
Demystifying the Dependency Challenge in Kernel Fuzzing

Yu Hao
UC Riverside

Riverside, USA

yhao016@ucr.edu

Hang Zhang
Georgia Institute of Technology

Atlanta, USA

hzhan033@ucr.edu

Guoren Li
UC Riverside

Riverside, USA

gli076@ucr.edu

Xingyun Du
UC Riverside

Riverside, USA

dxing003@ucr.edu

Zhiyun Qian
UC Riverside

Riverside, USA

zhiyunq@cs.ucr.edu

Ardalan Amiri Sani
UC Irvine

Irvine, USA

ardalan@uci.edu

ABSTRACT

Fuzz testing operating system kernels remains a daunting task to

date. One known challenge is that much of the kernel code is locked

under specific kernel states and current kernel fuzzers are not ef-

fective in exploring such an enormous state space. We refer to this

problem as the dependency challenge. Though there are some ef-

forts trying to address the dependency challenge, the prevalence

and categorization of dependencies have never been studied. Most

prior work simply attempted to recover dependencies opportunisti-

cally whenever they are relatively easy to recognize. In this paper,

we undertake a substantial measurement study to systematically

understand the real challenge behind dependencies. To our surprise,

we show that even for well-fuzzed kernel modules, unresolved de-

pendencies still account for 59% - 88% of the uncovered branches.

Furthermore, we show that the dependency challenge is only a

symptom rather than the root cause of failing to achieve more cov-

erage. By distilling and summarizing our findings, we believe the

research provides valuable guidance to future research in kernel

fuzzing. Finally, we propose a number of novel research directions

directly based on the insights gained from the measurement study.

ACM Reference Format:

Yu Hao, Hang Zhang, Guoren Li, Xingyun Du, Zhiyun Qian, and Ardalan

Amiri Sani. 2022. Demystifying theDependencyChallenge in Kernel Fuzzing.

In 44th International Conference on Software Engineering (ICSE ’22), May

21–29, 2022, Pittsburgh, PA, USA. ACM, New York, NY, USA, 13 pages.

https://doi.org/10.1145/3510003.3510126

1 INTRODUCTION

Fuzzing has become one of the most popular and essential methods

for uncovering bugs and vulnerabilities due to its practicability and

effectiveness. Both academia and industry have devoted a large

amount of resources to researching and deploying fuzzing systems.

For example, Google allocated more than 25,000 servers to deploy

its ClusterFuzz infrastructure and has found tens of thousands of

vulnerabilities so far [13].

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9221-1/22/05.
https://doi.org/10.1145/3510003.3510126

However, despite the continuous research efforts and improve-

ments on fuzzing techniques, fuzzing sophisticated stateful software

(e.g., OS kernels) remains a big challenge. Even with the state-of-

the-art kernel fuzzer Syzkaller [15], the achievable code coverage

of various kernel modules is generally low from our measurements

(from 21% to 46%) after extensive fuzzing sessions.

One common belief of the major obstacle is that a large portion

of code can only be covered under specific kernel states (e.g., some

global variables need to be set to specific values). It is known to be

difficult for a fuzzer to search the enormous state space and enter

the desired ones. This problem cannot be easily solved by simply

adopting advanced mutation strategies that operate solely on local

inputs (e.g., function arguments), since many conditions in the code

are controlled by global memory (which may need to be set by a

completely different function/syscall invocation). In this paper, we

refer to this challenge as the dependency challenge in fuzzing OS

kernels.

In recent years, there have been a few related works that made

some progress in tackling this challenge. MoonShine [25] aims

to recognize dependencies from manually curated test cases (e.g.,

Linux testing project [10]), and distill them into more concise seeds

for fuzzing. However, its goal is not to discover and analyze new

dependencies. HFL [19] applies static analysis and symbolic execu-

tion to solve a subset of dependency issues. Although it manages to

achieve improvements on code coverage compared to the baseline,

according to our measurement, its result is still far from satisfactory

(e.g., only 10.5% of Linux kernel code can be covered during a 50-

hour fuzzing session). Furthermore, it still remains unknown what

types of dependencies are resolved and how large of a fraction they

represent. In general, due to the lack of a deep and quantitative

understanding of the dependency challenge, we argue that current

research has only explored the surface of this challenge.

In this paper, we take a data-driven approach to systematically

understand the dependency challenge in kernel fuzzing, with an

in-depth measurement study on a subset of Linux kernel modules.

Specifically, we aim to answer the following questions:

(1) How well does the state-of-the-art fuzzer perform (e.g., re-

garding code coverage) against the complex and stateful kernel?

How many uncovered branches are related to dependencies? We

specifically focus on well-fuzzed kernel modules as the results will

represent the difficult cases that are worth solving in the future.

(2) What are the root causes behind unresolved dependencies

and how important are they? Though the community has been



ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Yu Hao, Hang Zhang, Guoren Li, Xingyun Du, Zhiyun Qian, and Ardalan Amiri Sani

aware of the dependency for years, it is still unclear what the root

causes are for fuzzers’ failure to resolve the dependency.

(3) What can we do to address unresolved dependencies? With

the understanding of root causes, we hope to shed light on potential

solutions and draw attention to blind spots in current research

directions.

To answer these questions, we develop a pipeline ofmeasurement

infrastructure, including a combination of automated components

(fuzzing and static analysis) and meticulous manual investigations

whenever necessary to get to the root causes that are otherwise

difficult to obtain. Through our measurement study, we not only

discover that the dependency challenge is ubiquitous, but also find

a diverse set of root causes, which need focused efforts moving

forward. For example, as will be discussed in §7, we suggest that

multi-syscall analysis andmulti-interface fuzzing are two promising

directions. Furthermore, we show that much of the kernel code

is simply impossible to be covered (dead code) without a proper

environment. We believe the curated dataset from our study is

valuable in guiding future research in kernel fuzzing.

We summarize our main contributions as below:

• To the best of our knowledge, we are the first to perform an in-

depth measurement and systematic analysis on the dependency

challenge in kernel fuzzing.

• We develop a measurement pipeline including automated com-

ponents that can quantify the magnitude of the dependency

challenge. We will open source the measurement pipeline and

data to facilitate future research.

• Based on our measurement results and deep understanding of the

dependency challenge, we reveal many unexpected observations

and point to new research directions that will improve kernel

fuzzing.

2 BACKGROUND

2.1 Definition

This section gives some definitions to help explain the challenges

of resolving dependencies and the root causes of uncovered code.

Unresolved condition (UC).We define an unresolved condition

to be a condition that has been evaluated during fuzzing, but it has

never been evaluated to the desired value that allows an uncovered

branch to be taken.

Global memory.We define global memory to include global vari-

ables and any heap memory reachable from global variables (e.g., a

global pointer may point to a heap object). Either way, global mem-

ory persists across system call invocations, i.e., system calls can

change the global memory, which becomes observable to another.

Kernel state.We define the kernel state as all the content in global

memory. If a function reads the global memory in a condition, the

corresponding kernel state could influence which branch is taken.

This means that an execution path of a system call depends on not

only arguments but also the kernel state.

Unresolved dependency (UD).We define an unresolved depen-

dency to be an UC where some global memory is read, i.e., this

condition can only be satisfied if the kernel has a desired state.

Write statement (WS).We define a statement as a write statement

as long as it writes to some global memory.

1 static int cdrom_read_cdda (...) {

2 if (cdi->cdda_method==CDDA_BPC_FULL && nframes >1){

3 // uncovered code

4 ... } }

5 int register_cdrom (...) {

6 cdi->cdda_method = CDDA_BPC_FULL; }

Figure 1: An example case of unresolved dependency

Effective write statement (EWS).We define an effective write

statement to be a WS that has the potential to change the global

memory to an expected value by an UD.

Dependency.We define a dependency to be a relationship between

an UD and its EWS. Conceptually it is similar to def-use, except

dependency is specific to global memory and the use has to be a

condition check. Furthermore, we further categorize dependencies

into explicit dependencies and implicit dependencies. The

former represents the cases where the value written to the global

memory (e.g., a file descriptor) is propagated back to userspace,

which is then subsequently passed as an argument that is checked

against the global memory (a read). As an example, when a syscall

generates a kernel file object (through open()), it will be stored in a

global array and its file descriptor returned to userspace. The same

descriptor value will be passed in a subsequent syscall (read())

which causes the stored object in the array to be read. The latter

represents the cases where there is no overlap between one syscall’s

output and another syscall’s input arguments. The example we will

show next is an implicit dependency.

2.2 An Example Case

We use a simple example from the cdrom kernel module to illus-

trate how to find the root cause of an UD. As shown in Figure 1,

condition cdi->cdda_method == CDDA_BPC_FULL (line 2, where

cdi is a global structure) always evaluates to false when a fuzzing

test case reaches it, causing the true branch to be uncovered.

A common way to resolve such a condition is to find and execute

its EWS [35]. In this example, line 6, which is reachable through

another function register_cdrom(), is an EWS for the UD at line

2 since it writes the expected value to cdi->cdda_method. The next

step is to assemble a test case reaching (and thus executing) the

EWS before the UD. If the EWS is again guarded behind another

UD, we need to resolve it at first - this can be a recursive process.

3 MOTIVATION

Linux Kernel Fuzzing Tackling Dependencies. The typical in-

terface exposed by OS kernels is syscalls. Therefore, before one

can start fuzzing the kernel, it is necessary to generate a test case

consisting of a sequence of syscalls (with corresponding arguments

prepared). In the case of the state-of-the-art kernel fuzzer Syzkaller,

it requires a description or specification of the syscall interfaces.

Typically the specifications (also called templates) are manually

curated, which includes the information about the syscalls, their

explicit dependency relationship, and the possible range of values

of syscall arguments. Since manually curating templates for various

kernel modules is not scalable especially a long tail of device drivers,

there has been some recent work, e.g., DIFUZE [7] and SyzGen [4],

that aims to automate the generation of syscall templates, which



Demystifying the Dependency Challenge in Kernel Fuzzing ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

includes some limited hardcoded knowledge about explicit depen-

dencies as well. Another direction considered is to simply take

syscall traces generated by existing applications (that exercise a

specific target module) and mutate the trace [16]. This bypasses the

need to generate syscall templates and instead pushes the problem

to being able to generate high quality syscall traces. In practice, it

often falls short in coverage because existing applications typically

exercise only a small portion of the kernel module.

Furthermore, Syzkaller templates by design are unable to en-

code implicit dependencies where no explicit return and argument

relationship exists, e.g., the example in Figure 1 is such a case. It

is possible to analyze existing syscall traces generated by applica-

tions [16, 25]. This line of work can capture dependencies (both

explicit and implicit) that are naturally exercised by existing appli-

cations, but will not be able to resolve new dependencies. Another

direction (e.g., explored by HFL [19]) is to conduct more sophisti-

cated program analyses and look for read/write relationships of

the same global memory. However, it focuses on resolving mostly

explicit dependencies which are typically encoded in well-written

templates already, i.e., the templates correctly describe most of the

system calls and their relationships. Indeed, as we find out from

measuring the dependency challenge in popular kernel modules,

the majority of UDs are implicit instead of explicit.

Motivation. To summarize, we believe the state-of-the-art kernel

fuzzing research has only explored the surface of the dependency

challenge. In particular, we find that most of the existing work

focuses on the low-hanging fruits of improving fuzzing cov-

erage against the kernel modules with largely incomplete (or

missing) syscall templates. For example, DIFUZE [7] generates

templates (considering some explicit dependencies) for kernel mod-

ules where no prior templates exist. HFL [19] focused on discov-

ering explicit dependencies in less tested modules. However, in

this paper, we aim to understand what the remaining chal-

lenges are when syscall templates are already comprehensive

with the obvious dependencies recognized and encoded, and

when fuzzing time is sufficiently long. In particular, we are

interested in whether the dependency challenge is still the

prominent hurdle and why? Consider the example case in Fig-

ure 1. Surprisingly, even such a seemingly trivial dependency can

be extremely challenging for the state-of-the-art kernel fuzzer to

resolve and cannot be solved by prior work (because it is an implicit

dependency). Interestingly, as will be shown in §6.3, it turns out

the root cause is that the EWS is inside the initialization functions

of the kernel module, and a kernel fuzzer implicitly assumes such

functions are out of the fuzzing scope and never considers fuzzing

such functions.

Following this direction, in this project, we select a set of kernel

modules whose templates are well-written so that we can observe

and analyze their coverage deficiencies. From this study, the ob-

vious question we hope to answer is whether dependencies are

still a major hurdle. If so, what future research directions should be

considered to overcome the challenge? To achieve this goal, we rely

on the state-of-the-art kernel fuzzer, Syzkaller, which has proved

effective in finding thousands of kernel bugs [14] and continuously

improved. In particular, we allow Syzkaller to fuzz specific kernel

modules sufficiently long to realize the “full” potential of the corre-

sponding templates. This allows us to have an objective view of the

remaining UCs, which represent the hard cases we want to further

investigate.

4 MEASUREMENT PIPELINE

To conduct a proper analysis of the dependency challenge in kernel

fuzzing, we build a measurement pipeline that has a combination

of automatic and manual analysis components. Roughly speaking,

the automatic analysis aims to measure the scale of the dependency

problem, whereas the manual analysis attempts to distill the root

causes of UDs. The latter is often much more in-depth and requires

more than just mechanical analysis.

The high-level workflow of the measurement pipeline is shown

in Figure 2. First, after long fuzzing sessions of specific kernel mod-

ules, we collect the coverage and test cases from a fuzzer and obtain

the UCs based on the coverage. Then we use static analysis to de-

termine what UCs are actually UDs, which can quantify the degree

of the dependency challenge (answering the first question in §1). In

addition, we leverage static analysis to recognize the correspond-

ing WSs that can influence a condition, which is a necessary step

toward analyzing the root causes of UDs (in part to answer the

second question in §1). From here on, we manually inspect eachWS

of a dependency and figure out EWS. If so, we then investigate the

reason Syzkaller fails to resolve the dependency. If none of the WSs

can resolve the dependency, we will also investigate the underlying

reasons.

Step 1: Collecting Coverage. This step is relatively straightfor-

ward. In addition to allocating sufficient fuzzing time for kernel

modules, we log all the test cases and their corresponding coverage

such that we can later use them for automated and manual analysis.

Step 2: Determining Unresolved Dependencies. The next step

is to determine what UCs are UDs. This can be achieved through a

static taint analysis where the taint source is any global memory.

In addition, we also consider local variables whose values are indi-

rectly decided by global memory as taint sources (more detail in

§6.1). Basically, whenever any source flows into any sink, the sink

statement is effectively an UD. The result of this step allows us to

quantify how often the dependency challenge impedes the fuzzer

to make further progress.

Since accuracy is critical for ensuring that our measurement is

not too far off from the ground truth, we have made changes and im-

provements to a state-of-the-art static analysis engineDr.Checker [23]

to adapt it to our use case and demonstrate decent accuracy. In ad-

dition, it is worth noting that the static taint analysis is based on

the toolchain of LLVM [21]. Therefore, it is necessary to map an

UC address to the LLVM instruction. The details of the above are

described in §5.

Step 3: RecognizingWrite Statements of Dependencies. Given

an UD, next step is to identify WSs throughout a kernel module
1 that can influence the value of the global memory, therefore

having a chance to resolve the dependency. In addition, we aim to

pinpoint any EWS. To identify WSs, we rely on static alias analysis

by searching for WSs that change the same global variable(s) as

used in an UD.

1The EWSs are possible outside the kernel module. Due the scalability issue, we do not
extend the scope of static analysis to the whole kernel, but we will manually search
the whole kernel in later manual analysis.



ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Yu Hao, Hang Zhang, Guoren Li, Xingyun Du, Zhiyun Qian, and Ardalan Amiri Sani

Figure 2: Measurement pipeline including the data collected from dynamic, static, and manual analysis

Once static analysis results provide a set of WSs, we then man-

ually inspect each WS and determine which one(s) are in fact “ef-

fective”. Unfortunately, this goal is extremely challenging to fulfill

automatically because many WSs write values that are dynamically

determined, and it can be hard to construct a test case to reach such

statements as well. In fact, according to our analysis, the majority of

the WSs are simply never even covered in our long fuzzing sessions.

Nevertheless, when the write values are statically determined, i.e.,

constants, our static analysis can determine their effectiveness and

prune any WSs that are obviously not effective. For the remaining

WSs, we have to resort to a manual analysis to identify EWSs.

Step 4: Distilling Root Causes. Finally, to drill down to the root

cause of an UD, we need to prove or disprove whether it can be

resolved. Specifically, if we manage to find any EWS from the pre-

vious step, we will attempt to construct an actual test case that can

exercise the EWS, which will eventually resolve the dependency.

We can then analyze why the fuzzer failed to generate such a test

case (i.e., root causes) by inspecting its runtime logs recorded pre-

viously. However, in practice, we find it extremely challenging to

construct such test cases, even for experienced researchers.

First of all, most EWSs were never even exercised during the

fuzzing session. It can be challenging to construct a test case that

can reach the statement. For example, the EWS may be guarded

again by some UCs (and even UDs). Even if we can reach the EWS,

it can often be tricky to precisely control the value (which may

in turn depend on global memory). This can lead to a recursive

analysis starting all the way from the second step (more details in

§6.2). Even though our static analysis can help with this process of

determining UDs and narrowing down the search space of EWSs,

it is still a substantial undertaking.

Second, it turns out that it is challenging to “mechanically” follow

the procedure of looking for EWSs and how to reach them. For

example, there are often complications such as test cases not being

able to reproduce the same consistent behaviors (as some kernel

states are modified by the test cases). Therefore, in the end, we

end up firstly making sense of the overall architecture of each

kernel module, i.e., understanding the semantics of most critical

functions and data structures, before jumping into the details of

each dependency. This includes manual auditing of the source code

as well as dynamic testing, e.g., setting breakpoints and observing

behaviors of certain functions. As more details will be discussed

in §6.3, on average, each case takes about 0.5 hour to 4 hours to

analyze. We believe this is a valuable dataset that will benefit any

future research on kernel fuzzing.

5 IMPLEMENTATION

In total, there are 10.9k (C++), 4.7k (Go) and 0.5k (Protobuf) lines

of code for the whole pipeline, including the mapping between bi-

nary and LLVM bitcode (§5.1), static taint analysis (4k C++ lines of

changes to Dr.Checker in §5.2), data sharing (serialization and dese-

rialization) between all components, collecting statistics, organizing

information to support manual analysis, and the experimental so-

lution (§7). Below we describe in more detail about the two main

components in the measurement pipeline, Mapping (§5.1) and Static

Analysis (§5.2). We will open source all of the components and data

to facilitate the reproduction of results and future research.

5.1 Mapping Between Binary and LLVM Bitcode

The coverage information collected during fuzzing is about bi-

nary instructions, specifically through the instrumentation pro-

vided by kcov [18]. In contrast, our static analysis operates on the

LLVM bitcode. For example, when determining whether an UC

is an UD, it takes a branch instruction in LLVM as input, i.e., br

cond, true_branch, false_branch. Therefore, we need to map

the binary level coverage back to the LLVM bitcode level. This turns

out to be a non-trivial process. Specifically, by default, the Linux

kernels are compiled with a high optimization level O2 (this is also

necessary for an efficient fuzzing process), the bitcode files gener-

ated at an early stage (unoptimized) in the compilation pipeline

are very different from the kernel binary in terms of the control

flows and boundaries of basic blocks, making it challenging to map

between them.

Our solution is to use optimized bitcode files produced at a much

later stage in Clang (through an undocumented feature), which

share the same control flow graph and basic block structure as those

in binary. This allows us to obtain an accurate mapping between

the binary and IR instructions. Due to the space limit, we do not

go into details here. We will however include the solution in the

open sourced version of our measurement infrastructure, which

may help other projects that need such mappings.

5.2 Static Taint Analysis

Our static analysis engine is built on top of the state-of-the-art Dr.

Checker [23], which is designed to be flow-, context-, and field-

sensitive to analyze kernel source (translated into LLVM IR). How-

ever, since Dr. Checker’s built-in alias and taint analyses are not

suitable and precise enough for our purposes, we made two cate-

gories of changes: (1) adapting it to work in our use cases, and (2)

improving its accuracy.

(1) First, since the LLVM bitcode we analyze is compiled with

the O2 optimization level as described above, exotic forms of IR

instructions will be generated by Clang, which are not handled



Demystifying the Dependency Challenge in Kernel Fuzzing ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

by Dr. Checker (as it compiles the kernel using O0). One such in-

struction is the multi-index GEP that aggregates multiple layers

of pointer offset calculations in a single instruction. For example,

getelementptr %struct.foo* @chunky, i64 1, i32 2, i32

3, i32 4 is equivalent to &chunky[1].f2.f3.f4 (the last three in-

dices 2, 3, 4 represent the field indexes). Second, instead of treating

user-controlled syscall arguments as taint sources (as in the case of

Dr. Checker), we need to taint any global memory, which, according

to its definition in §2.1, can be either (a) explicitly declared global

variables or (b) heap memory reachable from global variables. The

former is straightforward. The latter can be tricky because some-

times the reachability relationship is established during some setup

or initialization phase, which can often be outside of the scope of

a kernel module. An example is the file or device structure that

frequently appear as the first argument of a driver’s ioctl() han-

dler. Such structures may belong to heap memory and are reachable

from some global data structures, but such reachability relationship

is set up in the generic kernel as opposed to a specific kernel module.

Therefore, we simply apply domain knowledge to such function

arguments and label them as taint sources accordingly.

(2) One significant improvement we made over Dr. Checker is

the pointer arithmetic resolution. Partly due to the O2 optimization

level, we find many more pointer arithmetic operations such as

*(int*)((char*)p + byte_offset), which is basically equivalent

to p->f, where p is originally a pointer to a structure type which

contains an integer field f at the offset byte_offset. Therefore,

we analyze the definition of structures and map a byte offset to a

particular field in the structure. With this improvement, we will

not lose track of such points-to relationships. We also handle the

widespread container_of() cases in kernel, where the pointer to

a container structure is obtained by subtracting an offset from a

pointer to an embedded structure within it. These cases can cause

difficulties for a static analysis due to the pointer arithmetic and

the unawareness of the container structure type. We address this

problem by inferring the container type from the context of the

container_of() pointer calculation (e.g., the resulting char* pointer

can be converted to the actual struct* type by a later “cast” IR),

and then creating the correct container object hosting the original

embedded structure. This way, we can precisely maintain the point-

to records.

6 EVALUATION

In this section, we first describe the experiment setup and vali-

dation of the static analysis results in §6.1. We then present the

measurement results about the prevalence of UDs and the complex-

ity involved in analyzing them in §6.2. Finally, we report the results

of our root cause analysis to §6.3.

6.1 Experiment Setup and Validation of
Methodology

Fuzzing Setup. We pick four Linux kernel driver modules for

testing (from kernel version 4.16) as listed in Table 1. They are

all available and compiled based on the defconfig (default kernel

configuration), which represents commonly used drivers. There are

three reasons we pick them:

Table 1: Description and fuzzing time for each module

Name SLoC Template size (#lines) Time (hour)

cdrom 4.6k 344 48

snd_seq 14k 278 48

ptmx 39k 324 48

kvm 60k 806 120

Figure 3: Coverage over time

Table 2: Categories of unresolved dependencies and sample

cases for manual analysis

#DomI #UC #DomI𝑈𝐶 #SampleA #UD #DomI𝑈𝐷 #SampleR

<11 2182 10,014 74 1415 7,176 35

11 - 100 577 23,553 32 428 17,565 37

101 - 190 124 16,885 10 80 11,073 13

>190 94 62,448 17 65 39,378 30

Sum 2977 112,900 135 1988 75,192 115

• Compared to the core Linux kernel, driver modules account for

the majority of the kernel code and therefore the attack surface

as well. There are about 22.7M SLoC for the whole Linux kernel

but 16.4M SLoC (71.9%) of them are device drivers.

• As mentioned in §3, compared to the less tested and less popular

drivers, we choose more popular ones that are relatively well

tested and have relatively comprehensive Syzkaller templates. At

the start of our analysis, there were only 32 drivers with Syzkaller

templates, and 15 of which had well-written templates, which

limits our choices significantly.

• We aim to cover different types of Linux device drivers — one

character device driver: ptmx, one block device driver: cdrom, and

one main sub-category of character device driver (miscellaneous):

kvm, and one other character device driver that is outside of the

/drivers folder: snd_seq.

As shown in Table 1, we test each module individually for at

least 48 hours, repeated three times. The machine we use to conduct

fuzzing has an Intel(R) Xeon(R) Gold 6248 CPU and 512GB of RAM,

and runs Ubuntu 18.04 LTS. We use 32 CPU cores (in 32 different

VMs) when fuzzing a module. We collect the union of coverage

achieved in all three fuzzing runs. The fuzzing time is determined

experimentally based on how long it took for coverage to converge,

as will be shown in Figure 3. For example, the coverage of ptmx,

snd_seq, and cdrom still improves after 24 hours and we allocate

48 hours for them. On the other hand, the coverage of kvm still

improves even after the 72-hour mark, which prompts us to allocate

120 hours for it. This way, we ensure all the remaining UCs at the

end of the fuzzing session will likely represent the limitations of

Syzkaller and its templates.



ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Yu Hao, Hang Zhang, Guoren Li, Xingyun Du, Zhiyun Qian, and Ardalan Amiri Sani

Table 3: Accuracy of static analysis

Name #UC
Manual Analysis Static Analysis

#UD #WS #EWS #UD #FP #FN #WS #FP #FN

cdrom 16 11 3.00 1.00 11 9.09% 20.00% 3.00 0.00% 0.00%

snd_seq 16 13 3.00 1.00 8 0.00% 60.00% 3.00 5.56% 5.56%

ptmx 25 17 7.88 1.75 16 0.00% 20.00% 7.50 0.00% 4.76%

kvm 78 45 3.00 1.33 40 0.00% 19.23% 2.94 1.85% 3.70%

Sum/Avg 135/- 86/- -/4.08 -/1.33 75/- 1.33% 24.39% -/3.97 1.36% 4.08%

Sampled Cases for Manual Analysis.We sample two datasets

for manual analysis, summarized in Table 2. The first dataset is

to validate the accuracy of our static analysis results. The second

is for the root cause analysis. For the first dataset, we start from

UCs and manually determine which are in fact UDs. Then we also

conduct an exhaustive manual search for their corresponding WSs,

with the understanding of the semantics of each kernel module (as

discussed in §4). Such UDs and their WSs serve as ground truth.

To cover a representative set of samples, we categorize the UCs

by the number of instructions behind them, i.e., the instructions

(denoted as #DomI) that are dominated by the condition in the

same function (and that there are no other ways to reach them

without satisfying the condition). A smaller #DomI indicates that

the condition is likely related to simple error handling, whereas a

larger #DomI is related to the functional part of the kernel module.

As shown in Table 2, we partition the UCs into four ranges based

on #DomI, from which we then randomly sample #SampleA of

cases. Note that although the first category (<11) happens the most

(#UC), but the aggregated #DomI is the lowest, whereas the last

category has fewer UCs but more aggregated #DomI. As a result, we

slightly favor the last category as they represent more functional

code and are generally more worthwhile to test. For the second

dataset, we start directly with UDs (as opposed to UCs), so we can

investigate their root causes. In total, we randomly sampled 115

UDs over different categories as shown under the #SampleR column

in Table 2, favoring the last category even more because resolving

such dependencies will unlock more functional code.

Accuracy Validation of Static Analysis. From the first sampled

dataset that serves as ground truth, we show the static analysis

results in Table 3. As we can see, since we try our best to optimize

our analysis to avoid exaggerating the UD problem in kernel fuzzing,

the overall accuracy is very good. There are a 1.33% false-positive

rate and 24.39% false-negative rate with regards to determining if

an UC is an UD. That means that there is likely an underestimate

of the dependency issue by our static analysis (as there are more

false negatives). There are a 1.36% false-positive rate and at least

a 4.08% false-negative rate regarding the WS analysis; note that

the false-negative rate is a lower bound because we do not claim

to have found the complete set of WSs manually for each UD. In

other words, the #WS result overall is also an underestimate.

Unreachable Functions Elimination. Our initial observation of

the fuzzing results indicate that most kernel modules have much

more code than what we can cover with Syzkaller because of ob-

viously unreachable functions. As a result, we prune unreachable

functions as described later in §8 because otherwise the percentage

of code coverage in the end will look unrealistically small, which

Table 4: Classification of unresolved conditions

Name #UC
#UD

#unknown #non-UD
#Global #Control

cdrom 16 7 4 2 3

snd_seq 16 10 3 2 1

ptmx 25 12 5 3 5

kvm 78 29 16 24 9

Sum 135 58 28 31 18

Table 5: Prevalence of unresolved dependencies

Name #UncoveredE/#E #UD/#UC #DomE𝑈𝐷 /#DomE𝑈𝐶

cdrom 615/915 (67%) 37/54 (69%) 80/122 (99%)

snd_seq 7355/9255 (79%) 162/274 (59%) 204/356 (57%)

ptmx 3541/5105 (69%) 254/289 (88%) 763/830 (92%)

kvm 15471/28516(54%) 1554/2050(76%) 4073/5677(72%)

Sum 26982/43791(62%) 2007/2667(75%) 5106/8037(73%)

may leave us with the wrong impression about the kernel fuzzing

performance.

Classification ofUnresolvedConditions.Wenowgive an overview

of the 135 UCs from the SampleA dataset. Based on our manual

characterization of these cases, as shown in Table 4, we can divide

them into 86 (58+28) UDs, 18 non-UDs, and 31 unknown cases. We

can further break down the UD cases into 58 cases where the UD is

directly affected by a global memory and 28 cases where the UD

is indirectly affected by global memory. The latter cases represent

UDs where their conditions check the value of a (local) variable

whose value is indirectly decided by global memory through control

dependence (as opposed to data dependence). For example, “if(UD)

var=true; if(var)//Uncovered code”. if(var) is classified as

UD because the local variable var is indirectly affected by if(UD).

For the non-UD cases, they always correspond to conditions whose

values are influenced purely by syscall arguments. Finally, for the

unknown cases, they represent cases that are difficult to analyze

because they require analysis of either the assembly code or code

external to the driver module itself. We exclude these unknown

cases from our subsequent analysis. Overall, the UD cases repre-

sent 86/104 = 83% of the UC cases, indicating that the dependency

challenge is indeed a major hurdle for kernel fuzzing.

6.2 Measurement Results

In this section, we report (1) static analysis results at scale, and

(2) quantitative metrics that show the difficulty of analyzing these

UDs.

Prevalence of Unresolved Dependencies The results are shown

in Table 5. The number of total edges (#E) represents the total pos-

sible coverage (from one basic block to another) for each module.

After taking the union of coverage obtained from three fuzzing

runs, we report the remaining uncovered edges (#UncoveredE). As

we can see, even with all the pruning of unreachable code, there are

still many uncovered edges even after 3×48 hours or 3×120 hours of

fuzzing for each module, ranging from 54% to 79% percentage-wise.

Out of edges that are never covered, we further look at those with

corresponding conditions that are exercised but never evaluated

to the desired value (i.e., either true or false). These correspond



Demystifying the Dependency Challenge in Kernel Fuzzing ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

Table 6: Write statements stats from static analysis

Name #UD
Static Analysis

#WS #WSC #WSE #WSE/#WS

cdrom 37 1.90 1.45 0.46 24.21%

snd_seq 162 3.56 1.03 2.53 71.07%

ptmx 254 18.05 5.50 12.54 69.47%

kvm 1554 13.51 4.53 8.99 66.54%

Sum/Avg 2007/- -/13.25 -/4.36 -/8.90 67.15%

to UCs (#UC), which are much smaller than the total number of

uncovered edges, but each of them acts as a guard that prevents

many more subsequent edges from being covered. Out of these

UCs, our static analysis reports on average 75% as UDs (#UD). Even

though dependency is a known problem, this prevalence of it is

still surprising (keep in mind that the number is likely an underes-

timate). According to the breakdown by modules, ptmx and kvm

have the higher #UD. This is expected because the more complex a

module is, the more global states are likely introduced and hence

more dependencies. #DomE𝑈𝐶 describes the sum of the number

of uncovered edges that are intra-procedurally dominated by the

guard conditions (reachable only from the UCs), and #DomE𝑈𝐷 is

the sum over all the UDs. We choose intra-procedural domination

because we do not want to overestimated it. It shows that UDs

roughly lock away three quarters of the code.

Write Statements. From our static analysis results, we find that

the average number of WSs for each UD is about 13, as shown

in the #WS column in Table 6. If we look at the number for each

module, kvm and ptmx exhibit many more WSs. In addition, we

find that sometimes an UD may involve more than one piece of

global memory (e.g., influenced by multiple global variables), and

each of them may have multiple WSs.

The next step in the measurement pipeline is to determine which

WSs are effective. As discussed in §4, this step is very challenging

even with manual analysis. One of the reasons is that these WSs

are often writing values determined at runtime (in the form of

expressions). As Table 6 shows, 67.15% of the written values are

expressions (#WSE) instead of constants (WSC). In the end, as

shown in our later manual analysis results in Table 3, we find that

the number of EWSs (#EWS) is far smaller than #WS (often only a

single one).

The results show that it would be likely an expensive search to

exhaustively test every single WS automatically, given that we may

need to determine the possible values that can be written (which

can be challenging by itself). This problem is exacerbated when we

consider the recursive nature of dependencies, as will be shown

next.

Recursive Dependencies.Whenever a WS cannot be reached by

any of the existing test cases attempted by Syzkaller, it is likely that

it may be blocked off due to additional UDs, leading us to recur-

sively analyze more WSs and dependencies. When this happens,

the search space can blow up quickly depending on (1) the number

of WSs we have to attempt at each depth level which we know is

13 on average and (2) the depth of recursion (difficult to measure).

We measure two approximate metrics to quantify the recursive

dependency challenge. First, we find that on average 35.91% of #WS

are uncovered after the fuzzing sessions are done across all four

Table 7: Root causes of unresolved dependencies

Name #UD
#DeadCode #Environment #Unobserved #Template #Search unknown

§6.3.1 §6.3.2 §6.3.3 §6.3.4 §6.3.5

cdrom 7 0 6 1 0 0 0

snd_seq 32 16 2 9 2 3 0

ptmx 33 12 5 1 5 5 5

kvm 43 7 14 0 15 1 6

Sum 115 35 27 11 22 9 11

drivers. This indicates that it requires work to construct a test case

before we can even verify whether these WSs are feasible. Second,

when the WSs are not covered, we find surprisingly 93.72% of them

are due to recursive dependencies based on our static analysis of the

dominating conditions. In other words, if a fuzzer has not managed

to reach the EWSs after a long fuzzing session, it is almost always

never due to barely missing the opportunity, indicating some more

fundamental roadblocks as we will investigate later in §6.3.

Non-self-contained (Unstable) Test Cases. During the process

of our manual investigation of root causes, we find another common

hurdle. That is, the test cases generated by Syzkaller are not self-

contained. Specifically, Syzkaller (or fuzzers based on it) generates

a stream of test cases and executes them, accumulating significant

kernel state changes as it progresses (until a reboot occurs). This

means that the “success” of a test case can be dependent on the

previous ones that may have accidentally set up the kernel state,

effectively making these test cases non-self-contained or “unstable”.

This is important for our manual investigation because we rely on

the test cases generated by Syzkaller to reproduce the results, e.g.,

if a test case is reported to reach some UD, we will re-execute the

test case and hope that it will still be able to, otherwise we have to

put more effort in the steps mentioned in §4. Unfortunately, a large

fraction of test cases that were previously able to reach UDs and

WSs become unstable when tested later in isolation (average 97%

and 46% respectively). This is another reason why manual analysis

can be expensive, as we need to reconstruct the state which can

help us understand the root cause of the unresolved dependency.

6.3 Analysis of Root Causes

Overall, it took about 300 person-hours, with the help of all the re-

sults produced by automated analysis in the measurement pipeline,

in order for us to be confident about the correctness of our results.

Even then, there are a few cases where we cannot determine the

root causes even after hours of investigation. This means that we

cannot either construct a test case that can resolve the dependency

or prove that it is impossible. Given the level of difficulty in con-

ducting such an analysis, we will publicly share the datasets, which

we believe is valuable to researchers who aim to improve kernel

fuzzing.

Overall, we distill and summarize the root causes into six cat-

egories (and an unknown category). The results are presented in

Table 7. We next describe them one by one.

6.3.1 Dead Code. The amount of dead code in a large complex

piece of software such as Linux is a mystery. From our results, we

are surprised to see a substantial portion of the UDs (35/115) turn

out to lead to dead code, representing almost 30% of UDs. In other



ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Yu Hao, Hang Zhang, Guoren Li, Xingyun Du, Zhiyun Qian, and Ardalan Amiri Sani

1 static struct snd_seq_queue *queue_list[SNDRV_SEQ_MAX_QUEUES];

2 static int seq_free_client1 (...) {

3 snd_seq_queue_client_leave(client->number);

4 snd_seq_queue_client_termination(client->number);

5 }

6 void snd_seq_queue_client_leave(int client) {

7 for (i = 0; i < SNDRV_SEQ_MAX_QUEUES; i++) {

8 if ((q = queue_list_remove(i, client)) != NULL)

9 queue_delete(q);

10 }

11 }

12 void snd_seq_queue_client_termination(int client) {

13 for (i = 0; i < SNDRV_SEQ_MAX_QUEUES; i++) {

14 if ((q = queueptr(i)) == NULL)

15 continue;

16 spin_lock_irqsave (&q->owner_lock , flags);

17 if (q->owner == client)

18 // Uncovered branch

19 q->klocked = 1;

20 spin_unlock_irqrestore (&q->owner_lock , flags);

21 if (q->owner == client) {

22 // Uncovered branch

23 if (q->timer ->running)

24 snd_seq_timer_stop(q->timer);

25 snd_seq_timer_reset(q->timer);

26 }

27 queuefree(q);

28 }

29 }

Figure 4: Case of dead code

words, it is simply impossible to reach these uncovered branches

behind UDs no matter how hard we try. The best thing fuzzers

can do it to recognize them and avoid wasting time trying to cover

them.

Dead code is a well known issue and compilers routinely per-

form dead code elimination [5, 9]. We suspect that the reason why

compilers fail to identify them is due to the nature of UDs requiring

the analysis of global memory (beyond a local context). For exam-

ple, we find a function may double check the existence of certain

elements in a global queue right after its caller removes them (the

example is available in the uploaded dataset, among other exam-

ples). To get further confirmation, we reported the case to Linux

kernel developers and they have agreed with our assessment and

eliminated the dead code subsequently. Even though we have not

reported all the cases to Linux, we exercise the same rigor across

all the dead code cases.

Interestingly, except cdrom, all other kernel modules have a

substantial fraction of dead code cases out of their UDs. For snd_seq,

half of its UDs are surprisingly dead code (16 cases out of 32). In

addition, we are curious to see whether the dead code cases only

represent small pieces of code (e.g., redundant error checks). In

general, the data are indeed in line with the hypothesis, especially

given the way these cases are sampled (shown in Table 2). However,

there is still a substantial fraction of counterexamples. Following

the categorization in Table 2, we find 18 out of the 35 dead code

cases have only a small number of dominated instructions in the

same function (<11). However, the remaining 17 cases are spread

out: 10 cases with 11-100 dominated instructions, 4 cases with

101-190 dominated instructions, and 3 cases with >190 dominated

instructions.

We give a fairly complex dead code example that wemanually de-

termined in Figure 4. There are two unresolved dependencies (line

17 with 23 uncovered instructions and line 21 with 61 uncovered

1 static int cdrom_read_cdda (...) {

2 if (cdi->cdda_method == CDDA_OLD)

3 // Uncovered branch

4 ... }

5 int register_cdrom(struct cdrom_device_info *cdi) {

6 if (cdi->disk) cdi ->cdda_method = CDDA_BPC_FULL;

7 else cdi->cdda_method = CDDA_OLD; // Uncovered branch

8 ... }

9 static int ide_cd_probe (...) {

10 if (drive ->media != ide_cdrom) goto failed;

11 devinfo ->disk = info ->disk;

12 register_cdrom(devinfo); ... }

13 static int probe_gdrom (...) {

14 if (gdrom_execute_diagnostic ()!=1) return -ENODEV;

15 register_cdrom(gd.cd_info); ... }

Figure 5: Case of environment dependency

instructions). Based on the control flow graph and data flow graph,

it does not seem like the uncovered branches of line 18-19 and line

22-25 are dead code. However, if we look at the call graph, we can

find that the only caller of the function snd_seq_queue_client_

termination() is the function seq_free_client1() that calls

the function snd_seq_queue_client_leave() before the func-

tion snd_seq_queue_client_termination(). What the function

snd_seq_queue_client_leave() does is to remove all the ele-

ments in global queues if their client IDs are equal to client->

number (see line 3). Interestingly, function snd_seq_queue_client_

termination() goes through the same global queues to look for

elements that have a specific client ID (again client->number as

shown in line 4). This will obviously lead both conditions at 17

and 21 to always evaluating to false. To get further confirmation,

we reported this case to Linux kernel developers and they have

agreed with our assessment and eliminated the dead code subse-

quently. Even though we have not reported all the cases to Linux,

we exercise the same rigor across all the dead code cases.

6.3.2 Environment Dependency. We find that oftentimes an UD

may depend on the configuration of and values from the execution

environment (e.g., hardware). If the underlying execution environ-

ment is not the expected type or returns the expected result, a

dependency will not be resolved. Note that we do attempt to prune

code that obvious cannot be reached because of environment de-

pendency (see §8). Nevertheless, our heuristics only focused on

function pointers which point to different targets depending on

the underlying execution environment. Other than those, we find

there are still many other cases (most are much smaller) that are

not excluded earlier. An analysis that could automatically recognize

them would be helpful so users of fuzzer can tune the configuration.

We show an example in Figure 5, where the UD is cdi ->

cdda_method == CDDA_OLD (line 2). We find the EWS cdi ->

cdda_method = CDDA_OLD (line 7), which is not covered because of

yet another UD if (cdi->disk) (line 6). The value of cdi->disk

is decided by the caller of register_cdrom(), which can be either

ide_cd_probe() (line 9) or probe_gdrom() (line 13). These two

functions check the type of the hardware device, and either writes

to devinfo->disk (line 11) or does not. We omit a few other device

types and the exact hardware read functions for brevity. Only if we

have the correct hardware device present (in this case a GDROM,

not CDROM), will we reach line 7 and in turn line 3.



Demystifying the Dependency Challenge in Kernel Fuzzing ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

1 static struct snd_seq_client *clienttab[SNDRV_SEQ_MAX_CLIENTS];

2 static int open(*file) {

3 clienttab[client ->number] = client;

4 client->type = USER_CLIENT;

5 file ->private_data = client; }

6 static long ioctl(*file , cmd , arg) {

7 *client = file ->private_data;

8 snd_seq_ioctl_create_port(client); ... }

9 static int snd_seq_ioctl_create_port(...) {

10 if (client->type == KERNEL_CLIENT)

11 // Uncovered branch

12 ... }

13 int snd_seq_create_kernel_client (...) {

14 client->type = KERNEL_CLIENT;

15 return client ->number; }

16 int __init snd_seq_system_client_init()) {

17 sysclient = snd_seq_create_kernel_client(NULL ,0,"System");

18 snd_seq_ioctl_create_port(sysclient); ... }

19 module_init(alsa_seq_init)

Figure 6: Case of unobserved dependency (module init)

In total, we identify 27 such cases as shown in Table 7, which

represent almost a quarter of all UDs. Among them, we find that 18

are about reading the hardware type or property (nine in module

init functions, and nine in syscalls, a special situation here is

nested guests in kvm, which counts six cases). Six of them attempt

to read something that can change at runtime. The remaining three

are undetermined.

6.3.3 (Partially) Unobserved Dependency. This is an interesting

category (although rare in our investigation) related to the design

of Syzkaller where certain functions are simply not in the scope of

the fuzzer. For example, any code that occurs in the module init or

exit functions, or the bottom-half processing [27] are not tracked

by Syzkaller. This means that any code that is reachable from either

category of functions will never be covered (even if they do get

executed). This is because such coverage cannot be attributed to a

specific test case. This leads to a variety of problems.

First, this can lead to incorrect accounting of UDs. Specifically,

some functions can be reachable from both syscall entry points and

the above categories. We find that it is possible that such functions

have UDs during syscall fuzzing, but in reality the dependency is in

fact resolved during these other unobserved execution paths (from

init/exit or bottom-half). For example, snd_seq_create_kernel

_client() in Figure 6 contains the only EWS (line 14) for the

UD (line 10), and is only called by the module init function, (i.e.,

__init alsa_seq_init at line 19). When the UD is reached from

syscalls, i.e., ioctl(), the kernel state client->type always takes

the value of USER_CLIENT, which is set by the WS at line 4 in

open(). Obviously, this will lead the Syzkaller to think that it is

unresolved. There are two cases in total that can be essentially

considered resolved dependencies.

Second, because Syzkaller was not aware of functions related

to the init/exit and bottom half, it also does not have the ability

to schedule them during fuzzing. This leads to EWSs that are in-

voked only sporadically (in the case of the bottom half) or only

at the module load time or unload time. For example, the mod-

ule init may initialize some kernel state to an expected value (by

an EWS). However, Syzkaller may first schedule test cases that

accidentally overwrite the expected value before the UD is even

seen. We find nine such cases where the only EWSs are located in

Figure 7: Case of unresolved dependency because of incom-

plete templates

init/exit functions or the bottom half. There are two cases under

this category where the dependencies are not triggerable.

As we can see, this is highly dependent on the kernel mod-

ules. Even though rare overall, they do constitute a non-negligible

portion of the cases in cdrom (14.29%) and snd_seq (28.13%). We

anticipate seeing many more cases of bottom-half processing in

modules with frequent external interactions, e.g., audio, camera,

and network drivers.

6.3.4 Incomplete Templates. The root causes introduced thus far

are outside of the control of a fuzzer (e.g., dead code and envi-

ronment dependencies). Now we move on to the root causes that

technically fall under the scope of Syzkaller. Specifically, we men-

tioned that Syzkaller relies on templates that encode the knowledge

about the syscall interface for each kernel module. The quality

of templates has a direct impact on the fuzzing performance, as

the test cases are generated based on the templates. Even though

the templates are already comprehensive, as suggested by their

sizes shown in Table 1, from our analysis, we discover a variety of

deficiencies. This can include missing knowledge about syscall rela-

tionships, argument types and ranges, etc., which result in failures

to reach otherwise reachable EWSs. Basically, if an UD can be re-

solved clearly with an amended template, it belongs to this category.

Overall, our manual investigation reports 22 cases under this cate-

gory (#Template) as shown in Table 7. This represents the largest

category of root causes that will allow coverage improvement by

resolving more dependencies.

Most cases belong to kvm, which is the most complex piece of

kernel module out of the four we analyze. An example is shown in

Figure 7. The UD is at line 17, and we locate the EWSs at line 15.

As we can see, the value of the ctxt->d is determined by another

variable opcode.flags, which is in turn determined by the WS

opcode = twobyte_table[ctxt->b] at line 13. Finally, we know

that the data (an instruction buffer) referenced by userspace_addr

(which is a pointer field in an argument of the syscall at line 3) can

decide the value of ctxt->b. However, the template in Syzkaller

does not correctly describe what the buffer should look like. In

order to resolve the dependency, a test case would need a specific

sequence of instructions in the buffer as described in lines 8 and 9.

Unfortunately, Syzkaller is simply not aware of the desirable byte

sequences. In total, we find about 11 cases that are similar to this

example in kvm modules.



ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Yu Hao, Hang Zhang, Guoren Li, Xingyun Du, Zhiyun Qian, and Ardalan Amiri Sani

There are also similar but simpler examples where a single ar-

gument needs to take a magic number, much like what commonly

occurs in userspace programs. In the kernel modules we analyzed,

we observe eight such cases.

In addition, we observe that the templates can also miss explicit

dependencies. Across the four drivers though, there is only a single

case we find in kvm. This confirms our assertion that the templates

written for these four drivers are already relatively comprehensive.

6.3.5 Specialized Search Requirement. Finally, there are a few cases

that need a more specialized search algorithm that is beyond the

capability of a general-purpose fuzzer. Our manual analysis finds 9

cases related to the search algorithm (#Search) out of 115 in Table 7.

• Interleaving of Multiple Threads: In order for the UD to read

the expected value, sometimes a race condition is required. In

other words, a specific thread interleaving has to occur in order

for the value written by the EWS to be exposed. If the window

of opportunity is small, it is highly unlikely that Syzkaller will

be able to resolve the dependency. In total, we find six cases.

• Specific Sequence of syscalls: Some EWSs need multiple itera-

tions to successfully change the kernel state to the desired value

(e.g., ++i). This means that one needs to repeatedly invoke one or

more syscalls that contain the EWSs to resolve the dependency.

In total, we find three cases related to the sequence of syscalls.

7 FUTURE RESEARCH DIRECTIONS

From the previous results, we have shown that UDs are a prominent

reason for uncovered code in kernel fuzzing. We also show they

are challenging to resolve due to a diverse set of root causes. In this

section, based on the insights we gained from our measurement,

we summarize two main future research directions that have to

promise to overcome these challenges.

Open Problem: Cross-Syscall Input Propagation Analysis.

As reported in §6.3.4, 19% of the UDs are actually the result of

imperfect templates (missing certain syscall argument knowledge).

This means that once the templates are amended, the dependencies

can be potentially resolved (and we verify that it is indeed the case

with experiments). In this section, we propose a new analysis that

tracks the propagation of a syscall input argument across syscall

invocations.

We wish to point out this is a unique type of dependency because

the WS always writes a value specified in a syscall argument. If we

blindly target any dependency without understanding its unique

pattern, it is unclear what we should do to resolve them. For exam-

ple, one can attempt a whitebox approach similar to HFL [19] to

locate the write and read pairs regarding the same global memory.

However, as we showed in our measurement (see §6.2), there are

typically several possible WSs and it is unclear which one is the

EWS. This is likely why HFL has focused on only explicit depen-

dencies where typically there is only one WS. To understand how

this general direction will work in practice, we actually developed

a failed solution (prior to having the full insight from our measure-

ment study) that attempts to collect all the write syscalls during

fuzzing, and then pair them up with the read syscalls. The results

show that whatever implicit dependencies that we are able to re-

solve in this solution, Syzkaller can also resolve them, in most cases

even quicker. This is a good indication that Syzkaller is actually

already sophisticated enough in terms of its algorithmics. As long as

the templates have encoded sufficient knowledge regarding syscalls

and argument types and possible values, given sufficient fuzzing

time, Syzkaller will be able to resolve the implicit dependencies that

are “covered” by the templates. Unfortunately, it does not resolve

the hard dependencies such as those that are reported in our re-

sults. This is because we simply do not have the knowledge of what

correct syscall arguments to supply (not given in syscall templates)

in order for the WS to write the expected value. Thanks to our

measurement insight as shown in §6.3.4, we know that 19 cases out

of 22 are due to incomplete descriptions of syscall arguments.

Secondly, we observe that more than half of such inputs (11

cases) are not processed immediately in a single syscall invocation.

Instead, they are stored in some global memory in one syscall, and

then used in another syscall invocation. If we analyze the syscall

where the use happens, oftentimes they look just like a magic

number check (if(g_array[0] == MAGIC_NUM), which should be

theoretically easy to resolve (e.g., through symbolic execution). Nev-

ertheless, these magic number checks are performed against the

global memory (to make which symbolic directly is meaningless)

rather than syscall inputs. Those cases would become solvable if

there is a cross-syscall input propagation analysis (in the form of

either static or symbolic) which could find the related inputs. We

have leveraged our static taint analysis developed for the measure-

ment and found that indeed such cross-syscall propagations can

be identified. They have resulted in us identifying four missing

descriptions in the templates (two of which have been fixed in a

later version of Syzkaller). Therefore, we believe a cross-syscall

input propagation analysis is an effective method to resolve such

complex dependencies.

Open Problem: Multi-Interface Fuzzing. As we discussed in

§6.3.3, we show that many dependencies can be resolved only when

we consider the interfaces that are not out of the scope of Syzkaller

(i.e., unobserved). We have given two specific categories of inter-

faces including hardware-side input and the module init/exit

functions. We have mentioned that the latter should be included as

part of the syscall fuzzing interface. On the other hand, hardware-

side input has been considered in recent works [26, 28, 33].

Wewish to point out that this is a very different problem from the

current hardware-side fuzzers such as USBFuzz [26] and Franken-

stein (Bluetooth fuzzing) [28], which focus primarily on the attack

surface from the hardware side only. This is understandable because

these drivers do process complex inputs from the hardware (in ad-

dition to those from syscalls). Nevertheless, from the insight gained

from our measurement, we show syscall fuzzing and hardware-

side fuzzing can be intertwined. That is, in order to make further

progress in syscall fuzzing (i.e., covering certain branches), we ac-

tually need proper hardware-side input to arrive at the right time

to write to the global memory with the expected value. To general-

ize this observation, conversely, when performing hardware-side

fuzzing, we might encounter dependencies that can be resolved by

syscall inputs only (e.g., putting the device into certain states by

syscalls).

We frame the goal as multi-interface fuzzing as it needs to coor-

dinate the inputs from multiple different types of interfaces (e.g.,

inputs from syscall and hardware side can be interleaved). We be-

lieve this is a worthwhile research direction as the bugs that are



Demystifying the Dependency Challenge in Kernel Fuzzing ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

uncovered this way are likely hidden deeply in some difficult-to-

reach driver states.

8 DISCUSSION AND LIMITATION

Limited Data Set Scale. In this paper, we delve into four spe-

cific Linux kernel modules to investigate the dependency challenge.

Even though we believe they are representative of kernel modules

of varying type and size, their functionalities may not be diverse

enough to cover other modules such as GPU drivers, network mod-

ules, file systems, etc.. Nevertheless, based on our observation, the

distilled dependency challenges do appear general enough for other

drivers. In the future, we plan to pick more modules and charac-

terize their differences in terms of their respective dependency

challenges. In addition, much of the analysis is conducted manually

which is hard to scale. Nevertheless, we plan to expand the analysis

effort as future work to improve kernel fuzzing.

Unreachable Functions Elimination. As we mentioned in §6.1,

we prune as much unreachable functions as we can. Specifically, we

prune two types of unreachable functions: (1) interrupt handling

related functions that can not be reached from userspace, and (2)

functions that are reachable only when certain hardware environ-

ment is present. For the first case, based on the call graph generated

during static analysis, we prune all the functions that cannot be

reached from syscall entry points, e.g., ioctl(). To account for

potential inaccuracies in call graphs (due to indirect calls), we apply

a known type-based method [6] to conservatively generate call

graphs, i.e., as long as the signature of the function pointer is com-

patible with that of a target function, we will consider it a valid

target. This method guarantees that all potential targets will be

discovered and no functions will be incorrectly pruned (this method

is commonly used to enforce control-flow integrity [6]). The second

case turns out to be much more challenging as hardware-dependent

code can be scattered throughout a module. As a first order approx-

imation, we inspect all function pointers and their potential targets

and look for cases where the target is dependent on the underlying

hardware environment. A major example is the svm part of the kvm

module, which is dedicated to AMD CPUs, containing 2,889 basic

blocks. In total, the two methods can prune about 33% of edges

across modules on average.

Accuracy and Benefit of Manual Analysis. Our measurement

studies heavily relied on the manual analysis to identify the root

causes of dependencies. This is a non-trivial task because every

dependency may look different and unique in certain aspects. To

ensure that we do a good job, we not only look at the UDs them-

selves. Instead, we read the overall structure of the whole kernel

module to understand its design in a big picture, which allows us to

make an accurate assessment of the root causes. Unfortunately, it is

very much difficult to replace our manual analysis with automated

program analysis, which means fuzzer can not resolve those hard

problems automatically like humans. However, fuzzers have their

own ways that conduct a “random” search for test cases in a given

scope. And the root causes from manual analysis can help either

set up the fuzzing scope or offer better search.

Generalization to general software fuzzingWe aim not to over-

claim our findings beyond kernel fuzzing, as the OS kernel is an

important class of software that deserves attention by itself. Never-

theless, we believe that fuzzing stateful and multi-entry programs,

especially device drivers, will likely encounter similar challenges,

although the distribution of the root causes might differ.

9 RELATEDWORK

Linux Kernel Fuzzing. In recent years, there is a plethora of

research on improving kernel fuzzing with the goal of achieving

more coverage and finding more bugs. kAFL [30] supports x86

based kernels and speeds up fuzzing by hardware-assisted feedback.

Razzer [17] leverages static and dynamic analysis techniques to

find race bugs through fuzzing. There are also tools built on fuzzing

specific Linux kernel subsystems, including file systems [20], device

drivers (by mutating hardware inputs) [33], and hypervisors [29].

The work [31] deploys fuzzing to the enterprise-level Linux kernel.

Nevertheless, few address the dependency challenge directly.

Stateful Fuzzers. There are some stateful fuzzers which try to

consider states during fuzzing, for user space programs, particularly

network protocols. RESTler [1] uses a lightweight static analysis

to explore service states of REST API. And the work [12] tries to

investigate how to extend stateful REST API fuzzing (e.g., RESTler)

in general. SPFuzz [32] uses the knowledge from the RFC to help the

fuzzing. SNOOZE [2] needs humans to define the states of protocols

to assist fuzzing. Steelix [22] uses program-state, which includes

coverage information and comparison progress information, to

guide fuzzing. The work [8] improves fuzzing of TLS by analyzing

its state machine, which again requires significant manual effort.

The work [34] generates test cases for a compiler when there are

well-defined syntax and non-trivial semantics.

Static Taint Analysis on Linux kernels. There are several static

taint (or data flow) analysis tools against Linux kernel source. Dr.

Checker [23], UBITect [36] and K-miner [11] are based on the

LLVM framework [21] and are all open source. PacketGuardian [3]

is another one based on CIL [24]. Dr. Checker best suits our need

and our static analyzer is built on top of it.

10 CONCLUSION

In conclusion, we have conducted an in-depth investigation of

the dependency challenge in kernel fuzzing, using a combination

of static and manual analysis. With a comprehensive set of data,

we demonstrate the challenges when analyzing the unresolved

dependencies in Linux kernel. In addition, we distill the root causes

of unresolved dependencies. Finally, we reveal many unexpected

observations and point to new research directions that will improve

kernel fuzzing.

ACKNOWLEDGMENTS

This work was supported in part by the US National Science Foun-

dation (NSF) grants CNS-1953933 and CNS-1953932.

DATA AVAILABILITY

Source code and datasets related to this article can be found at

https://www.doi.org/10.5281/zenodo.5348989 and https://www.doi.

org/10.5281/zenodo.5441138.



ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Yu Hao, Hang Zhang, Guoren Li, Xingyun Du, Zhiyun Qian, and Ardalan Amiri Sani

REFERENCES
[1] Vaggelis Atlidakis, Patrice Godefroid, and Marina Polishchuk. 2019. RESTler:

stateful REST API fuzzing. In Proceedings of the 41st International Conference on
Software Engineering, ICSE 2019, Montreal, QC, Canada, May 25-31, 2019, JoanneM.
Atlee, Tevfik Bultan, and Jon Whittle (Eds.). IEEE / ACM, 748–758. https://doi.
org/10.1109/ICSE.2019.00083

[2] Greg Banks, Marco Cova, Viktoria Felmetsger, Kevin C. Almeroth, Richard A.
Kemmerer, and Giovanni Vigna. 2006. SNOOZE: Toward a Stateful NetwOrk
prOtocol fuzZEr. In Information Security, 9th International Conference, ISC 2006,
Samos Island, Greece, August 30 - September 2, 2006, Proceedings (Lecture Notes in
Computer Science, Vol. 4176), Sokratis K. Katsikas, Javier López, Michael Backes,
Stefanos Gritzalis, and Bart Preneel (Eds.). Springer, 343–358. https://doi.org/10.
1007/11836810_25

[3] Qi Alfred Chen, Zhiyun Qian, Yunhan Jack Jia, Yuru Shao, and Zhuoqing Mor-
ley Mao. 2015. Static Detection of Packet Injection Vulnerabilities: A Case for
Identifying Attacker-controlled Implicit Information Leaks. In Proceedings of the
22nd ACM SIGSAC Conference on Computer and Communications Security, Denver,
CO, USA, October 12-16, 2015, Indrajit Ray, Ninghui Li, and Christopher Kruegel
(Eds.). ACM, 388–400. https://doi.org/10.1145/2810103.2813643

[4] Weiteng Chen, Yu Wang, Zheng Zhang, and Zhiyun Qian. 2021. SyzGen: Au-
tomated Generation of Syscall Specification of Closed-Source macOS Drivers.
In Proceedings of ACM SIGSAC Conference on Computer and Communications
Security CCS.

[5] Yih-Farn Chen, Emden R. Gansner, and Eleftherios Koutsofios. 1997. A C++ Data
Model Supporting Reachability Analysis and Dead Code Detection. In Software
Engineering - ESEC/FSE ’97, 6th European Software Engineering Conference Held
Jointly with the 5th ACM SIGSOFT Symposium on Foundations of Software Engi-
neering, Zurich, Switzerland, September 22-25, 1997, Proceedings (Lecture Notes in
Computer Science, Vol. 1301), Mehdi Jazayeri and Helmut Schauer (Eds.). Springer,
414–431. https://doi.org/10.1007/3-540-63531-9_28

[6] Clang. 2021. Control Flow Integrity Design Documentation. https://clang.llvm.
org/docs/ControlFlowIntegrityDesign.html

[7] Jake Corina, Aravind Machiry, Christopher Salls, Yan Shoshitaishvili, Shuang
Hao, Christopher Kruegel, and Giovanni Vigna. 2017. DIFUZE: Interface Aware
Fuzzing for Kernel Drivers. In Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security, CCS 2017, Dallas, TX, USA, October 30
- November 03, 2017, Bhavani M. Thuraisingham, David Evans, Tal Malkin, and
Dongyan Xu (Eds.). ACM, 2123–2138. https://doi.org/10.1145/3133956.3134069

[8] Joeri de Ruiter and Erik Poll. 2015. Protocol State Fuzzing of TLS Implementations.
In 24th USENIX Security Symposium, USENIX Security 15, Washington, D.C., USA,
August 12-14, 2015, Jaeyeon Jung and Thorsten Holz (Eds.). USENIX Associa-
tion, 193–206. https://www.usenix.org/conference/usenixsecurity15/technical-
sessions/presentation/de-ruiter

[9] Saumya K. Debray, William S. Evans, Robert Muth, and Bjorn De Sutter. 2000.
Compiler techniques for code compaction. ACM Trans. Program. Lang. Syst. 22, 2
(2000), 378–415. https://doi.org/10.1145/349214.349233

[10] LTP developers. [n.d.]. Linux Testing Project. https://linux-test-project.github.io
[11] David Gens, Simon Schmitt, Lucas Davi, and Ahmad-Reza Sadeghi. 2018. K-

Miner: Uncovering Memory Corruption in Linux. In 25th Annual Network and
Distributed System Security Symposium, NDSS 2018, San Diego, California, USA,
February 18-21, 2018. The Internet Society. http://wp.internetsociety.org/ndss/wp-
content/uploads/sites/25/2018/02/ndss2018_05A-1_Gens_paper.pdf

[12] Patrice Godefroid, Bo-YuanHuang, andMarina Polishchuk. 2020. Intelligent REST
API data fuzzing. In ESEC/FSE ’20: 28th ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, Virtual
Event, USA, November 8-13, 2020, Prem Devanbu, Myra B. Cohen, and Thomas
Zimmermann (Eds.). ACM, 725–736. https://doi.org/10.1145/3368089.3409719

[13] google. 2021. ClusterFuzz. https://github.com/google/clusterfuzz
[14] google. 2021. syzbot. https://syzkaller.appspot.com/upstream
[15] google. 2021. syzkaller. https://github.com/google/syzkaller
[16] HyungSeok Han and Sang Kil Cha. 2017. IMF: Inferred Model-based Fuzzer. In

Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security, CCS 2017, Dallas, TX, USA, October 30 - November 03, 2017, Bhavani M.
Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu (Eds.). ACM, 2345–
2358. https://doi.org/10.1145/3133956.3134103

[17] Dae R. Jeong, Kyungtae Kim, Basavesh Shivakumar, Byoungyoung Lee, and Insik
Shin. 2019. Razzer: Finding Kernel Race Bugs through Fuzzing. In 2019 IEEE
Symposium on Security and Privacy, SP 2019, San Francisco, CA, USA, May 19-23,
2019. IEEE, 754–768. https://doi.org/10.1109/SP.2019.00017

[18] kernel. 2020. kcov.
[19] Kyungtae Kim, Dae R. Jeong, Chung Hwan Kim, Yeongjin Jang, Insik Shin, and

Byoungyoung Lee. 2020. HFL: Hybrid Fuzzing on the Linux Kernel. In Proceedings
2020 Network and Distributed System Security Symposium. Internet Society, San
Diego, CA. https://doi.org/10.14722/ndss.2020.24018

[20] Seulbae Kim, Meng Xu, Sanidhya Kashyap, Jungyeon Yoon, Wen Xu, and Taesoo
Kim. 2019. Finding semantic bugs in file systems with an extensible fuzzing
framework. In Proceedings of the 27th ACM Symposium on Operating Systems

Principles, SOSP 2019, Huntsville, ON, Canada, October 27-30, 2019, Tim Brecht and
CareyWilliamson (Eds.). ACM, 147–161. https://doi.org/10.1145/3341301.3359662

[21] Chris Lattner and Vikram S. Adve. 2004. LLVM: A Compilation Framework for
Lifelong Program Analysis & Transformation. In 2nd IEEE / ACM International
Symposium on Code Generation and Optimization (CGO 2004), 20-24 March 2004,
San Jose, CA, USA. IEEE Computer Society, 75–88. https://doi.org/10.1109/CGO.
2004.1281665

[22] Yuekang Li, Bihuan Chen, Mahinthan Chandramohan, Shang-Wei Lin, Yang Liu,
and Alwen Tiu. 2017. Steelix: program-state based binary fuzzing. In Proceedings
of the 2017 11th Joint Meeting on Foundations of Software Engineering, ESEC/FSE
2017, Paderborn, Germany, September 4-8, 2017, Eric Bodden, Wilhelm Schäfer,
Arie van Deursen, and Andrea Zisman (Eds.). ACM, 627–637. https://doi.org/10.
1145/3106237.3106295

[23] Aravind Machiry, Chad Spensky, Jake Corina, Nick Stephens, Christopher
Kruegel, and Giovanni Vigna. 2017. DR. CHECKER: A Soundy Analysis for
Linux Kernel Drivers. In 26th USENIX Security Symposium, USENIX Security 2017,
Vancouver, BC, Canada, August 16-18, 2017, Engin Kirda and Thomas Ristenpart
(Eds.). USENIX Association, 1007–1024. https://www.usenix.org/conference/
usenixsecurity17/technical-sessions/presentation/machiry

[24] George C. Necula, Scott McPeak, Shree Prakash Rahul, andWestley Weimer. 2002.
CIL: Intermediate Language and Tools for Analysis and Transformation of C
Programs. In Compiler Construction, 11th International Conference, CC 2002, Held
as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS
2002, Grenoble, France, April 8-12, 2002, Proceedings (Lecture Notes in Computer
Science, Vol. 2304), R. Nigel Horspool (Ed.). Springer, 213–228. https://doi.org/10.
1007/3-540-45937-5_16

[25] Shankara Pailoor, Andrew Aday, and Suman Jana. 2018. MoonShine: Opti-
mizing OS Fuzzer Seed Selection with Trace Distillation. In 27th USENIX Se-
curity Symposium, USENIX Security 2018, Baltimore, MD, USA, August 15-17, 2018,
William Enck and Adrienne Porter Felt (Eds.). USENIX Association, 729–743.
https://www.usenix.org/conference/usenixsecurity18/presentation/pailoor

[26] Hui Peng and Mathias Payer. 2020. USBFuzz: A Framework for Fuzzing USB Dri-
vers by Device Emulation. In 29th USENIX Security Symposium, USENIX Security
2020, August 12-14, 2020, Srdjan Capkun and Franziska Roesner (Eds.). USENIX
Association, 2559–2575. https://www.usenix.org/conference/usenixsecurity20/
presentation/peng

[27] Alessandro Rubini and Jonathan Corbet. 2001. Linux device drivers. " O’Reilly
Media, Inc.".

[28] Jan Ruge, Jiska Classen, Francesco Gringoli, and Matthias Hollick. 2020. Franken-
stein: Advanced Wireless Fuzzing to Exploit New Bluetooth Escalation Tar-
gets. In 29th USENIX Security Symposium, USENIX Security 2020, August 12-14,
2020, Srdjan Capkun and Franziska Roesner (Eds.). USENIX Association, 19–36.
https://www.usenix.org/conference/usenixsecurity20/presentation/ruge

[29] Sergej Schumilo, Cornelius Aschermann, Ali Abbasi, Simon Wörner, and
Thorsten Holz. 2020. HYPER-CUBE: High-Dimensional Hypervisor Fuzzing.
In 27th Annual Network and Distributed System Security Symposium, NDSS
2020, San Diego, California, USA, February 23-26, 2020. The Internet
Society. https://www.ndss-symposium.org/ndss-paper/hyper-cube-high-
dimensional-hypervisor-fuzzing/

[30] Sergej Schumilo, Cornelius Aschermann, Robert Gawlik, Sebastian Schinzel,
and Thorsten Holz. 2017. kAFL: Hardware-Assisted Feedback Fuzzing for OS
Kernels. In 26th USENIX Security Symposium, USENIX Security 2017, Vancouver, BC,
Canada, August 16-18, 2017, Engin Kirda and Thomas Ristenpart (Eds.). USENIX
Association, 167–182. https://www.usenix.org/conference/usenixsecurity17/
technical-sessions/presentation/schumilo

[31] Heyuan Shi, Runzhe Wang, Ying Fu, Mingzhe Wang, Xiaohai Shi, Xun Jiao,
Houbing Song, Yu Jiang, and Jiaguang Sun. 2019. Industry practice of coverage-
guided enterprise Linux kernel fuzzing. In Proceedings of the ACM Joint Meeting
on European Software Engineering Conference and Symposium on the Foundations
of Software Engineering, ESEC/SIGSOFT FSE 2019, Tallinn, Estonia, August 26-30,
2019, Marlon Dumas, Dietmar Pfahl, Sven Apel, and Alessandra Russo (Eds.).
ACM, 986–995. https://doi.org/10.1145/3338906.3340460

[32] Congxi Song, Bo Yu, Xu Zhou, and Qiang Yang. 2019. SPFuzz: A Hierarchical
Scheduling Framework for Stateful Network Protocol Fuzzing. IEEE Access 7
(2019), 18490–18499. https://doi.org/10.1109/ACCESS.2019.2895025

[33] Dokyung Song, Felicitas Hetzelt, Dipanjan Das, Chad Spensky, Yeoul Na, Stijn
Volckaert, Giovanni Vigna, Christopher Kruegel, Jean-Pierre Seifert, and Michael
Franz. 2019. PeriScope: An Effective Probing and Fuzzing Framework for the
Hardware-OS Boundary. In 26th Annual Network and Distributed System Security
Symposium, NDSS 2019, San Diego, California, USA, February 24-27, 2019. The
Internet Society.

[34] Vasudev Vikram, Rohan Padhye, and Koushik Sen. 2021. Growing A Test Corpus
with Bonsai Fuzzing. In 43rd IEEE/ACM International Conference on Software
Engineering, ICSE 2021, Madrid, Spain, 22-30 May 2021. IEEE, 723–735. https:
//doi.org/10.1109/ICSE43902.2021.00072

[35] Guangliang Yang, Jeff Huang, and Guofei Gu. 2018. Automated Generation of
Event-Oriented Exploits in Android Hybrid Apps. In 25th Annual Network and
Distributed System Security Symposium, NDSS 2018, San Diego, California, USA,



Demystifying the Dependency Challenge in Kernel Fuzzing ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

February 18-21, 2018. The Internet Society. http://wp.internetsociety.org/ndss/wp-
content/uploads/sites/25/2018/02/ndss2018_04B-3_Yang_paper.pdf

[36] Yizhuo Zhai, Yu Hao, Hang Zhang, Daimeng Wang, Chengyu Song, Zhiyun
Qian, Mohsen Lesani, Srikanth V. Krishnamurthy, and Paul Yu. 2020. UBITect:
a precise and scalable method to detect use-before-initialization bugs in Linux

kernel. In ESEC/FSE ’20: 28th ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, Virtual Event, USA,
November 8-13, 2020, Prem Devanbu, Myra B. Cohen, and Thomas Zimmermann
(Eds.). ACM, 221–232. https://doi.org/10.1145/3368089.3409686


