SCAD: Towards a Universal and Automated Network Side-Channel Vulnerability
Detection

Keyu Man, Zhongjie Wang, Yu Hao, Shenghan Zheng, Xin’an Zhou, Yue Cao, Zhiyun Qian
{kman001, zwang048, yhao016, szhen075, xzhoul 14, ycao009, zhiyung}@ucr.edu
University of California, Riverside

Abstract—Network side-channel attacks have recently been
highlighted due to their severity and elusive nature. For
example, SADDNS attacks allow an off-path attacker to launch
cache poisoning attacks leveraging network side channels. Due
to the subtle nature of network side channels, it is challenging
to identify such side channels. To this date, few automated
bug discovery techniques are tailored for such vulnerabilities.
Unfortunately, none of them is general and automated enough,
making their impact and longer-term use limited. In this paper,
we describe the first solution that aims to fill this gap. Specifi-
cally, we develop SCAD, aiming at identifying violations of the
non-interference property, which are commonly understood as
the root cause of network side channels. As non-interference
property is a hyperproperty, it necessitates reasoning across
multiple execution traces. This motivated us to develop our
solution based on under-constrained and dynamic symbolic
execution.

The state-of-the-art solution, SCENT, applies model check-
ing, which requires extra effort in modeling or simplifying
certain parts of a network protocol, in order to scale. Unfor-
tunately, such modeling and simplification is time-consuming,
error prone, and can overlook important details, leading to
missed vulnerabilities. For example, it was reported that 2.5
person-week was required to construct a self-contained using
SCENT. In comparison, SCAD requires only a single person-
day to perform labeling of secrets and attacker-observables,
and decide the analysis scope. By applying SCAD to multiple
TCP and UDP implementations, including Linux, FreeBSD,
and IwIP, we find 14 network side-channels, 7 of which were
previously unknown, with a false positive rate of only 17.6%.
The results reveal serious vulnerabilities, including those that
can be used to compromise the previously patched Linux
and FreeBSD Kkernels, making them susceptible to SADDNS
attacks or off-path TCP exploits. Our analysis concludes that
the majority of the side channels cannot be found by existing
solutions due to the aforementioned limitations.

1. Introduction

Network side channels were recently demonstrated to
lead to serious attacks. For example, such vulnerabilities can
empower anyone with IP spoofing capability to poison the
DNS cache of a DNS resolver [1], [2], manipulating TCP

connections established between any two hosts [3], [4], [5],
or even decipher Wi-Fi passwords [6].

While the threat to network security is undeniable, the
discovery of most network side channels remains largely
a manual endeavor. Despite the proliferation of tools for
automated microarchitectural side channel detection [7], [8],
[9], [10], [11], [12], only a handful cater to network side
channels' [13], [14].

The existence of side channels can be fundamentally for-
mulated as violations of the non-interference property [15],
which is a hyperproperty that predicates on relations be-
tween execution traces of the attacker and the victim [16].
In essence, it requires a detailed and precise analysis of the
interactions between some shared resources and two parties
(i.e., attacker and victim), where the interactions can lead
some sensitive data to flow through such resources to the
attacker. Unfortunately, prior automation attempts, such as
PacketGuardian [14], instead of looking for violations
of the non-interference property, looked for simpler patterns
as approximations of non-interference property which has
resulted in numerous false positives. SCENT [13] adopted a
more principled solution, leveraging model checking, to de-
tect non-interference property violations and, by extension,
side channels. Yet, the significant reliance on manual inter-
ventions (e.g., extraction of relevant functions, abstraction of
external functions, marking of state variables) and heuristics
bound to protocol implementations (e.g., downscaling) limits
its generality, usability, and even completeness. As will be
demonstrated in our evaluation, it misses important side
channels that are unveiled by our solution.

Given the current landscape, we see an important gap in
addressing the issue of side-channel attacks. Specifically, we
see a lack of reusable and general tools that can be easily
applied to a variety of protocol implementations (including
future ones). To fill this gap, we introduce SCAD (Side-
ChAnnel Detector) — an analysis tool for automated side-
channel detection. At a high level, SCAD employs symbolic
execution to explore the state space of a target protocol
implementation. For each path, it summarizes the associated
data flows regarding (1) how a secret propagates to various
shared variables in the protocol along each execution path,
and (2) how the value of shared variables may influence

1. For the rest of the paper, the term “side channel” will specifically
refer to “network side channel”, unless otherwise specified.

attacker-observables (e.g., presence or absence of a re-
sponse, or differences in a response). Then, it pairs different
paths and their associated data flow behaviors to look for
any non-interference property violations.

However, network side channels can require hundreds
of packets to trigger [1], [2], [3], making the desirable
part of the state space difficult to reach using the tradi-
tional dynamic symbolic execution [17] where hundreds of
symbolized packets need to be analyzed. To avoid such
an expensive search, SCAD employs a particular selective
symbolic execution to (1) symbolize not only packets but
also protocol states, and (2) allow switching between ex-
pensive symbolic execution and concrete execution. Such
a configuration balances soundness and completeness. In
particular, the former can lead to false alarms in reported
bugs as it is effectively making the symbolic execution
under-constrained, but it avoids the expensive analysis of
many symbolized packets. The latter sacrifices complete-
ness, leading to potentially missed bugs. This approach is
necessary due to the complexity of network protocol stacks
in real-world operating systems. It is essential to restrict the
scope of symbolic execution to the specific protocol under
analysis.

To evaluate SCAD, we applied it to diverse targets,
including the TCP implementations of Linux, FreeBSD,
and IwIP, and the UDP implementation of Linux, while
also incorporating other protocols that interact with these
protocols, e.g., ICMP. With a minimal effort of specifying
the secrets and attacker-observables for each target, SCAD
seamlessly runs on these targets. With a 48-hour symbolic
execution run for each target, SCAD reports 17 side chan-
nels, of which 14 were true positives (TPs), and unveiling
7 previously unknown side channels.

Contributions. Overall, our contributions can be sum-
marized as follows:

o We develop a solution that requires minimal manual
effort compared to state-of-the-art to discover network
side channels in real-world network protocols.

o We leverage a specific configuration of symbolic execu-
tion that is the most suitable for the task of identifying
network side channels.

o We report 7 previously-unknown side channels in pre-
viously patched protocols and analyze why such vul-
nerabilities cannot be found by prior work.

« We open sourced our solution? to facilitate the repro-
duction of results and future research in this domain.

2. Background & Motivation

2.1. Off-Path Attacks

Off-path attacks refer to a type of ‘blind’ network attack
where the attacker, without the ability to eavesdrop or
intercept the victim hosts’ communications, can still deduce
confidential information about the victims. This is achieved
by sending probing packets, including those with spoofed

2. https://github.com/seclab-uct/SCAD

Victim Resolver Off-Path Victim Resolver w/

w/o Active Query Nameserver Attacker Nameserver Active Query on n
Global |~ 'UDP Probeto Portn | UDP Probeto Portn ™| Global
Counter=1 Counter=1
Global Reply Global
Counter=0 _— : Counter=1
UDP Verification UDP Verification

Legitimate Global
Spoofed ICMP Verification Reply | Counter=0

Figure 1: Simplified SADDNS attack mechanism

IP addresses. Off-path attacks have been known for a few
decades, although popularized in the recent decade or so as
exemplified by [1], [2], [3], [18], [19], [20], [21], [22], [23],
[24]. A notable attack documented in 2016 [3] involved an
off-path attacker to infer if any two arbitrary hosts on the
Internet are communicating using a TCP connection. Fur-
ther, if the connection is present, such an off-path attacker
can also infer the TCP sequence numbers in use, from both
sides. This in turn allows the attacker to forcefully terminate
the connection and perform data injection attacks. In 2020
and 2021, there are two other prominent examples where
an off-path attacker successfully revived the DNS cache
poisoning attack using network side channels [1], [2], which
have received significant attention [25], [26]. Such attacks
are very powerful because they can be launched completely
remotely and off-path.

These attacks hinge on two fundamental requirements:
(1) the attacker can send packets with spoofed source IP ad-
dresses which is allowed in the majority of ASes according
to a recent study [27]. (2) there exist some shared resources
that inadvertently disclose information about the victims to
the attacker through the responses elicited by their probes.

2.2. A Motivating Example: SADDNS

SADDNS [1] is a recent and prominent off-path attack
that successfully leads to the powerful DNS cache poison-
ing. Specifically, by leveraging a subtle side channel, an off-
path attacker can quickly infer the ephemeral port number
associated with a DNS request initiated by a DNS resolver.
This enables the attacker to send a spoofed malicious DNS
response as a result (by bruteforcing the 65,536 possible
transaction IDs). The side channel stems from the global
ICMP rate limit counter, a shared token bucket governing
ICMP replies. As the name suggests, each ICMP packet
emission decreases the counter (or available tokens) by one
and no ICMP is allowed to be sent if the counter reached
Zero.

Figure 1 illustrates the attack and can be divided into
two parts: the right part refers to the case where there is an
active DNS query using the ephemeral port n on the victim
resolver and the left part refers to the case without an active

query. The attack works as follows: (1) the attacker sends
a spoofed UDP probing packet (with the source IP of the
server that the resolver queries) to port n, depending on
whether the port is open (right) or closed (left), the resolver
will either not change the counter (right) or decrement the
counter (left); (2) the attacker then infers the value of the
global counter by sending a verification UDP packet using
its own IP address as source IP to solicit an ICMP reply.
As depicted in Figure 1, by observing whether the ICMP
verification reply is generated, the attacker can distinguish
between the above two cases. This essentially allows an
off-path attacker to scan the ephemeral port status via the
shared ICMP counter state. Note that in the actual Linux
Kernel, the value of the rate limit counter is 50 by default,
which requires 50 probe packets to reach. But for ease of
understanding, we simplify the value to 1 in Figure 1.

N —

[« 3NN BEN N NNV RN NV

—_

int __udp4_lib_rcv(struct sk_buff =skb, ...) {
struct socks#x sk =
__udp4_lib_lookup_skb (skb—>src, skb—>dst,

skb—>sport , skb—>dport);

if (!sk) {
if (icmp_global.credit) {
icmp_global.credit ——;
icmp_push_reply (...);

return O;

}

Listing 1: SADDNS vulnerability in Linux kernel (simplified)

Listing 1 further illustrates the vulnerability in detail.
The code is distilled from the incoming UDP packet pro-
cessing logic in the vulnerable Linux kernel. First, line 2
tries to match the 4-tuple of the incoming UDP packet to
the existing sockets. Then depending on the match result, the
kernel will try to emit an ICMP error packet (line 6) if there
is not a match, and deduct one token (line 5). The difference
in behavior of token deduction, depending on whether the
four-tuple of an incoming packet matches an ongoing socket,
leads to the side channel.

In the final phase of the attack, the verification packet
sent by the attacker targets a confirmed closed port. This
invariably prompts the victim resolver to execute line 4.
Essentially, the attacker can deplete the token limit by
dispatching multiple verification packets and monitoring
the number of triggered responses. This method effectively
reveals the value of the variable icmp_global.credit,
which is different depending on whether the previously
spoofed probing packets hit the correct four-tuple or not.
In other words, the secret of “whether a guessed port is
correct or not” leaked through the global/shared variable of
icmp_global.credit, to the attacker-observable (i.e., the
presence or absence of an ICMP response).

3. Overview

3.1. Threat Model

Previous off-path side-channel attacks, as exemplified
by [1], [2], [3], [6], [23], [24], can be generalized into a

model where two victim hosts (e.g., DNS resolver and an
authoritative nameserver) communicate, using some shared
secret (e.g., ephemeral port number) that is not visible to an
off-path attacker. By definition, an off-path attacker is unable
to eavesdrop or tamper with the communication between
the victim hosts. However, we assume that such an off-
path attacker can leverage IP spoofing (which is allowed
in the majority of ASes according to a recent study [27]),
and therefore can craft and send any packets using spoofed
source IPs (e.g., nameserver’s IP). Note that an off-path
attacker may not observe any response of the spoofed pack-
ets (as they are destined to the spoofed IP address) unless
they send non-spoofed probing packets (i.e., with their own
IP address as source IP). The primary objective of such
attacks is to deduce secrets by sending a combination of
spoofed and non-spoofed packets. SCAD aims to detect such
vulnerabilities using automated analysis techniques.

3.2. Modeling Network Side Channels as Non-
Interference Property Violations Network Side-
Channel Definition

Similar to other kinds of side channels [8], we model
network side channels as non-interference property viola-
tions: given a protocol implementation P with a memory
state M that captures input, output, and state of the protocol.
We can divide M into a low (sensitivity) part My (e.g.,
storing one or more input packets from untrusted remote
attackers) and a high (sensitivity) My (e.g., storing the
ephemeral port number of sockets). P adheres to non-
interference property if and only if, for any two initial
memory states M; and M, with the same low-sensitivity
memory (i.e, My = Mpo), after executing P, the re-
sulting low-sensitivity memory state remain identical (i.e.,
(P(My))r = (P(M2))r) [15], [16], [28]. In essence, the
processing of low-sensitivity memory (i.e., attacker inputs)
should produce identical attacker-observable outputs, which
remain unaffected by variations in high-sensitivity memory
states. Note non-interference property violation is orthog-
onal to the semantics of the memory (e.g., randomness).
In fact, randomness only reduces the entropy of the useful
information deduced by the attacker but it does not eliminate
the violation of non-interference property (as shown in
Section 7.1 and Section 7.2).

Accordingly, we consider any network side-channels to
be in-scope if there is a notion of multi-user, multi-session
in a protocol where (1) there exist some victim secrets;
(2) there are shared resources across users/sessions; (3) an
attacker can observe responses through his own session by
probing the session associated with the victim. In this paper,
we focused on TCP, UDP, and ICMP protocols because they
meet the above conditions.

3.3. Challenges of Finding Network Side Channels

Unlike other classic side channels such as the CPU
cache side channels, network side channels are uniquely
challenging in the following aspects.:

First, (1) ilt requires multiple rounds of interactions, i.e.,
probing, to reveal a network side channel. This is because
side channels are often triggered in a specific state (under
corner cases) and require a careful sequence of probing
packets, including both spoofed and non-spoofed packets.

Second, (2) tThe propagation distance from secrets to
attacker-observables is much longer in network side chan-
nels, due to the multiple rounds of interactions. Cache side
channels typically manifest in unique cache footprint as
soon as secrets are accessed in memory (e.g., secret access
affecting control-flow path). In contrast, network side chan-
nels often propagate through intermediate shared resources,
and require additional probing packets to leak to attacker-
observables.

Third, (3) dDue to the fact that network protocols are
complex and can involve dependencies, e.g., lower-layer
protocols such as IP and even device drivers, it is necessary
to limit the scope of the analysis appropriately as to not
overburden the symbolic execution. Unlike user-space pro-
grams where common library functions are already modeled,
e.g., memcpy (), dependencies in the OS kernel have not
been well-summarized.

(4) Unlike many passive side channels that allow contin-
uous monitoring (such as watching physical signals during
the victim’s execution), a network attacker only sees a
response packet after the victim has fully processed the
probing packet.

(5) Unlike many side channels that focus on novel leak-
age channels (e.g., electromagnetic waves or accelerometer
readings), network side channels focus on novel shared
resources (any shared memory can in theory be contributing
to a side channel). However, the number of such shared
resources is unknown and dependent on implementations.
Furthermore, the uses of such shared resources may be
diverse and dependent on protocol states.

Requirements. To account for the above uniqueness of
network side channels, we will need to

(1) reason about protocol behaviors after processing
different sequences of packets, i.e., , stitching together exe-
cution traces of multiple packets;

(2) explicitly consider potential intermediate shared re-
sources that could ultimately lead to interference with
attacker-observable outputs;

(3) limit the analysis scope of the protocol of interest to
avoid overburdening the symbolic execution.

3.4. Existing Solutions

In practice, network side channels are often discovered
by hinging the analysis on interesting shared resources
(2nd requirement as mentioned above). In the SADDNS
example, the root cause of the vulnerability lies in the
underlying shared resource, i.e., a single global variable
icmp_global.credit, and how it interacts with an at-
tacker and a victim. To find other potential vulnerabilities
like this, one option is to inspect each and every variable
at the implementation level that is possibly shared between

an attacker and a victim. This is a daunting task and thus
requires automated analysis approaches.

To identify non-interference violations, we can in prin-
ciple apply a variety of automated formal methods and test-
ing techniques, e.g., static analysis, fuzzing, model check-
ing, and symbolic execution. Each of these methods offers
unique strengths and weaknesses when tailored to the spe-
cific problem. In the ensuing discussion, we compare them
to motivate the design choice of our solution.

Static analysis. PacketGuardian [14] employed
static taint analysis to detect “implicit information leak-
age”, which is an approximation of the violations of non-
interference property. However, since it is much less precise,
it incurs a high FP rate, primarily attributed to the absence
of path sensitivity and the lack of reasoning of relationships
among execution traces (required by the non-interference
property) [29].

Fuzzing. As a dynamic analysis technique that feeds
random inputs to test program behaviors by executing them
concretely. The advantage of fuzzing is that whatever bugs
or violations of non-interference must be true positives,
as they can be proven with concrete inputs and execu-
tion traces. Although [30] utilized fuzzing to test non-
interference property violations, it is by design probabilistic
and its sporadic exploration raises concerns regarding cov-
erage, i.e., false negatives.

Model checking. In contrast to fuzzing, model checking
aims to systematically (and potentially exhaustively) cover
the state space of the test target. SCENT [13] leveraged a
model checker to systematic search for the existence of non-
interference property violations in TCP implementations.
A key practical challenge lies in the creation of a self-
contained model by converting and abstracting actual TCP
implementations, including extraction of relevant functions,
abstraction of external functions, and marking of state vari-
ables. This unfortunately demands substantial manual effort,
domain expertise, and consequently is not only prone to hu-
man error, but limits the generality, usability, and complete-
ness of the tool. Specifically, to mitigate the state explosion
problem, SCENT chooses to (1) limit the number of state
variables (e.g., by not considering time-related variables as
part of the state) and (2) abstract away certain dependencies
(e.g., eliminating sources of randomness to simplify the state
space), both of which lead to missed vulnerabilities as we
will explain in §6 and §7.

Not surprisingly, we find SCENT missed some side
channels that are discovered by SCAD (as will be shown
in our evaluation).

3.5. The Approach of SCAD

Unlike the above solutions, SCAD leverages symbolic
execution to detect non-interference violations. We propose
a symbolic execution based solution for two reasons: (1)
Non-interference property is a hyperproperty that requires
reasons across multiple traces or execution paths, and the
symbolic execution by design traces the execution on a path

O 0O\ W AW =

basis; (2) Symbolic execution can analyze protocol imple-
mentations directly and does not require heavy modeling of
protocol behaviors or functions (unlike model checking).
Let us consider a concrete example to illustrate why
symbolic execution / SMT solver is more appropri-
ate for non-interference violation detection than exist-
ing static analysis [14]. Consider the following exam-
ple abstracted from tcp_validate_incoming () in
net/ipv4/tcp_input.c of Linux kernel 6.1.32.

bool in_window = tcp_sequence (pkt_seq);
if (in_window) {
if (!th—>rst) {
tcp_send_dupack () ;
}

}

if (th-—>rst) {
tcp_send_challenge_ack () ;

}

Listing 2: Simplified tcp_validate_incoming ()

In this case, a static analysis will think the path travers-
ing lines 1-4 and the path traversing lines 1,2,7,8 forms a
side channel. This is because it thinks the behaviors in Line
4 or Line 8 are different i.e., sending a challenge ACK vs.
sending a dup ACK, depending on whether the seq number
is in window (Line 1). However, given an input packet, it can
pass either the check at Line 3 or Line 7 but not both (note
the RST flag of an incoming packet has to be either true or
false), so the attacker cannot observe any difference in terms
of whether the sequence number guessed is in window or
not. SCAD will not produce such a false positive thanks to
its constraint-solving capability.

Nevertheless, itsymbolic execution is a heavy program
analysis technique, especially in the context of complex
network protocols. Worse, these protocols operate inside
even bigger OS kernels and interact with rest of the kernel;
faithfully analyzing the behaviors of the protocols may or
may not require understanding of the other “glue” parts.

To this end, we choose to apply selective symbolic
execution [31] to address the above challenges. At a high
level, we perform symbolic execution selectively in two
aspects: (1) selectively symbolize variables, (2) selectively
switch between concrete execution and symbolic execution.
We detail the design decision below. As will be shown
in Section 6, our solution can indeed successfully reveal
new side channels that were previously unknown. We will
elaborate on the selective symbolic execution in Section 4.2.

4. SCAD Design

4.1. SCAD Architecture

The SCAD framework, as depicted in Figure 2, consists
two components: the selective symbolic execution compo-
nent and the Non-Interference Property Violation Checker
(NIPVC) component. The former takes two inputs: (1) a live
protocol memory snapshot, (2) annotations provided by a
security analyst regarding the variables considered as secrets

(e.g., ephemeral port number), events/functions considered
as attacker-observables, and scope of the protocol to analyze
(in the form of memory address ranges). It then conducts
selective symbolic execution of the protocol and generates
“path summaries” capturing critical information necessary
for determining non-interference. The latter ingests the path
summaries, orchestrates them to form path-pairs, and sub-
sequently checks for non-interference property violations in
these pairs (recall that we are analyzing relationship among
traces to verify a hyperproperty). The outcome is a list of
detected side channels, with proofs of violations represented
as execution traces and implicated state variables.

4.2. Symbolic Execution Design

In this section, we discuss the choices of the symbolic

execution engine. The choices are important because they
affect the soundness, precision, and scalability of our anal-
ysis.
Addressing requirement #1: reasoning over multiple
packets via selectively symbolizing variables. A naive
design is to symbolize multiple input packets to drive the
execution of a concrete protocol instance. Specifically, only
the input packets are symbolized and the rest of the program
(e.g., state variables) remains concrete [32], [33], [34], [35].
However, as mentioned before, side channel vulnerabilities
in network protocols often require over a hundred packets
to reveal and trigger [1], [2], [3]. This means if we were to
begin the exploration of a network protocol implementation
at its initial state, e.g., after a fresh TCP connection is
established, we need to enumerate long sequences of packets
by symbolizing all these packets. This is unfortunately not
feasible. In prior work, only three symbolic packets have
been successfully attempted in the past [35], which are far
from sufficient to reveal network side channels.

A better design is to symbolize a single input packet as
well as state variables. Our insight is that we found most
input packets primarily steer the system towards a specific
state where the non-interference property violation becomes
possible. Once this state is achieved (e.g., reaching the
global rate limit of certain packets), a single packet suf-
fices to trigger the violation of non-interference. Therefore,
instead of relying on unbounded input packet enumeration
to reach this state, one can assume the system to already be
in arbitrary states by “symbolizing the state variables”. In
other words, in addition to symbolizing the input packets, we
will also symbolize state variables. This way, we no longer
need to enumerate long sequences of input packets; instead,
one single symbolic input packet suffices.

We will treat any non-stack (e.g., heap, static) variable,
within the symbolic execution range (see §5.2), as a state
variable. The exclusion of stack variables is because they are
local in scope (processing of a single packet) and therefore
not state variables. We opt for a lazy symbolization strategy
for state variables: a state variable is symbolized only when
it is read — this is because if a state variable is never read,
then it will never affect the execution, and thus there is no
need to symbolize it.

R —
&, o
Secrets, Interfaces & Mem Ranges O
Selective Symbolic Execution
. (SSE) Engine

System Snapshot

A
— | — v

Paths & Summary | Nop-Interference Property Violation Checker

Path-Level Violation Checker p—
Side-Channels

(NIPVC) w/Proof

Figure 2: SCAD architecture

It is worth noting that once input variables and state
variables are symbolized, all of them will be treated the same
way (under-constrained) (i.e., we do not differentiate input
vs. state variables separately during the symbolic execution).
See §4.3 for details.

Taking SADDNS as an example, if
icmp_global.credit in Listing 1 is symbolized, the
path summary will directly show a reply will or will not
be solicited when icmp_global.credit is not or is zero
when the input is a UDP packet, without the need to send
49 repeated packets in advance reducing the concrete value
of icmp_global.credit from 50 to 1.

In summary, this choice makes the tradeoff between
scalability and precision. By requiring the analysis of only
a single symbolic input packet, the choice satisfies the first
requirements as mentioned in §3.3 in a highly scalable man-
ner. The downside is that using symbolized state variables
(as opposed to their concrete values) makes the results no
longer sound, i.e., false positives can occur due to the under-
constrained nature of the analysis.

Addressing requirement #2: Explicit consideration of
intermediate shared resources by tracking all their
changes. As mentioned, oftentimes the secret propagates
through intermediate shared resources, i.e., shared variables
accessed when processing both spoofed packets and non-
spoofed packets. To this end, SCAD records all changes
to symbolized state variables (which may be potentially
shared) during symbolic execution along every single path.
This way, the NIPVC component will have the information
available to determine which two execution paths would
allow secrets to interfere with the shared resource (see
§4.3 for details). This design satisfies the last requirement
mentioned in §3.3.

Addressing requirement #3: limit the symbolic execution
scope via selective symbolic/concrete execution. It is
natural to consider selectively switching between symbolic
execution and concrete execution. First, actual protocol
implementations interact with other parts (“glues”) of the
kernel which can lead to significantly more execution paths
and states. For example, when symbolically executing helper
functions like printk (), a symbolic execution engine may
generate multiple execution paths (if the arguments are sym-
bolized) due to the fact that such functions contain loops.
By selectively executing such helper functions concretely,
it drastically reduces the number of symbols and states and
thus increased the scalability.

Second, beyond the helper functions, there can be other

more glue code that should not be pruned; otherwise, the
analysis may not be faithful. For example, when analyzing
the TCP implementation, it may naturally interact with the
IP implementation. We do not have to execute the IP layer
symbolically, but executing the code in the IP layer con-
cretely will help preserve the faithfulness of the execution.

This is supported by a state-of-the-art symbolic execu-
tion engine named S2E [31], which we leverage to develop
SCAD. The idea is to associate each symbol with a possible
concrete value under each state, and whenever the target runs
into an uninteresting section (e.g., printk ()), it executes
the code concretely. It is worth noting that sometimes side
channels can manifest via interactions of two protocols,
As seen in the motivating example, the interaction between
UDP and ICMP led to the vulnerability. In practice, based
on our expertise in network protocols, we choose to selec-
tively include additional dependent protocols as part of our
analysis scope.

Technique Precision | Coverage | Generality
Static Analysis [14] X v v
Fuzzing [30] v X v
Model Checking [13] v v X
Symbolic Execution v v v

Table 1: Comparison among program analysis techniques

Output. During the symbolic execution, SCAD computes a
path summary associated with each execution path by log-
ging the path constraints and symbolic expressions relating
to symbolized memory (for both input and state variables).
The path constraints are useful for determining if a path
is feasible. If it is, NIPVC can later check if a combined
path (formed by concatenating two path constraints) is also
feasible. The symbolic expressions (e.g., write of symbolic
state variable) will be useful for NIPVC to decide whether
a secret propagates to an intermediate shared resource (i.e.,
interferes with the shared resource).

Comparison with existing approaches. Compared with
model checking, in addition to alleviating the modeling
efforts, our approach is also more complete by eliminating
input packet enumeration. Compared with static analysis,
as an ultimate form of static analysis, symbolic execution
by design will present less FPs. Compared with fuzzing,
symbolic execution offers superior coverage due to its sys-
tematic path exploration strategy. As summarized in Table 1,
our approach stands out as the appropriate solution for a
general side-channel detector.

4.3. NIPVC Component

© Root Node
O Secret Node
O Node

@ Leaf Node

Figure 3: An illustrative example of path tree

Path-Level Violation Checker. The NIPVC component
processes the paths and summaries generated by the DSE
component, as outlined in Section 4.1. Figure 4.3 provides
a visual representation of a typical path tree generated by
symbolic execution, where nodes represent forking events
and edges signify branches. The root and leaf nodes demar-
cate the beginning and end of a path execution, respectively.

Given the definitions of non-interference property and
the associated threat model, a violation implies that, 1)
given the same sequence of probing packets created by an
off-path attacker (same low input), 2) depending on the
different values of the secret (different high memory), 3)
the resulting attacker-observable output will be different
(different low output). Since the non-interference property
is a hyperproperty [36] that requires two traces to verify,
in the context of symbolic execution, this translates to the
existence of two paths that satisfy the following:

I. the two paths can assign the same value to symbolic
inputs (i.e., attacker sending the same crafted packet
and two paths refer to the same system state other than
the unknown secret).

II. one of the two paths takes the true branch and the
other takes the false branch after forking from a node
representing the secret (secret node in Figure 4.3) —
this implies the path summary can differ depending on
the value of the secret (high memory); and

III. the two paths write to at least one state variable’
differently (e.g., one updates the state variable and the
other does not).

We point out that I.- III. correspond to 1) - 3). The NIPVC’s
primary objective is to ascertain the existence of such path
pairs.

To find non-interference property violation for a secret,
based on the above observation, NIPVC first traverses the
path tree to gather all secret nodes, which can be easily
differentiated from the forking conditions. For each secret
node, it arranges paths, that pass through the secret node,
in pairs, and perform the above check for them, and report
the found violation.

3. Packet outputs are modeled as state variable as well.

To formally express the conditions for non-interference
property violation, denote the secret symbol as s, non-secret
symbols as set NV, and the path constraints of the path-pair
(pt,py), as shown in Figure 4.3, as assertions C (s, N') and
Cy(s, N) (is true) respectively. To satisfy II., two paths need
to take different secret values, therefore a shadow secret
symbol s’ is used for the false (or true) branch to replace
s and then its constraint becomes C(s’, V). Satisfying L
then becomes satisfying Cy(s, N) A Cf(s’, N). Note that
additionally satisfying s # s’ is unnecessary as s = s’
will dissatisfy I. by introducing the similar contradiction as
mentioned above. As stated in Section 5.3, DSE component
records the memory write summary of variable v on path
pq as an expression W('(s, N). Therefore, III. can be
written as assertion In € N,W/'(s,N) # W}(s',N).
Putting everything together, a pair of path violates non-
interference property is equal to (C¢(s, N) A Cf(s',N)) A
(In € N, Wy (s, N) # W(s',N))) can be satisfied. This
problem can be solved by SAT solver like z3. In the real
implementation, the checker will enumerate all possible n
and return every n that satisfies the assertion.

Iterative Analysis. An end-to-end non-interference prop-
erty violation is a composite of multiple path-level viola-
tions. Consider the motivating example again, the port match
result interferes with the rate limit counter — the first con-
dition for path-level violation defined above. Subsequently,
the counter interferes with the ICMP reply generation, which
is visible to the attacker — the second condition for path-
level violation. In other words, a secret must first interfere
with some intermediate state variables, and the intermediate
variables must then interfere with the attacker-observables
(or other intermediate state variables). To uncover end-to-
end side-channel attacks, it is imperative to chain multiple
path-level violations.

To achieve this, NIPVC operates iteratively, akin to
taint analysis, executing the path-level check in a graph
traversal fashion. The overarching goal is to trace a chain
of violations from the secret to an output observable by
the attacker. Specifically, NIPVC maintains a variable set
P that Vv, € P, v, can be interfered by the secret s
through the chain of interference and initially only s € P.
During the iterative analysis, NIPVC will take a variable
vp € P, that has not been checked, as the secret, to run
the path-level checker. If a possible n € N, where N is the
set of non-secret symbols, is identified, then a propagation
vp = n, along with the proving path-pair, will be recorded
and the intermediate variable n will be added to P.*, unless
v, 1s the packet output buffer prepared for the attacker
(vq), which is already visible to the attacker and no further
propagation is needed. Arguably, the propagation” gets its
name because it reads the secret implicitly embedded in v,
and encode it to n. This iterative process continues until
all variables in P have been examined. Upon completion,
a directed acyclic graph (DAG) is generated, mapping the
propagation relationships among variables, with s as the
root node (i.e., 0 in-degrees). NIPVC then traverses this

4. If n depends on v, in data-flow, a propagation will also be produced.

graph to ascertain if a path exists from s to v,, subsequently
outputting the identified propagation chain and the details
of each propagation. Note this DAG should not be confused
with path tree as shown in Figure 4.3. In fact, each edge of
DAG represents a propagation associated with a path-pair.

5. Implementation

5.1. Symbolic execution

The component is constructed atop the S2E frame-
work [31], which itself is built upon QEMU [37] and
KLEE [38] to allow switching between concrete and sym-
bolic mode. This choice was motivated by the success of
similar systems such as those presented in [35], [39]. We
implement this component as a plugin for S2E. This plugin,
crafted in C++, spans approximately 2,300 lines of code
(LoC) and is responsible for state variable symbolization
and the collection of path summaries. Additionally, we made
non-trivial modifications including hundreds lines of code of
S2E to fix bugs that can only be surfaced at the scale of
SCAD (and the need to symbolize a large number of state
variables) and all of them were merged into the official S2E
repository.

5.2. Manual Efforts

Since side channels are inherently domain-specific,
SCAD thus requires 3 annotations, which we believe are
the minimum requirements for any side-channel analysis,
and are less intensive than the state-of-the-art [13]. As
mentioned, SCAD requires three types of manual modeling
or annotations. The first two are necessitated by the problem
of side-channel vulnerabilities, whereas the last one is about
the analysis scope to keep the analysis problem manageable.
These annotations are minimal and much less intensive than
the state-of-the-art. We describe them below.

Secrets. One needs to mark secrets we are interested in
tracking, i.e., in the form of variables in protocol imple-
mentations, e.g., TCP sequence number or ephemeral port
number.

Attacker-observables. One needs to mark attacker-
observables, which we define them as “the presence or
absence of responses to attacker’s probing packets” in the
context of off-path attacks. More concretely, we will mark
specific functions in the protocol that corresponds to gener-
ating responses.

Analysis scope. As mentioned, a protocol implementation
such as TCP and UDP is a part of a much larger code base,
e.g., the OS kernel, it is necessary to mark the analysis scope
for selective symbolic execution (and fall back to concrete
execution for code that is out-of-scope). Specifically, we
need to mark the start and end points, and any intermediate
functions that should be considered in scope — they are
specified in the form of memory address ranges that cover
parts of the memory snapshot.

Compared with SCENT, SCAD users do not need to
identify state variables that can potentially lead to side
channels; instead, we assume any of the heap and global
variables (easy to identify by address ranges) can potentially
be a shared resource leading to a side channel. Besides,
SCAD does not require the user to manually translate the
implementation into a form amendable to model checker.

5.3. Symbolic Execution Workflow

Upon entering the start point, the selective symbolic
execution initiates its operation by substituting the input
packet with symbols. Taking Linux TCP as an example,
it will hook tcp_v4_rcv () [40] as start point and replace
the TCP header in skb with a symbol when reached.

Selectively symbolize variables. In SCAD, we mark all
non-stack variables as symbolic, including heap and global
variables that can have a lifetime longer than processing a
single packet. We identify such variables by memory address
range (they are separated from stacks). During the symbolic
execution mode, it computes the path summary by logging
data flows relating to symbols (input or state variables) for
subsequent use by the NIPVC.

Upon reaching the termination point, the engine con-
cludes the current path, outputting both path constraints
and the corresponding path summary. These termination
points typically signify the end (e.g., the return of the
packet processing function) of input packet processing or
the detection of a fatal error (e.g., kernel panic).

5.4. NIPVC

This component, written in C++ for enhanced concur-
rency, spans approximately 5,000 LoC. It implements the
path-level checker and the iterative analysis with z3. Its
architecture comprises three fully asynchronous services:
Secret Node Finder, Path-Pair Generator and Path-Pair
Checker, by allowing each service to fully utilize all CPU
cores when necessary. Secret Node Finder identifies all se-
cret nodes for a given secret, using the log produced by SSE,
subsequently passing which to Path-Pair Generator, after
eliminating duplicates, pairs paths and forwards them to
Path-Pair Checker. The checker, leveraging 73, implements
the algorithm detailed in Section 4.3. It outputs path-level
non-interference property violations for the current secret
and also feeds interfered variables back to Secret Node
Finder, establishing the iterative analysis.

6. Evaluation

6.1. Experiment Setup and Analysis Targets

Our evaluation platform comprises a server equipped
with an AMD EPYC 7542 26-Core processor’ and 2.0TB
RAM, running Ubuntu 20.04 with the Linux kernel 5.4.0.

5. Only 26 of the 32 cores are used to ensure server availability.

We configure SCAD to detect side channels that involve
only one intermediate state variable. This is because most
side-channel attacks [1], [2], [3], [19], [22], [24] involve a
single intermediate variable only and expanding the chain to
multiple intermediate state variables can be computationally
challenging. We therefore refer to the intermediate variable
accessed by both the attacker and victim in the threat model
(as discussed in Section 2) as the “shared variable”. To
classify side channels, we cluster the results according to
the shared variables that are involved, in line with previous
work [13], [14]. Note that although only one intermediate
state variable is considered, SCAD still needs to symbolize
all state variables, because SCAD cannot predict which
variables are the shared variable that leads to a side channel.

To manage the inherent complexities of symbolic exe-
cution, we set the maximum iteration in a loop exploration
to 2 to avoid path explosion. We set the maximum symbolic
execution time to 48 hours. Note the full tool run time also
includes NIPVC execution time, which will be discussed
in Section 6.4. For each side channel report generated by
SCAD, we manually verified its validity. For both TCP &
UDP targets, besides their own protocol implementations,
we also include the ICMP implementation, as it interacts
with TCP & UDP closely (when corner cases occur).

As mentioned in Section 5.2, we had to perform some
minimal modeling and annotation for each target. For TCP,
we marked all the variables that were previously consid-
ered secrets, including ephemeral port number of a live
connection, expected TCP sequence number, and expected
acknowledgement number. For UDP, we mark the expected
port number of a UDP socket as the secret. We take a mem-
ory snapshot of the system when there is either a live TCP
or UDP socket. For a single target, marking these secrets,
as well as attacker-observables and analysis scope did not
exceed a single person-day according to our experience.
This efficiency stands in contrast to SCENT, a state-of-the-
art side channel discovery solution [13], which requires 2.5
weeks to construct a self-contained model for a single target.
As an automated solution requiring only the bare minimum
modeling of the side channel in question, SCAD, compared
with the manual solution, SCENT, not only requires less
labor intensity, but is more error prone.

We choose the following target protocols:

(1) TCP in Linux kernel v4.8, for comparison against a
prior work;

(2) TCP in Linux kernel v6.1.32, FreeBSD kernel v13.2,
and IwIP 2.2.0 RCl1, for finding new vulnerabilities that
affect the latest TCP protocol implementations;

(3) UDP in Linux kernel v6.1.32, for finding new vulner-
abilities that affect the latest UDP protocol implementations.

Next, we will first summarize the results of all the side
channels in Section 6.2, followed by a comparison with
SCENT [13] in Section 6.3. The performance analysis will
be presented in Section 6.4.

6.2. Summary of Results

As shown in Table 2, SCAD reported 13 side-channel
vulnerabilities discovered across all target protocols. We
confirm 11 of them are true positives (see column “TP/FP”),
6 of which are previously unknown (see column “New?”).
These vulnerabilities span across all target protocols, includ-
ing both UDP and TCP. For each case, we listed the shared
variable name, the type of variable, and the kind of secrets
that are leaked through the shared variable.

For Linux kernel v4.8, and v6.1.32, SCAD identified
seven side channels, including two new side channel, #1
and #3, and two false positives, #6 and #7. We explain the
causes of the false positives in Section 9. For FreeBSD, three
side channels related to rate limits were reported, with two
being novel. Ironically, V_icmplim_curr_jitter, which
was used to introduce randomness to the rate limit counter to
patch SADDNS, creates another side channel that forfeits the
randomization effort. In the case of IwIP, SCAD discovered
a “SYN-backlog-based side-channel”, labeled as #13.

For UDP in Linux kernel 6.1.32, SCAD identified two
side channels related to the ICMP global rate limit counter
(#8 and #9), the foundation of the SADDNS attack. Even
though considered patched, we are surprised to find that
they can still work in the latest kernel. As will be shown
later, the discovered icmp_global.stamp can be used to
revive the SADDNS attack.

We manually checked the false positive cases. It turns
out that they are due to implementation issues. For example,
for #6, this false positive arose from the fact that we use
memory addresses as unique variable identifiers. However,
this approach can lead to ambiguities when two paths
dynamically allocate memory after the snapshot is taken.
Specifically, even though the addresses of the allocated
request socket objects (i.e., req) are the same in two paths,
they actually refer to different sockets and therefore causes
an FP. We will discuss the limitations of SCAD in Section 9.

6.3. Comparison with SCENT

We focus on true positives for Linux v4.8 since it is the
one evaluated by SCENT, i.e., #1 to #5 in Table 2. Out of
the five, #2, #4, and #5 were found by SCENT [13], and #1
and #3 are missed.

We carefully analyzed the reasons these two vulnerabil-
ities are not discovered by SCENT. It turns out that they
cannot be found regardless of how much time is given to
run the model checker (this is also confirmed by SCENT
authors).

For #1, SCENT failed to mark the variable
inet_csk (sk)->icsk_accept_queue->young as a
shared variable during the manual modeling process. In
comparison, SCAD does not require marking individual
variables and simply considers all heap and global variables
as candidate shared variables.

For #3, SCENT cannot find it because it did not model
time (time is fixed and never progresses in SCENT) and
limited the TCP state to ESTABLISHED or SYN_RECV

Target Shared Variable TP/FP Secret! New? | Variable Type
1 Linux 4.8 inet_csk (sk)—->icsk_accept_queue->young TP CP Y Queue Length
2 Linux 4.8 tcp_memory_allocated TP SN&RN N Memory Limit
3 Linux 4.8 & 6.1.32 challenge_timestamp TP CP&SN&RN Y Timestamp
4 Linux 4.8 & 6.1.32 inet_csk(sk)->icsk_accept_queue->glen TP CP N Queue Length
5 Linux 4.8 & 6.1.32 challenge_count TP CP&SN&RN N Rate Limit
6 Linux 4.8 & 6.1.32 reg->rsk_rcv_wnd FP CP

7 Linux 6.1.32 skb (output) FP CP&SN&RN

8 Linux 6.1.32 UDP icmp_global.stamp TP CP Y Timestamp
9 Linux 6.1.32 UDP icmp_global.credit TP CP N Rate Limit
10 FreeBSD 13.2 V_icmplim_curr_jitter TP CP Y Randomness
11 FreeBSD 13.2 cr->cr_ticks TP CP Y Timestamp
12 FreeBSD 13.2 cr->cr_rate TP CP N Rate Limit
13 IwlP 2.2.0 RC1 tcp_pcb_listen->accepts_pending TP CP Y Queue Length

I CP=Client Port # RN=rcv_nxt SN=snd_nxt

Table 2: Side channels reported by SCAD

only. If time were allowed to progress in SCENT, the state
space would grow substantially, (i.e., different times could
correspond to different states). This is why SCENT chooses
not to consider time progression.

In Section 7.2, we will also show that most new side
channels cannot be found by SCENT due to similar reasons.

Finally, we acknowledge that SCAD requires more com-
putation than SCENT, due to the nature of symbolic exe-
cution and the lack of hand-tuned simplification of models.
We will analyze the performance of SCAD in more details
in Section 6.4.

6.4. Performance Analysis

Target Paths (k) | # of Symbols | CPU Hours
Linux 4.8 2,763 527 3,089
Linux 6.1.32 2,762 596 1,348
Linux 6.1.32 UDP 774 107 1,306
FreeBSD 13.2 3,856 538 1,867
IwIP 2.2.0 RC1 33 103 27

Table 3: Statistics of SCAD on different targets

As shown in Table 3, SCAD required 3,089 CPU hours
to evaluate the TCP stack of Linux 4.8 kernel. The SSE
component consumed 1,248 of these hours, with the re-
mainder attributed to the NIPVC component. For the SSE
component, we found the paths explored in the first 234
CPU hours are sufficient for NIPVC component to find all
6 side channels, which means all side channels could have
been found in 238.5 CPU hours (including 4.5-CPU-hour
NIPVC time). In total, the SSE component explored 2.76M
paths with 527 symbolized state variables. As mentioned
before, we found NIPVC only took 4.5 CPU hours to find
all 6 side channels (including one FP) listed in Table 2 and
the remaining 1,836.5h are spent on exploring side-channel
possibilities over other variables. This is due to short-circuit
evaluation — if two propagation paths are considered to
interfere with a shared variable, we will consider this vari-
able a candidate for side channels and ignore all other paths
regarding the same variable.

The SSE component explored a similar number of paths
for both Linux 4.8 and 6.1.32 within the 48-hour limit. This

consistency is expected given the stability of the Linux TCP
stack across versions. It is also noticed that Linux 6.1.32
takes a shorter time to finish, and again this is due to short-
circuit evaluation used in NIPVC component as the path-
pairs are randomly chosen to check for non-interference
property violation. For IwIP, the SSE component finished
exploring all possible paths in 25.76 CPU hours. This is
expected as IwIP is a relatively light weight user-space
network stack designed for embedded devices [41] and the
TCP implementation of 1wIP only consists 8,000 lines of
C code. This also proves SCAD is an universal tool that can
be applied to user-space targets as well (rather than only
kernel targets).

7. Case Study

In this section, we provide details on the new vul-
nerabilities, including their detailed root causes, whether
existing methods can find them, and how exploitable they
are. Specifically, we categorize the new vulnerabilities into
three types and discuss them separately.

7.1. Timestamp-Based Side Channels

#3, #8 and #11 in Table 2 are timestamp-based side chan-
nels. We successfully identified these timestamp variables as
shared state variables because they are marked as symbolic
(due to their location in heap), despite the fact that they take
different concrete values at runtime. These shared variables
are used to measure time and reset rate limit counters, which
were previously known to introduce side channels (i.e., #5,
#9 and #12, respectively). However, nobody anticipated that
these timestamp variables themselves introduce side chan-
nels. In fact, such side channels cannot be found by SCENT
because of its decision to freeze time in the model checker
(and thus not considering timestamps as state variables), as
previously discussed in Section 6.3.

The case for FreeBSD (#11). FreeBSD limits the rate of
outgoing RST to 200 packets per second (pps). Therefore,
aside from the counter (cr_rate) counting how many RSTs
have been sent within 1s, it also records the last time

Victim w/o Victim’s Off-Path Victim’s Victim w/ Victim w/o Victim’s Off-Path Victim’s ~ Victim w/ Victim w/o Victim’s Off-Path Victim’s Victim w/
Connection Peer Attacker Peer Connection Connection Peer Attacker Peer Connection Connection Peer Attacker Peer Connection
ticks=before ticks=before| [Jitter=3 jitter=j| f pending=0 pending=0

1imit=200+j

__ [216ACKs k 216ACKs | _ ‘/f 216 PINGs
<=216 RSTs

Within 1s

T[emel |- [mswp sl

| 200+j PONGs (|

1imit=200+7

%

— —

ticks=now

now unchanged

i Learns jitter=j i

rate=216

tiCka:“OW ticks<now|| [—— 200+j RSTs
N - ! i
no rate clear Legit rate=0

rate=200+j _ ACK
Spooied ||__[rst——— |

(a) Timestamp side channel #11

;
. 2004j ACKs [T "7 72004 ACKs | _|

’,,,,,%fftezl 99+3
I

(b) Randomness side channel #10

pending=255 pending=254

i

L

| 199+jRSTs [

SA=SYNACK pending=255

(c) Queue length side channel #13

Figure 4: Exploits for newly found side channels on the latest versions of Linux/FreeBSD/IwIP

when the counter was reset as a timestamp (cr_ticks).
Every time the counter is accessed (i.e., a RST is solicited),
the current time will be compared with the timestamp. If
the timestamp is more than 1Is old, the counter will be
reset to 0 and the timestamp itself will be updated to the
current time. Previous side-channel attacks [13] leveraged
the (cr_rate) as the shared variable to infer the source
port of an established TCP connection, as the counter value
is interfered by port matching result.

Later on the side channel was patched by introducing a
random jitter (V_icmplim_curr_jitter) to the hard limit
200pps, and now every time the counter needs to be reset,
the real limit is calculated by adding the hard limit with the
jitter. By default, with the jitter ranging [-16, 16], the real
limit ranges between [184, 216]. This destroyed counter-
based side channel as the attacker will not predict counter
value precisely and thus cannot effectively correlate their
observance with the probing result.

Nevertheless, SCAD provides us a new perspective to the
same logic by indicating cr_ticks can also be used to infer
the port match result. According to the output of SCAD, the
generation of a RST packet can set cr_ticks to the current
time (when 1s has elapsed since the last reset) which can
leak the port inference result to cr_ticks. This is because
cr_ticks can decide whether the RST transmission will
occur or not.

Figure 4a depicts the end-to-end exploit. Since the at-
tacker does not know the exact value of the limit, to make
the cr_rate meet or exceed the limit, they first send the
max possible amount (i.e., 216) of spoofed ACKs to a
guessed port. If there is no such a connection on the victim,
meaning a port guess was wrong, then RST packets will
be solicited and the following events will happen in order:
1) upon receiving the very first ACK packet, cr_ticks
will be set to now, assuming 1s has elapsed since the last
reset of cr_rate. cr_rate will first be reset to 0 and then
incremented to 1 immediately upon generating a RST packet
in response; 2) up to an additional 215 RST packets will be
generated in response to the attacker’s ACK probes, and 3)
cr_rate will increment to 216 (its value can go beyond
the rate limit).

If there is a connection, challenge ACK packets will be
returned instead, leaving anything related to RST rate limit
unchanged. In other words, cr_ticks is updated when the
guess of a port is incorrect, and remains unchanged if the
guess is correct. To observe such a difference in value of
cr_ticks, within 1s of sending the previous 216 spoofed
ACK probes, the attacker sends one single non-spoofed
ACK packet to a known closed port to solicit a RST. If
cr_ticks was just updated to now, then cr_rate will not
be reset to 0, and no RST will be sent to the attacker; this is
because cr_rate is 216 which already exceeds the limit. If
cr_ticks has not been recently updated, the counter will be
reset, and a RST will be sent. By observing the presence or
absence of the RST packet, the attacker will learn the result
of the guess, indirectly through cr_ticks. Note that even
if cr_rate is patched to be per-IP as opposed to global,
cr_ticks can still be leveraged to perform this attack, as
cr_ticks by design is a shared variable itself.

The attack effectively allows an off-path attacker to scan
client ports at the speed of 1 port/s, as cr_ticks needs to
be reset before the next trial.

The cases for Linux UDP (#8) and TCP (#3). They
are somewhat similar to #11. For the UDP port scan, the
only difference is that we would target the ICMP error rate
limit (instead of FreeBSD’s RST rate limit) which is 20
tokens per 20ms, where each packet consumes 0, 1, or 2
tokens for randomness (as a result of patching previous
side channels) [42]. To ensure the limit is reached, an
attacker would send 150 spoofed packets per 20ms. Hre,
the number 150 is empirically determined. Because a packet
may consume 0 tokens, we need to send more than 20
packets to guarantee the consumption of the 20 tokens. Note
that since the tokens are reset every 20ms (as opposed to
Is), the effective port scan speed increases to 50 ports per
second, which is good enough to revive SADDNS. For the
TCP port scan, we would target the challenge ACK rate
limit [3]. However, since there is a per-socket challenge
ACK rate limit that is much smaller (i.e., two per second),
it effectively prevents the attacker from reaching the global
limit with spoofed packets.

To demonstrate the revival of SADDNS, we implemented

an end-to-end attack based on timestamp side channel found
in Linux UDP stack. Similar to the evaluation setup in
SADDNS [1], we set up the attacker, victim resovler and
nameserver host on AWS with Linux kernel 6.2.0. The
resolver runs unbound 1.13.1. The nameserver has the re-
sponse rate limit feature enabled and can be leveraged by
an attacker to extend the attack window [1]. We repeated
the experiment for 5 times and it took 4,586s on average
to successfully poison the resolver’s cache, which is about
10x slower compared with the original SADDNS. Given the
slower probing speed of 50 pps, this result is expected. Note
that despite it took 76 minutes to poison the cache, it is still
a potent attack because the poisoned cache records can stay
for days via a large TTL.

7.2. Randomness-based Side Channel

Perhaps the most unexpected side channel is #10, as the
jitter (V_icmplim_curr_jitter) itself was introduced to
mitigate the rate limit counter (cr->cr_rate) side channel,
as mentioned in Section 7.1. Even though this variable takes
a random value at runtime, it is marked as symbolic during
our analysis and is considered in SCAD. However, even if
SCENT were applied to the same target, it would be unable
to discover this side channel, because it explicitly eliminates
sources of randomness (by forcing rand () to return a fixed
value), in order to avoid creating too many states due to
these random values.

In FreeBSD, the jitter is reset (i.e., pick another value
from [-16, 16]) every time when the counter (cr_rate)
exceeds the previous limit, and at least 1 second has passed
since the last reset. This means that if the limit has been
reached in the previous second, the jitter will be reset only
when the host generates the next RST in the following sec-
ond. This seems to be a flawless scheme where an attacker
can never learn the jitter from the previous second, and reuse
it in the subsequent second. In other words, as soon as the
probing starts in the new second, the previously learnt jitter
will be immediately reset. Nevertheless, SCAD found that
the jitter is actually shared across protocols whereas the
counter and timestamp (cr->cr_ticks) are not. In other
words, it is possible to use one protocol to infer the jitter
value without resetting it, and then use it to de-randomize
another protocol’s rate limit, provided that both occur within
the same second.

Figure 4b illustrates the attack process. Since both ICMP
echo reply (PoNG) and TCP RST packet are rate limited
using the same V_icmplim curr_jitter, the attacker
first sends non-spoofed 216 (the max possible real rate
limit) ping packets to reveal jitter j by counting received
ping replies. With the knowledge of j, the victim is now
vulnerable to the counter-based attacks which can be used
to infer the client port number. Similar to [1], [3], [13], the
attacker then sends 200 + j spoofed probing ACK packets
each destined to a different port. If one of the probed port
has a connection, 199+ 5 RSTs and 1 ACK will be triggered
on the victim, and the cr_rate will become to 199 + j.
If there is no connection, the cr_rate will become to

200+ 7 after sending 20045 RSTs. To differentiate between
these two possible values of cr_rate, similar to previous
exploits, the attacker sends a legitimate ACK to a closed port
and check if they can get the RST back, which depends on
the value of cr_rate, and thus reveals the probing result.
Note the probing result only reveals whether there is a port
open among probed ports without specifying the open port
number, and therefore binary search should follow [1], [2].
Since V_icmplim_curr_jitter is added to FreeBSD to
patch SADDNS after 2020, SCENT would not have a chance
to discover this side channel. But similar to the timestamps,
which were explicitly excluded in [13], randomness were
also excluded; therefore it would be impossible to SCENT
to uncover this randomness-based side channel.

The exploit enables an off-path attacker to scan the TCP
client port at 200 pps to 216 pps. The exploit can also
be used for UDP and SCTP ephemeral port inference, as
they both share the same V_icmplim curr_jitter. We
implemented the PoC exploit without binary search. By
limiting the port scan range to 5000 ports, it can correctly
figure out the correct port number range for 10 out of 10
times.

7.3. Queue-Length-Based Side Channels

Unlike temporal side channels discussed in Section 7.1
& 7.2, #1 and #13 are spatial side channels that leverage
the limited queue size for half-open TCP connections.

Taking #13 as an example, in IWIP, accepts_pending
represents the length of the backlog queue that stores
the new TCP connection requests that have not been fin-
ished (i.e., half-open). The queue belongs to a listen socket
that can be accessed by any host, and the queue length will
increase by one when the socket received a SYN packet,
and decrease by one when 3-way handshake is finished.
If the queue length exceeds the maximum backlog limit,
then new SYN packet will be dropped to prevent DoS
attacks. Similarly, by observing whether the queue is full,
the attacker can learn whether the client port guessed is
correct or not.

Figure 4c shows the exploit of #13. Since in IwIP, the
limit of the backlog queue is 255 by default, the attacker
sends 255 probing SYN packets with each destined to a
different port. If none of the probed port has a connec-
tion, the backlog queue will be saturated with half-open
connections (i.e., accepts_pending becomes 255), as the
SYN will be treated as new connection requests, and the
attacker never sends ACKs to finish the 3-way handshake.
If one of the probed port has a connection, there will be
one remaining slot in the queue (i.e., accepts_pending
becomes 254), as one of the SYN packet will solicit an
challenge ACK of the existing connection. To detect the
difference in accepts_pending, the attacker tries to inject
another half-open connection by sending a legitimate (non-
spoofed) SYN packet, and if they can receive the SYNACK
reply, meaning the queue is not full and thus a connection
is found and otherwise it is not found. Similarly, a binary
search should follow to pinpoint the exact open port.

This side channel allows an attacker to scan 255 client
ports in 20s, which is 12.75 ports per second. This is because
of the 20-second purging interval of backlog queue of IwIP.
We implemented the PoC exploit without binary search. By
limiting the port scan range to 1,000 ports, it can correctly
figure out the correct port number range for 10 out of 10
times.

Similarly, #1 represents the number of half-open con-
nections of a listen socket plus the number of orphaned
half-open connection that the listen socket has received.
The difference is the default limit of backlog queue is 128
in Linux kernel v4.8. Besides, to trigger the side channel,
an additional pre-condition must also be true, namely the
accept queue, which stores TCP connection requests that
have finished 3-way handshake but have not been accepted
by the user-space application yet, must be full. The default
size of the accept queue is also 128 in Linux kernel v4.8.
Given most applications will accept connections as soon as
they can, unless the system is under load, it is unlikely to
make it saturated in order to trigger the side channel. We
thus consider #1 to be unlikely exploitable.

7.4. Responsible Disclosure

We reported the discovered side channels to the Linux,
FreeBSD and IwIP maintainers. At the time of writing,
Linux kernel maintainers acknowledged the vulnerabilities
and a patch has been released after our discussion [43].
In particular, the patch fixes the most critical vulnerability
(#8 in Table 2). It is available on Linux 6.12-rc1 and
onwards, as well as the majority of LTS versions. The
patch works by checking the per-IP rate limit before the
global rate limit, at the cost of slightly lower performance
under heavy load. FreeBSD maintainers acknowledged our
report and is actively working with Netflix team for the
patch. Unfortunately, we have yet to hear back from IwIP
maintainers.

8. Mitigation

There are two common approaches in mitigating side
channels: (1) inject randomness into the values of shared
variables (as has been done in both Linux and FreeBSD to
fix prior side channels); (2) avoid the sharing of variables
and instead isolate them into per-IP or per-socket variables.

Either approach has pros and cons. Previously, it was
widely accepted that randomization is a reasonable solu-
tion. However, our findings reveal that it can be error-
prone to implement the added randomness correctly —
icmp_global.stamp still allowed port scan at 50pps
and V_icmplim_curr_jitter is ineffective because it is
shared and can be easily leaked. Isolation addresses the root
cause of side channels (e.g., no longer making such variables
shared across connections/IPs), but it may not allow a global
control of resource uses, e.g., a per-socket RST rate limit
can still allow a large number of RST packets in aggregate
over many connections.

Therefore, we propose the following best practices:

(1) Consider integrating the per-socket or per-IP rate
limit together with a randomized global rate limit. The
former gives a stronger security guarantee while the latter
still allows the global control.

(2) The global rate limit should be larger than the per-
socket or per-IP rate limit.

(3) The randomness introduced in the global rate limit
should not be inferable; in other words, the variable that
represents the jitter should not be leaked or shared itself.

As an example, to patch the timestamp-based side chan-
nels (#3, #8, and #11) and rate-limit-counter-based side
channels (#5, #9, and #12), their sharing scope can be
minimized by transitioning to a per-IP equivalent. This
means that the timestamp or rate-limit variables will no
longer interfere with attacker-observables, i.e., an off-path
attacker cannot influence such variables and observe their
effects (as they are no longer global). A global counterpart
can be retained, provided it adheres to the aforementioned
three criteria.

Similarly, to patch the queue-length-based side channels,
one can first introduce a per-IP rate limit where each client
IP may create up to certain number of half-open connec-
tions; on top of it, a randomized global rate limit can be
imposed on all client IPs to limit the total resource usage.

9. Discussion and Limitations

Generality. SCAD is a general solution that requires mini-
mal manual effort to set up and use. Nevertheless, it is still
a tool that is designed for security analysts or researchers
who are familiar with the concept of network side channels.
This is partly due to the nature of side channels where at
least the secrets and attacker-observables have to be defined
a priori. In this paper, we choose open-source protocol
implementations as our target protocols because they are
relatively easy to understand and annotate. In theory, SCAD
can also be applied to closed-source protocol implementa-
tions such as those in Windows, as it operates on top of
S2E which is in turn built on top of a general virtualization
platform, i.e., QEMU [37]. However, it requires significant
reverse engineering effort to model and annotate closed-
source programs. We thus leave them to future work.

Analysis scope selection. While SCAD offers flexibility
in adjusting the execution range, determining the optimal
range can require some expertise of network protocols to be
analyzed. An overly broad range might cause SCAD to waste
time on irrelevant logic, leading to scalability challenges.
Conversely, a narrow range might overlook certain side
channels if the vulnerable code executes concretely, result-
ing in missed vulnerabilities. In our solution, we include
all functions of the target protocol, as well as functions
in dependent protocols based on our understanding of their
frequent interactions. In theory, we can even prune certain
functions in the target protocol that are clearly not relevant
(if any), to speed up the analysis. However, that would
require additional human effort, which is why SCENT takes
2.5 weeks to complete the model construction [13]. Unlike

SCENT, SCAD does not perform such fine-grained decision
and instead use coarse-grained memory address ranges for
an entire module (e.g., TCP or ICMP).

Exploration strategy during symbolic execution. We have
experimented with depth-first search (DFS) and breadth-first
search (BFS) during the symbolic execution when forking
different states for exploring different execution paths. What
we find is that BFS is much more desirable than DFS. This
is because DFS often gets stuck in exploring deep parts of
the control flow graph, where the vulnerable code is not
necessarily located. In contrast, according to the previous
network side channels, most issues are relating to error
handling logic, which is triggered relatively early. In fact,
we find that most vulnerable logic is uncovered early in
BFS. Taking the Linux kernel v4.8 as an example, we find
that it took only 4.5 CPU hours to find all 6 side channels
(including the one FP). This gives us hope in analyzing even
more complex protocols.

Potential concerns on selective symbolic execution. In
addition to the issues on selective symbolic execution men-
tioned previously, there are two other concerns worth men-
tioning. First, symbolizing state variables assumes a state
variable can take any arbitrary value, which may not always
be true. This can lead to the exploration of non-existent
system states and thus false positives. For instance, in Ta-
ble 2, the 32-bit variable icmp_global.credit of #9 will
never surpass 50 according to the rate limit logic. Yet, SCAD
assumes it can adopt any valid 32-bit integer value. If a side
channel is contingent on this counter exceeding 50, it will
result in a false positive (FP).

Second, switching between symbolic execution and con-
crete execution can lead to erroneous concretization. Specif-
ically, erroneous concretization pertains to situations where
an under-constrained variable, due to relaxed constraints,
might be concretized to a value that is only locally or
statically feasible, but globally infeasible (e.g., concretize
icmp_global.credit to 51). This not only risks identi-
fying side channels in unreachable states but can also cause
system crashes, for instance, by concretizing a pointer that
was just symbolized, to 0. The two false positives reported
in Table 2 were due to this reason. In theory, this can be
circumvented by forking and concretizing the variable for
each feasible value under the current constraint. However,
such a brute-force approach will negate the benefits of con-
crete execution. To address this, SCAD employs heuristics,
such as avoiding the symbolization of pointers.

10. Related Work

Side-channel attacks. Network side channels has a rich
history, though it has not attracted widespread attention [1],
(2], [3], [4], [S], [6], [22], [23], [24], [44], [45], [46], [47],
[48]. For instance, the IPID side channel has been known
since 2007 [24]. Since then, a number of research studies
have considered using various shared variables in network
protocols, most notably in TCP and UDP to infer port
numbers and TCP sequence numbers. For example, [46]

harnessed global counters to discern open ports. The work
in [3] employed the global challenge ACK counter to inject
segments to a TCP connection. The study in [6] successfully
compromised the WPA-TKIP group cipher suite of Wi-Fi by
exploiting the side channel stemming from the shared power
save state in the Linux Kernel. In the domain of UDP, several
studies [1], [2] revealed ICMP global rate limit counter and
next hop exception cache as shared variables that enable
DNS cache poisoning attacks.

Automated side-channel detection & prevention. The
realm of automated side-channel detection has seen various
methodologies. PacketGuardian [14] employed static
analysis to identify “implicit information leakage”, essen-
tially a form of side channel. However, it yielded a signif-
icant number of false positives (FPs) and was limited to
detecting leaks to statistical counters, which remain inac-
cessible to off-path attackers. An enhancement over this was
presented in [49], which improved upon [14] by focusing on
leaks observable to attackers, (i.e., packet outputs), but it
still grappled with a high FP rate. The study in [13] adopted
model checking to pinpoint side channels within the TCP
stack. However, as delineated in Section 3, its versatility
remains limited. On the preventive front, [50] introduced a
novel approach to ensure non-interference property at the
programming language level by integrating new notations
for Java. While promising, this method demands rewriting
existing applications under the new framework, posing chal-
lenges for its widespread adoption.

11. Conclusion

In this work, we introduced SCAD, a first general, sys-
tematic, and automated tool capable of finding network side
channels in real-world protocol implementations. By care-
fully applying selective symbolic execution that works on
live targets, we manage to identify 17 side channels, with 14
being true positives. Notably, 7 of these vulnerabilities were
never discovered before. We believe the tool can be reused
to check the future protocols and their implementations.

Acknowledgement

We sincerely thank the anonymous reviewers for their
insightful comments, especially the follow-up engagements
during the interactive rebuttal period. This research was
sponsored by the National Science Foundation under Grant
No. #1652954.

References

[11 K. Man, Z. Qian, Z. Wang, X. Zheng, Y. Huang, and H. Duan, “Dns
cache poisoning attack reloaded: Revolutions with side channels,”
in Proceedings of the 2020 ACM SIGSAC Conference on Computer
and Communications Security, ser. CCS ’20. New York, NY,
USA: Association for Computing Machinery, 2020, p. 1337-1350.
[Online]. Available: https://doi.org/10.1145/3372297.3417280

(2]

(3]

[4]

(3]

(6]

(71

(8]

[91

[10]

(11]

[12]

[13]

[14]

[15]

[16]

K. Man, X. Zhou, and Z. Qian, “Dns cache poisoning attack:
Resurrections with side channels,” in Proceedings of the 2021
ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS ’21. New York, NY, USA: Association for
Computing Machinery, 2021, p. 3400-3414. [Online]. Available:
https://doi.org/10.1145/3460120.3486219

Y. Cao, Z. Qian, Z. Wang, T. Dao, S. V. Krishnamurthy, and
L. M. Marvel, “Off-Path TCP exploits: Global rate limit considered
dangerous,” in 25th USENIX Security Symposium (USENIX Security
16). Austin, TX: USENIX Association, Aug. 2016, pp. 209-225.
[Online]. Available: https://www.usenix.org/conference/usenixsecuri
ty 16/technical-sessions/presentation/cao

W. Chen and Z. Qian, “Off-path tcp exploit: How wireless routers
can jeopardize your secrets,” in 27th USENIX Security Symposium
(USENIX Security 18), 2018, pp. 1581-1598.

Y. Cao, Z. Qian, Z. Wang, T. Dao, S. V. Krishnamurthy, and L. M.
Marvel, “Off-path tcp exploits of the challenge ack global rate limit,”
In IEEE/ACM Transactions on Networking (TON), 2018.

D. Schepers, A. Ranganathan, and M. Vanhoef, “Practical side-
channel attacks against wpa-tkip,” ser. Asia CCS ’19. New York,
NY, USA: Association for Computing Machinery, 2019, p. 415-426.
[Online]. Available: https://doi.org/10.1145/3321705.3329832

C. Ma, D. Wu, G. Tan, M. T. Kandemir, and D. Zhang, “Quantifying
and mitigating cache side channel leakage with differential set,” Proc.
ACM Program. Lang., 2023.

R. Brotzman, S. Liu, D. Zhang, G. Tan, and M. Kandemir, “Casym:
Cache aware symbolic execution for side channel detection and
mitigation,” in 2019 IEEE Symposium on Security and Privacy (SP).
IEEE, 2019, pp. 505-521.

G. Doychev, D. Feld, B. Kopf, L. Mauborgne, and J. Reineke,
“CacheAudit: A tool for the static analysis of cache side channels,”
in 22nd USENIX Security Symposium (USENIX Security 13).
Washington, D.C.: USENIX Association, Aug. 2013, pp. 431-446.
[Online]. Available: https://www.usenix.org/conference/usenixsecuri
ty13/technical-sessions/paper/doychev

G. Doychev and B. Kopf, “Rigorous analysis of software counter-
measures against cache attacks,” in Proceedings of the 38th ACM
SIGPLAN Conference on Programming Language Design and Imple-
mentation, 2017, pp. 406-421.

D. Wang, A. Neupane, Z. Qian, N. B. Abu-Ghazaleh, S. V. Krishna-
murthy, E. J. Colbert, and P. Yu, “Unveiling your keystrokes: A cache-
based side-channel attack on graphics libraries,” in NDSS, 2019.

S. Wang, P. Wang, X. Liu, D. Zhang, and D. Wu, “CacheD: Identi-
fying Cache-Based timing channels in production software,” in 26th
USENIX Security Symposium (USENIX Security 17), 2017.

Y. Cao, Z. Wang, Z. Qian, C. Song, S. V. Krishnamurthy, and
P. Yu, “Principled unearthing of tcp side channel vulnerabilities,” in
Proceedings of the 2019 ACM SIGSAC Conference on Computer
and Communications Security, ser. CCS *19. New York, NY, USA:
Association for Computing Machinery, 2019, p. 211-224. [Online].
Available: https://doi.org/10.1145/3319535.3354250

Q. A. Chen, Z. Qian, Y. J. Jia, Y. Shao, and Z. M. Mao, “Static
detection of packet injection vulnerabilities: A case for identifying
attacker-controlled implicit information leaks,” in Proceedings of the
22nd ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS ’15. New York, NY, USA: Association for
Computing Machinery, 2015, p. 388—400. [Online]. Available:
https://doi.org/10.1145/2810103.2813643

J. A. Goguen and J. Meseguer, “Security policies and security mod-
els,” in 1982 IEEE Symposium on Security and Privacy, 1982, pp.
11-11.

G. Smith, “Principles of secure information flow analysis,” in Mal-
ware Detection, M. Christodorescu, S. Jha, D. Maughan, D. Song,
and C. Wang, Eds. Boston, MA: Springer US, 2007, pp. 291-307.

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

T. BALL, J. DANIEL, and T. Ball, “Deconstructing dynamic symbolic
execution,” Tech. Rep., 2015.

X. Feng, Q. Li, K. Sun, Z. Qian, G. Zhao, X. Kuang,
C. Fu, and K. Xu, “Off-Path network traffic manipulation via
revitalized ICMP redirect attacks,” in 31st USENIX Security
Symposium (USENIX Security 22). Boston, MA: USENIX
Association, Aug. 2022, pp. 2619-2636. [Online]. Available: https:
/Iwww.usenix.org/conference/usenixsecurity22/presentation/feng

D. Schepers, A. Ranganathan, and M. Vanhoef, “Practical side-
channel attacks against wpa-tkip,” ser. Asia CCS "19. New York,
NY, USA: Association for Computing Machinery, 2019, p. 415-426.
[Online]. Available: https://doi.org/10.1145/3321705.3329832

X. Feng, C. Fu, Q. Li, K. Sun, and K. Xu, “Off-path tcp exploits of
the mixed ipid assignment,” in Proceedings of the 2020 ACM SIGSAC
Conference on Computer and Communications Security, ser. CCS 20,
2020.

“Off-Path attacking the web,” in 6th USENIX Workshop on Offensive
Technologies (WOOT 12). Bellevue, WA: USENIX Association,
Aug. 2012. [Online]. Available: https://www.usenix.org/conference/
woot12/workshop-program/presentation/Gilad

Z. Qian and Z. M. Mao, “Off-path tcp sequence number inference
attack-how firewall middleboxes reduce security,” in 2012 IEEE
Symposium on Security and Privacy. 1EEE, 2012, pp. 347-361.

Z. Qian, Z. M. Mao, and Y. Xie, “Collaborative tcp sequence number
inference attack: how to crack sequence number under a second,”
in Proceedings of the 2012 ACM Conference on Computer and
Communications Security, ser. CCS *12, 2012.

Ikm, “Blind tcp/ip hijacking is still alive,” http://phrack.org/issues/64
/13.html, 2007.

“Sad dns explained,” https://blog-cloudflare-com.webpkgcache.com
/doc/-/s/blog.cloudflare.com/sad-dns-explained.

“Sad dns - side channel attack,” https://www.isc.org/blogs/2020-sad
dns/.

T. Dai and H. Shulman, “Smap: Internet-wide scanning for spoofing,”
in Annual Computer Security Applications Conference, ser. ACSAC
21, 2021.

“Non-interference (security),” https://en.wikipedia.org/wiki/Non-int
erference\ _(security).

D. King, B. Hicks, M. Hicks, and T. Jaeger, “Implicit flows:
Can’t live with ‘em, can’t live without ‘em,” in Proceedings of the
4th International Conference on Information Systems Security, ser.
ICISS °08. Berlin, Heidelberg: Springer-Verlag, 2008, p. 56-70.
[Online]. Available: https://doi.org/10.1007/978-3-540-89862-7_4

L. Lampropoulos, M. Hicks, and B. C. Pierce, “Coverage guided,
property based testing,” in Proceedings of the ACM Conference on
Object-Oriented Programming Languages, Systems, and Applications
(OOPSLA), Oct. 2019.

V. Chipounov, V. Kuznetsov, and G. Candea, “S2E: a platform for
in-vivo multi-path analysis of software systems,” in Proceedings
of the 16th International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS 2011,
Newport Beach, CA, USA, March 5-11, 2011, R. Gupta and
T. C. Mowry, Eds. ACM, 2011, pp. 265-278. [Online]. Available:
https://doi.org/10.1145/1950365.1950396

Cyberhaven, “Symbolic execution of linux binaries — s2e 2.0 docu-
mentation,” https://s2e.systems/docs/Tutorials/BasicLinuxSymbex/s2
e.so.html\#\#what-about-other-symbolic-input, 2018.

V. Kuznetsov, V. Chipounov, and G. Candea, “Testing Closed-Source
binary device drivers with DDT,” in 2010 USENIX Annual Technical
Conference (USENIX ATC 10). USENIX Association, Jun. 2010.
[Online]. Available: https://www.usenix.org/conference/usenix-atc-
0/testing-closed-source-binary-device-drivers-ddt

(34]

[35]

[36]

(371
[38]

[39]

[40]

[41]
[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

V. Chipounov and G. Candea, “Reverse engineering of binary device
drivers with revnic,” in Proceedings of the 5th European Conference
on Computer Systems, ser. EuroSys *10. New York, NY, USA:
Association for Computing Machinery, 2010, p. 167-180. [Online].
Available: https://doi.org/10.1145/1755913.1755932

Z. Wang, S. Zhu, Y. Cao, Z. Qian, C. Song, S. V. Krishnamurthy,
K. S. Chan, and T. D. Braun, “Symtcp: Eluding stateful deep
packet inspection with automated discrepancy discovery,” in 27th
Annual Network and Distributed System Security Symposium,
NDSS 2020, San Diego, California, USA, February 23-26,
2020. The Internet Society, 2020. [Online]. Available: https:
//dx.doi.org/10.14722/ndss.2020.24083

M. R. Clarkson and F. B. Schneider, “Hyperproperties,” Journal of
Computer Security, vol. 18, no. 6, pp. 1157-1210, 2010.

“gemu,” https://github.com/qemu/qemu.

C. Cadar, D. Dunbar, and D. Engler, “Klee: Unassisted and automatic
generation of high-coverage tests for complex systems programs,” in
Proceedings of the Sth USENIX Conference on Operating Systems
Design and Implementation, ser. OSDI’08. USA: USENIX Associ-
ation, 2008, p. 209-224.

Z. Wang, S. Zhu, K. Man, P. Zhu, Y. Hao, Z. Qian, S. V.
Krishnamurthy, T. La Porta, and M. J. De Lucia, “Themis:
Ambiguity-aware network intrusion detection based on symbolic
model comparison,” in Proceedings of the 2021 ACM SIGSAC
Conference on Computer and Communications Security, Ser.
CCS ’21. New York, NY, USA: Association for Computing
Machinery, 2021, p. 3384-3399. [Online]. Available: https:
//doi.org/10.1145/3460120.3484762

“tcp_v4_rcv(),” https://github.com/torvalds/linux/blob/v6.1/net/ipv4/t
cp_ipv4.c#L1924, 2022.

“Iwip,” https://en.wikipedia.org/wiki/LwIP.

“SAD DNS patch,” https://github.com/torvalds/linux/commit/b38e7
819cae946e2edf869e604.

E. Dumazet, “icmp: change the order of rate limits,” https://git.kern
el.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=8c2bd3
8b95£75f3d2a08c93e35303¢26d480d24e, 2024.

G. Alexander and J. R. Crandall, “Off-path round trip time measure-
ment via tcp/ip side channels,” in 2015 IEEE Conference on Computer
Communications (INFOCOM), 2015.

J. Knockel and J. R. Crandall, “Counting packets sent between
arbitrary internet hosts,” in 4th USENIX Workshop on Free and
Open Communications on the Internet (FOCI 14). San Diego, CA:
USENIX Association, Aug. 2014.

R. Ensafi, J. C. Park, D. Kapur, and J. R. Crandall, “Idle port scan-
ning and non-interference analysis of network protocol stacks using
model checking,” in Proceedings of the 19th USENIX Conference on
Security, ser. USENIX Security’10. USA: USENIX Association,
2010, p. 17.

Z. Qian, Z. M. Mao, Y. Xie, and F. Yu, “Investigation of triangular
spamming: A stealthy and efficient spamming technique,” in 2010
IEEE Symposium on Security and Privacy, 2010, pp. 207-222.

A. Quach, Z. Wang, and Z. Qian, “Investigation of the 2016 linux tcp
stack vulnerability at scale,” Proc. ACM Meas. Anal. Comput. Syst.,
2017.

K. Ru, Y. Zheng, X. Feng, and D. Wang, “The side-channel
vulnerability in network protocol,” in Proceedings of the 2021
11th International Conference on Communication and Network
Security, ser. ICCNS ’21. New York, NY, USA: Association
for Computing Machinery, 2022, p. 1-8. [Online]. Available:
https://doi.org/10.1145/3507509.3507510

J. Xiang and S. Chong, “Co-inflow: Coarse-grained information flow
control for java-like languages,” in 2021 IEEE Symposium on Security
and Privacy (SP), 2021, pp. 18-35.

Appendix A.
Meta-Review

The following meta-review was prepared by the program
committee for the 2025 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

A.l. Summary

This paper presents a symbolic-execution-based ap-
proach, called SCAD, to detect side-channel vulnerabilities
in the implementation of network protocols. SCAD relies
on manual efforts to annotate secrets, attacker-observables,
and analysis scope. SCAD is a selective symbolic execution,
which chooses a subset of variables to symbolize and limits
symbolic execution in a small scope via concolic execution.

A.2. Scientific Contributions

o Identifies an Impactful Vulnerability

o Creates a New Tool to Enable Future Science

e Provides a Valuable Step Forward in an Established
Field

A.3. Reasons for Acceptance

1) This paper found 6 new vulnerabilities in 5 bench-
marks, while also finding vulnerabilities that bypass
patches for previously known (and fixed) side-channel
vulnerabilities.

2) This paper expands the area of automated detection
of side-channel vulnerabilities by directly comparing
against prior work.

3) This paper will open-source the system, thus allowing
future researchers to build on this work.

