

end for

return PAB, IAB

 Note that the Algorithm 1 computes SiMPle for the

general similarity join. To modify it to compute the self-

similarity join SiMPle of a time series A, we simply re-

place B by A in lines 1 and 4 and ignore trivial matches in

D when performing ElementWiseMin in line 5.

 The method MASS (used in line 4) is important to

speed-up the similarity calculations. This algorithm has a

time complexity of O(n log n). For brevity, we refer the

reader interested in details of this method to [10].

 In this work, we focus on demonstrating the utility of

SiMPle on the cover song recognition task. Given that the

cover song recognition is a specialization of the “query-

by-similarity” task, we believe that it is the best scenario

to evaluate a similarity method. Specifically, we propose

a SiMPle-based distance measure between a query and its

potential original version.

3. COVER SONG RECOGNITION

“Cover song” is the generic term used to denote a new

performance of a previously recorded track. For example,

a cover song may refer to a live performance, a remix or

an interpretation in a different music style. The automatic

identification of covers has several applications, such as

copyright management, collection organization, and

search by content.

 In order to identify different versions of the same

song, most algorithms search for globally [20] or locally

[15][18] conserved structure(s). A well-known and wide-

ly applied algorithm for measuring the global similarity

between tracks is Dynamic Time Warping (DTW) [11].

In spite of its utility in other domains, DTW is not gener-

ally robust to differences in structure between the record-

ings. A potential solution would be segmenting the song

before applying the DTW similarity estimation. However,

audio segmentation itself is also an open problem, and the

error on boundaries detection can cause a domino effect

(compounded errors) in the whole identification process.

 In addition, the complexity of the algorithm to calcu-

late DTW is O(n2). Although methods to fast approxi-

mate the DTW have been proposed [13], there is no error

bound for such approximations. In other words, it is not

possible to set a maximum error in the value obtained by

it in relation to the actual DTW.

 Algorithms that search for local similarities have been

successfully used to provide structural invariance to the

cover song identification task. A widely used method for

music similarity proposes the use of a binary distance

function to compare chroma-based features followed by a

dynamic programming local alignment [15]. Despite its

demonstrated utility to recognize cover recordings, this

method has several parameters, that are unintuitive to

tune, and is slow. Specifically, the local alignment is es-

timated by an algorithm with similar complexity to DTW.

Plus, the binary distance between chroma features used in

each step of the algorithm relies on multiple shifts of the

chroma vectors under comparison.

3.1 SiMPle-Based Cover Song Recognition

In this work, we propose to use SiMPle to measure the

distance between recordings in order to identify cover

songs. In essence we exploit the fact that the global rela-

tion between the tracks is composed of many local simi-

24 Proceedings of the 17th ISMIR Conference, New York City, USA, August 7-11, 2016

larities. In this way, we are able to simultaneously take

advantage of both local and global pattern matching.

 Intuitively, we should expect that the SiMPle obtained

by comparing a cover song to its original version is com-

posed mostly of low values. In contrast, two completely

different songs will result in a SiMPle constituted mainly

by high values. For this reason, we adopted the median

value of the SiMPle as a global distance estimation. For-

mally, the distance between a query B and a candidate

original recording A is defined in Equation 1.

 dist(A,B)=median(SiMPle(B,A)) (1)

 Note that several other measures of statistics could be

used instead of the median. However, the median is ro-

bust to outliers in the matrix profile. Such distortions may

appear when a performer decides, for instance, to add a

new segment (e.g., an improvisation or drum solo) to the

song. The robustness of our method to this situation, as

well as other changes in structure, is discussed in the next

section.

3.2 On the Structural Invariance

The structural variance is a critical concern when com-

paring different songs. Changes in structure may occur by

insertion or deletion of segments, as well as changes in

the order that different excerpts are played. From a high-

level point of view, SiMPle describes a global similarity

outline between songs by providing information of local

comparisons. This fact has several implications in our

distance estimation, which makes it largely invariant to

structural variations:

 If two performances are virtually identical, except for

the order and the number of repetitions of each rep-

resentative excerpt (i.e., chorus, verse, bridge, etc.),

all the values that compose SiMPle are close to zero;

 If a segment of the original version is deleted in the

cover song, this will cause virtually no changes in

the SiMPle;

 If a new feature is inserted into a cover, this will

have as consequence a peak in the SiMPle that will

cause only a slight increase in its median value.

4. EXPERIMENTAL EVALUATION

The evaluation of different choices of features sets is not

the main focus of this paper. For this reason, we fix the

use of chroma-based features in our experiments, as it is

the most popular feature set to analyze music data. In or-

der to provide local tempo invariance, we used the chro-

ma energy normalized statistics (CENS) [12]. Specifical-

ly, for the cover song recognition task, we adopted the

rate of two CENS per second of audio.

 In addition, we preprocessed the feature sets in each

comparison to provide key invariance. Before calculating

the similarity between songs, we transpose one of them in

order to have the same key using the optimal transposi-

tion index (OTI) [14].

 We notice that we are committed to the reproducibil-

ity of our results, and we encourage researchers and prac-

titioners to extend our ideas and evaluate the use of the

SiMPle in different MIR tasks. To this end, we created a

website [19] with the complete source code used in our

experiments and videos highlighting some of the results

presented in this work.

4.1 Datasets

We evaluate our method in different scenarios regarding

music styles and size of the databases. Specifically, we

tested the proposed distance measure’s utility for as-

sessing both popular and classical recordings.

 The first database considered is the YouTube Covers

[18], composed of 50 different compositions, each one

containing 7 different recordings obtained from YouTube

videos. The data was originally split into training and

testing partitions, in which the training set is composed of

the original recording in studio and a live version per-

formed by the same artist. To allow comparisons to the

literature, we follow the same configuration.

 The second dataset we consider is the widely used

collection of Chopin’s Mazurkas. The set of Mazurkas

used in this work contains 2,919 recordings of 49 pieces

for piano. The number of recordings of each song varies

from 41 to 95.

4.2 Results and Discussion

In order to assess the performance of our method, we

used three commonly applied evaluation measures: mean

average precision (MAP), precision at 10 (P@10), and

mean rank of first correctly identified cover (MR1). Note

that for MR1, smaller values are better.

 For both the YouTube Covers and Mazurkas datasets,

we compared our algorithm using results previously pre-

sented in the literature. For the former case, in addition to

comparing to the results presented in the paper for which

the dataset was created [18], we carefully implemented

the algorithm for local alignments based on the chroma

binary distance [15]. Table 1 shows the results.

Table 1. Mean average precision (MAP), precision at 10

(P@10), and mean rank of first correctly identified cover

(MR1) on the YouTube Covers dataset. Given that this dataset

has only two recordings per song in the training set, the maxi-

mum value to P@10 is 0.2.

 Our method achieved the best results in this experi-

ment. In addition, we note that our method is notably

faster than the second best (Serrà et al.). Specifically,

while our method took 1.3 hours, the other method took

approximately one week to run on the same computer1.

1 In our experiments, we used an 8-core Intel® Core ™ i7-6700K CPU

@ 4.00GHz with 32GB of RAM memory running Windows 10®. All
our codes were implemented and executed using Matlab R2014a®.

Algorithm MAP P@10 MR1

DTW 0.425 0.114 11.69

Silva et al. [18] 0.478 0.126 8.49

Serrà et al. [15] 0.525 0.132 9.43

SiMPle 0.591 0.140 7.91

Proceedings of the 17th ISMIR Conference, New York City, USA, August 7-11, 2016 25

We acknowledge that we did not invest a lot of effort op-

timizing the competing method. However, we do not be-

lieve that any code optimization is capable of significant-

ly reducing the performance gap.

 We also consider the Mazurkas dataset. In addition to

the results achieved by DTW, we report MAP results

documented in the literature, which were achieved by re-

trieving the recordings by structural similarity strategies

using this data. Specifically, the subset of mazurkas used

in this work is exactly the same as the used in [2] and

[17] and has only minor differences to the dataset used in

[6]. Although [15] is considered the state-of-the-art for

cover song recognition, we do not include its results due

to the high time complexity. Table 2 shows the results.

Algorithm MAP P@10 MR1

DTW 0.882 0.949 4.05

Bello [2] 0.767 - -

Silva et al. [17] 0.795 - -

Grosche et al. [6] 0.819 - -

SiMPle 0.880 0.952 2.33

Table 2. Mean average precision (MAP), precision at 10

(P@10), and mean rank of first correctly identified cover

(MR1) on the Mazurkas dataset.

 The structures of the pieces on this dataset are re-

spected in most of the recordings. In this case, DTW per-

forms similar than our algorithm. However, our method is

faster (approximately two times in our experiments) and

has several advantages over DTW, such as its incremen-

tal property, discussed in the next section.

4.3 Streaming Cover Song Recognition

Real-time audio matching has attracted the attention of

the community in the last years. In this scenario, the input

is a stream of audio and the output is a sorted list of simi-

lar objects in a database.

 In this section, we evaluate our algorithm in an online

cover song recognition scenario. For concreteness, con-

sider that a TV station is broadcasting a live concert. In

order to automatically present the name of the song to the

viewers or to synchronize the concert with a second

screen app, we would like to take the streaming audio as

input to our algorithm and be able to recognize what song

the band is playing as soon as possible. To accomplish

this task, we need to match the input to a set of (previous-

ly processed) recordings.

 In addition to allowing the fast calculation of all the

distances of a subsequence to a whole song, the proposed

algorithm has an incremental property that can be ex-

ploited to estimate cover song similarity in a streaming

fashion. If we have a previously calculated SiMPle, then,

when we extract a new vector of (chroma) features, we

do not need to recalculate the whole SiMPle from the be-

ginning. Instead, just two quick steps are required:

 Calculation of the distance profile to the new subse-

quence, i.e., the distance of the last observed subse-

quence (including the new feature vector) to all the

subsequences of the original song;

 Update of SiMPle by selecting the minimum value

between the new distance profile and the previous

SiMPle for each subsequence.

 These steps are done by the Algorithm 2.

Algorithm 2. Procedure to incrementally update SiMPle and SiMPle
index

Input: The current time series A and B, the new chroma vector c, the

desired subsequence length m, and the current SiMPle PAB and SiMPle
index IAB

Output: The updated SiMPle PAB,new and the associated SiMPle index

IAB,new

1

2
3

4

5
6

newB ← Concatenate(B,c), nB ← Length(newB)

D ← MASS(newB[nB-m+1: nB], A) // c.f. [10]

PAB, IAB ← ElementWiseMin(PAB, IAB, D, nB-m+1)

PAB,last, IAB,last ← FindMin(D)

PAB,new← [PAB, PAB,last], IAB,new ← [IAB, IAB,last]

return PAB,new, IAB,new

 To evaluate the ability of our method for streaming

recognition, we performed a simple experiment simulat-

ing the previously described scenario. First, we extracted

features from each track in the dataset of original record-

ings. For clarity, we will refer to this database as the

training set. Then, we randomly chose another recording

as our query and processed it according to the following

steps. We begin extracting features from the first three

seconds of the query in order to calculate the first dis-

tance estimation to each training object. After this initial

step, for each second of the query, we repeat the process

of extracting features and re-estimating the distance

measure to the training set.

 In this experiment, we used the Mazurkas dataset with

two CENS per second. The training set is composed of

the first recording (in alphabetical order) of each piece.

We used a performance with approximately 275 seconds

as a query, and we were able to maintain the process fast-

er than real-time. Specifically, the updates took approxi-

mately 0.7 seconds to extract the features, update SiMPle,

and recalculate the distance for all the training objects.

 Figure 2 visualizes the changes in distance estimation

in an audio streaming query session. In this case, we used

a recording of the “Mazurka in F major, Op. 68, No. 3”

as query. In the first estimation, its training version ap-

pears as the sixth nearest neighbor. However as we see

more evidence, it quickly becomes the best match.

0 4 8 12

Op. 68, No. 3

Op. 24, No. 4

Op. 33, No. 3

Op. 56, No. 3

Op. 24, No. 1

Op. 27, No. 1

0 4 8 12

Op. 24, No. 2

Op. 33, No. 3

Op. 68, No. 1

Op. 24, No. 3

Op. 41, No. 3

Op. 68, No. 3

0 4 8 12

Op. 56, No. 3

Op. 17, No. 4

Op. 68, No. 3

Op. 45, No. 4

Op. 24, No. 2

Op. 24, No. 2

Distance to the training recording
Figure 2. Changes in the distance when querying a recording

of the “Mazurka in F major, Op. 68, No. 3” in a streaming

fashion. The graphs represent the top 6 matches after pro-

cessing 3 (left), 5 (middle), and 10 (right) seconds of the audio.

26 Proceedings of the 17th ISMIR Conference, New York City, USA, August 7-11, 2016

 Another strategy that can be used in this scenario is an

amnesic sliding window, in order to forget old values and

further speedup the matching of new subsequences. For a

given window length w, we can maintain just the last w

values in the SiMPle. In this way, a change in the distri-

bution of the distance estimates may assist in the identifi-

cation of the ending and beginning of a song. At the same

time, the positions of the most recently matched sections

can be used as estimation of the moment in the current

song. These ideas may help to identify songs being se-

quentially played in a random or unknown order.

5. EXPANDING THE RANGE OF APPLICATIONS

OF SiMPle

In this work, we focus on assessing music similarity by

joining subsequences. While we evaluate our method on

the cover song recognition task, we claim that the SiMPle

is a powerful tool for other music processing tasks. To

reinforce this argument, we present insights on how to

use SiMPle in different application domains, as well

some initial results. The methods presented in this section

have room for improvements, but they are simple yet ef-

fective. We intend to further explore and evaluate SiMPle

in (at least) the tasks listed below.

 In contrast to the previous experiments, when we use

the self-similarity join to highlight points of interest in a

recording, we apply ten CENS per second.

5.1 Motifs and Discords

The SiMPle from a self-similarity join has several ex-

ploitable properties. For example, the lowest points cor-

respond to the locations of the most faithfully repeated

section (i.e., the chorus or refrain). Between several defi-

nitions of motifs in the literature, such as harmonic or me-

lodic motifs, its simplest definition is the closest pair of

subsequences. As noted in the time series literature, given

the best motif pair, other definitions of motifs can be

solved by minor additional calculations [9].

 On the other hand, the highest point on the SiMPle

corresponds to the “most unique” snippet from the re-

cording. The procedure to search for such a subsequence

that is the furthest from any other, known as discord dis-

covery, can be used in music processing to find interest-

ing segments in recordings. For example, it can be used

to identify a solo, improvisation segments or the bridge.

 For example, consider the song “Let It Be” by The

Beatles. Figure 3. shows the SiMPle obtained for this

track and points to their discord and pair of best motifs.

0 30 60 90 120 150 180 210
0

20

40

60

Time (s)

SiMPle

Best motifs at 3m9s

and 3m23s

Discord at 1m54s

Figure 3. The pair of best motifs in a recording is determined

by the subsequences starting at the positions of the minimum

values of its SiMPle. At the same time, the position of the

highest value points to the beginning of the discord excerpt.

 While the motifs point to refrains, the discord in-

cludes bridge and the beginning of the guitar solo.

5.2 Audio Thumbnailing

Audio thumbnails are short representative excerpts of au-

dio recordings. Thumbnails have several applications in

music information retrieval. For example, they can be

used as the snippet shown the result of a search to the us-

er. In a commercial application, they can be used as the

preview to a potential costumer in an online music store.

 There is a consensus in the MIR community that the

“ideal” music thumbnail is the most repeated excerpt,

such as the chorus [1]. Using this assumption, the appli-

cation of SiMPle to identify a thumbnail is direct. Con-

sider the SiMPle index obtained by the self-join proce-

dure. The thumbnail is given by the subsequence starting

in the position that is most used as a nearest neighbor. In

other words, the beginning of the thumbnail is given by

the position related to the mode of SiMPle index.

 To illustrate this idea, we considered the song “New

York, New York” by Frank Sinatra. Looking for a 30 sec-

onds thumbnail, we found an excerpt that is comprised of

the last refrain, as well as the famous (brass) instrumental

basis of the song. Figure 4 shows the histogram of the

SiMPle index found in this experiment.

The position of the mode corresponds to

approximately 2 minutes and 49 seconds

0

1

2

3

4

5

6

0 30 60 90 120 150
Time (s)

Figure 4. Histogram of SiMPle index for the song “New York,

New York”. Each bar counts how many times the subsequence

starting at that point was considered the nearest neighbor of any

other. We consider the subsequence represented by the most

prominent peak as the thumbnail for this recording.

5.3 Visualization

The visualization of music structure aids the understand-

ing of the music content. Introduced in [21], the arc dia-

gram is a powerful tool to visualize repetitive segments in

MIDI files [22] and audio recordings [23]. This approach

represents a song by plotting arcs linking repeated seg-

ments.

 All the information required to create such arcs are

completely comprised on the SiMPle and the SiMPle in-

dex obtained by a self-join. Specifically, SiMPle provides

the distances between subsequences, which can be used

to determine if they are similar enough to exist a link be-

tween them and to define the color or transparency of

each arc. The SiMPle index can be used to define both

the positions and width of the arcs.

 Figure 5 shows the scatter plot of the SiMPle index

for “Hotel California” by Eagles. In this figure, there is a

point (x,y) only if y is the nearest neighbor of x. The clear

diagonals on this plot represent regions of n points such

that the nearest neighbors of [x,x+1,…,x+n-1] are approx-

imately [y,y+1,…,y+n-1]. If the distance between such

excerpts is low, then these regions may have a link be-

tween them. For this example, we defined the mean value

of the SiMPle in that region as the distance threshold be-

tween the segments, in order to resolve if they should

Proceedings of the 17th ISMIR Conference, New York City, USA, August 7-11, 2016 27

stablish a link. Such threshold has direct impact on the

number of arcs plotted.

0 60 120 180 240 300 360
0

60

120

180

240

300

360

Figure 5. Scatter plot of the SiMPle index for the song “Hotel

California”. The (light) gray area indicates a possible link, but

only the values in the (dark) green area represent subsequences

with distance lower than the threshold.

 By using a simple algorithm to spot such diagonals,

we only need to define a threshold of distance and mini-

mum length of the linkages. We set the width of the links

in our experiment to be greater than or equal to 5 sec-

onds. Figure 6 shows the resulting arc plot for the exam-

ple shown in Figure 5.

0 30 60 90 120 150 180 210 240 270 300 330 360 390

0 30 60 90 120 150 180 210 240 270 300 330 360 390

Time (s)
Figure 6. Arc plot for the song “Hotel California”. These plots

show the difference between using the mean value of SiMPle

as distance threshold (above) and no distance threshold at all

(below). The color of the arcs are related to their relevance, i.e.,

as darker the arc, closer the subsequences linked by it.

5.4 Endless Reproduction

Consider a music excerpt s1, which starts at the time t1 of

a specific song, has a small distance to its nearest neigh-

bor s2, which starts at time t2. When the reproduction of

this song arrives t1, we can make a random decision to

“skip” the reproduction to t2. Given that s1 and s2 are sim-

ilar, this jump may be imperceptible to the listener. By

creating several points of skip, we are able to define a se-

quence of jumps that creates an endless reproduction of

the song. A well-known deployed example of this kind of

player is the Infinite Jukebox [7].

 The distance values obtained by the self-join repre-

sent how similar each subsequence is to its nearest neigh-

bor in another region of the song. Adopting a small

threshold to the distance between subsequences, we can

use SiMPle to define the jumps. These characteristics

may be explored in order to create a player for endless

reproduction. We refer the interested reader to the sup-

porting website [19] for examples of this functionality.

5.5 Sampling Identification

In addition to providing a global distance estimation be-

tween different songs, SiMPle is also powerful to exam-

ine local similarities. An interesting application that may

exploit this ability is the automatic identification of sam-

ples. Sampling is the act of “borrowing” the instrumental

basis or main melody from another song. This is a com-

mon approach in electronic and hip-hop music.

 In contrast to cover versions, sampling is used as a

virtual “instrument” to compose new songs. However,

algorithms that look only for local patterns to identify

versions of the same track may classify a recording using

samples as a cover song. Using SiMPle, we can discover

that the sampling excerpts have small distance values. In

contrast, the segments related to the new song have sig-

nificantly higher values.

 Figure 7 shows an example of the usage of SiMPle to

spot sampling. In this case, we compare the song “Under

Pressure” by Queen and David Bowie with “Ice Ice Ba-

by” by Vanilla Ice. Most of the continuous regions with

values lower than the mean refer to the sampling of the

famous bass line of the former song.

0 25 50 75 100 125 150 175 200 225 250

Mean value

Sampling excerpts

Time (s)

SiMPle

Figure 7. SiMPle (in blue) obtained between the songs “Ice Ice

Baby” and “Under Pressure”. The continuous regions below the

mean value (in red) represent the excerpts sampled by Vanilla

Ice from Queen’s song.

6. CONCLUSIONS

In this paper, we introduced a technique to exploit subse-

quences joins to assess similarity in music. The presented

method is very fast and requires only one parameter that

is intuitively set in music applications.

 While we focused our evaluation on the cover song

recognition, we have shown that our approach has the po-

tential for applications in different MIR tasks. We intend

to further investigate the use of matrix profiles in the

tasks discussed in Section 5 and the effects of different

features in the process.

 The main limitation of the proposed method is that

the use of only one nearest neighbor may be sensitive to

hubs, i.e., subsequences that are considered the nearest

neighbor of many other snippets. In addition, SiMPle

cannot be directly used to identify regions where several

subsequences are next to each other, composing a dense

region. For this reason, we intend to measure the impact

of the reduction in the amount of information in different

tasks. Given that, we plan to explore how to incorporate

additional information to SiMPle with no loss of time and

space efficiency.

 We have encouraged the community to confirm our

results and explore or extend our ideas by making the

code freely available [19].

Acknowledgements: The authors would like to thank

FAPESP by the grants #2013/26151-5 and #2015/07628-

0 and CNPq by the grants #303083/2013-1 and

#446330/2014-0, and NSF by the grant IIS 1510741.

28 Proceedings of the 17th ISMIR Conference, New York City, USA, August 7-11, 2016

7. REFERENCES

[1] M. A. Bartsch and G. H. Wakefield. “Audio

thumbnailing of popular music using chroma-based

representations”. IEEE Transactions on Multimedia,

Vol. 7, No. 1, pp 96–104, 2005.

[2] J. P. Bello. “Measuring Structural Similarity in

Music”. IEEE Transactions on Audio, Speech, and

Language Processing, Vol. 9, No. 7, pp. 2013–2025,

2011.

[3] AHRC Research - Centre for the History and

Analysis of Recorded Music. “Mazurka project”.

url: www.mazurka.org.uk/ (accessed 24 May, 2016)

[4] J. J. Carabias-Orti, F. J. Rodriguez-Serrano, P. Vera-

Candeas, N. Ruiz-Reyes, and F. J. Canadas-

Quesada. “An audio to score alignment framework

using spectral factorization and dynamic time

warping”. International Society for Music

Information Retrieval Conference, pp. 742–748,

2015.

[5] J. Foote. “Visualizing music and audio using self-

similarity”. ACM International Conference on

Multimedia, pp. 77–80, 1999.

[6] P. Grosche, J. Serrà, M. Müller, and J. L. Arcos.

“Structure-based audio fingerprinting for music

retrieval”. International Society for Music

Information Retrieval Conference, pp. 55–60, 2012.

[7] P. Lamere. “The Infinite Jukebox”, url:

www.infinitejuke.com/ (accessed 24 May, 2016).

[8] B. McFee and D. P. W. Ellis. “Analyzing song

structure with spectral clustering”, International

Society for Music Information Retrieval Conference,

pp. 405–410, 2014.

[9] A. Mueen, E. Keogh, Q. Zhu, S. Cash, and M. B.

Westover. “Exact discovery of time series motifs”,

SIAM International Conference on Data Mining, pp.

473–484, 2009.

[10] A. Mueen, K. Viswanathan, C. K. Gupta and E.

Keogh. “The fastest similarity search algorithm for

time series subsequences under Euclidean distance”,

url:

www.cs.unm.edu/~mueen/FastestSimilaritySearch.html

(accessed 24 May, 2016).

[11] M. Müller. “Dynamic time warping”. Information

retrieval for music and motion, pp. 69-84, Springer,

2007.

[12] M. Müller, F. Kurth, and M. Clausen. “Audio

matching via chroma-based statistical features”.

International Society for Music Information

Retrieval Conference, pp. 288–295, 2005.

[13] S. Salvador and P. Chan. “Toward accurate dynamic

time warping in linear time and space”. Intelligent

Data Analysis, Vol. 11, No. 5, pp 561–580, 2007.

[14] J. Serrà, E. Gómez, and P. Herrera. “Transposing

chroma representations to a common key”. CS

Conference on The Use of Symbols to Represent

Music and Multimedia Objects, pp. 45–48, 2008.

[15] J. Serrà, E. Gómez, P. Herrera, and X. Serra.

“Chroma binary similarity and local alignment

applied to cover song identification”. IEEE

Transactions on Audio, Speech, and Language

Processing. Vol. 16, No. 6, pp. 1138–1151, 2008.

[16] J. Serrà, X. Serra, and R. G. Andrzejak. “Cross

recurrence quantification for cover song

identification”. New Journal of Physics, Vol. 11, No.

9, pp. 093017, 2009.

[17] D. F. Silva, H. Papadopoulos, G. E. A. P. A. Batista,

and D. P. W. Ellis. “A video compression-based

approach to measure music structural similarity”.

International Society for Music Information

Retrieval Conference, pp. 95–10, 2014.

[18] D. F. Silva, V. M. A. Souza, and G. E. A. P. A.

Batista. “Music shapelets for fast cover song

recognition”. International Society for Music

Information Retrieval Conference, pp. 441–447,

2015.

[19] D. F. Silva, C.-C. M. Yeh, G. E. A. P. A. Batista, E.

Keogh. “Supporting website for this work”, url:

http://sites.google.com/site/ismir2016simple/

(accessed 24 May, 2016).

[20] W.-H. Tsai, H.-M. Yu, and H.-M. Wang. “Using the

similarity of main melodies to identify cover

versions of popular songs for music document

retrieval”. Journal of Information Science and

Engineering, vol. 24, No. 6, pp. 1669–1687, 2008.

[21] M. Wattenberg. “Arc diagrams: Visualizing

structure in strings”. IEEE Symposium on

Information Visualization, pp 110–116, 2002.

[22] M. Wattenberg. “The Shape of Song”, url:

www.turbulence.org/Works/song/ (accessed 24 May,

2016).

[23] H. H. Wu, J. P. Bello. “Audio-based music

visualization for music structure analysis”. Sound

and Music Computing Conference, pp. 1–6, 2010.

Proceedings of the 17th ISMIR Conference, New York City, USA, August 7-11, 2016 29

