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Abstract
Fuzzing has become one of the most effective and widely used

techniques for discovering bugs and vulnerabilities, particularly in

large-scale and complex programs like operating system kernels. A

notable example is the kernel fuzzer syzkaller, which has identified

over 6,800 bugs in the Linux kernel, with more than 5,500 already

fixed. A crucial reason behind the success of the syzkaller is its

collection of syscall descriptions, which are typically provided by

human experts. Although some methods exist for automatically

generating these syscall descriptions for device drivers, they often

fall short when dealing with complex user inputs. These existing

methods either lack precision or have a limited analysis scope,

resulting in incomplete syscall descriptions.

In this paper, we present SyzSpec, a tool designed to address

these limitations by performing fully inter- procedural under- con-

strained symbolic execution on syscall handler functions. This ap-

proach enables SyzSpec to explore all possible user inputs and

generate syscall descriptions with more precision. The primary in-

novation in SyzSpec is a novel method to improve symbolic pointer

reasoning in under-constrained symbolic execution, working along

with the under-under-constrained memory object (UCMO). We

compared SyzSpec with existing automated solutions and manually

written syscall descriptions from syzkaller. Our results demonstrate

that SyzSpec achieves better coverage than other automated tools

and offers coverage comparable to that of manually written syscall

descriptions. Additionally, we evaluated SyzSpec on the latest sta-

ble version of the Linux kernel (v6.10) and identified 86 unique and

previously unknown crashes across 11 different categories.
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1 Introduction
Fuzzing has become one of the most effective and widely used

techniques for identifying bugs and vulnerabilities in software,

particularly due to its practicality and success in real-world ap-

plications. For example, in the domain of large-scale and complex

programs like operating system kernels, the state-of-the-art kernel

fuzzer, syzkaller [11] has discovered over 6,800 bugs in the Linux

kernel over the past several years, with more than 5,500 of these

bugs already fixed [10].

A critical component of syzkaller is its collection of syscall de-

scriptions, which are typically provided by human experts. These

descriptions, together with the coverage-guided fuzzing algorithm,

are essential to generate test cases that thoroughly explore the

kernel code. There are currently limited methods available for au-

tomatically generating these syscall descriptions for device drivers.

Existing solutions like DIFUZE [7] and SyzDescribe [13] rely on

static analysis, but they struggle to handle complex user inputs

effectively due to the limitations inherent in static analysis tech-

niques.

Symbolic execution presents a promising alternative to overcome

these limitations. Two notable tools that use symbolic execution

are KSG [30] and SyzGen++ [5]. However, KSG has a limited scope

of intra-procedural analysis, which often fails to capture detailed

specifications of user inputs. In contrast, SyzGen++ performs inter-

procedural dynamic symbolic execution (i.e., Angr [29]) to recover

specifications of user inputs in syscall handlers. However, its re-

liance on memory snapshots still restricts the state space SyzGen++

can explore, e.g., it can only explore one conditional branch (if

the condition takes a fixed value) or it will always resolve an in-

direct call to a specific target (according to its concrete memory
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value). These will lead to the incomplete generation of user input

specifications.

We propose using under-constrained symbolic execution [27]

to overcome these challenges, because it allows a more complete

exploration of the codebase. However, it is challenging to reason

about syscall handler code in an under-constrained fashion. This is

because syscall handlers heavily rely on the use of generic pointers

(even represented as integers), type casting, and pointer arithmetic.

Symbolic pointer reasoning itself is still a challenge, not only for

under-constrained symbolic execution but for symbolic execution

in general. This makes it difficult to reason about what object a

pointer truly points to, which is necessary for syscall description

generation.

In this paper, we have designed and implemented a tool called

SyzSpec that performs comprehensive under-constrained symbolic

execution on system call handler functions. SyzSpec packages a

number of novel solutions to effectively generate syscall descrip-

tions. First, we design an important symbolic pointer reasoning

technique that ensures both the accuracy and effectiveness of under-

constrained symbolic execution, leading to a more complete ex-

ploration of user inputs. Second, we generate specifications from

the execution paths with UCMO-enhanced. Finally, SyzSpec em-

ploys a specification-guided search to prioritize the exploration of

execution paths.

We compared SyzSpec with existing automated solutions such

as SyzDescribe, KSG, and SyzGen++, as well as manually written

syscall descriptions from syzkaller. Our results show that SyzSpec

achieves better coverage than other automated tools and compara-

ble coverage to manually written syscall descriptions. Furthermore,

we evaluate SyzSpec on the syscall interface of io_uring, which is

not supported by other automated solutions. Additionally, we eval-

uated SyzSpec on the latest stable version of Linux kernel (v6.10)

and identified 86 unique and previously unknown crashes across

11 different categories. We are currently reporting these crashes

to the Linux kernel community and collaborating with them to fix

these crashes.

We summarize our main contributions as below:

• We design a tool called SyzSpec based on under-constrained

symbolic execution, with improved symbolic pointer reasoning

and memory object modeling that enable accurate generation of

syscall specifications.

• We implement a prototype of SyzSpec with several additional en-

hancements tailored for syscall specification generation. We will

open-source SyzSpec and the generated syscall descriptions to

facilitate replication of our results and to support future research.

• We evaluate SyzSpec on the latest stable version of the Linux ker-

nel, demonstrating its effectiveness in discovering new crashes.

We also compare SyzSpec with existing automated solutions and

find that it offers better coverage and supports more syscalls.

2 Background
Linux Kernel Fuzzing and Syscall Descriptions. Syzkaller is a

state-of-the-art operating system kernel fuzzer, with great success

in finding over 6,800 kernel bugs [10]. Its success can be largely

attributed to its manually curated syscall descriptions, which are

1. io_uring_register$IORING_REGISTER_BUFFERS2(fd fd_io_uring,
2.                  opcode const[IORING_REGISTER_BUFFERS2],
3.                  arg ptr[in, io_uring_rsrc_register], size bytesize[arg])
4.
5.  io_uring_rsrc_register {
6. nr len[data, int32]
7. flags flags[io_uring_rsrc_flags, int32]
8. resv2 const[0, int64]
9. data ptr64[in, array[iovec_out]]

10. tags ptr64[in, array[int64]]
11. }

Figure 1: A example of syscall descriptions in syzlang format.

in the syzlang [12] format, and the corresponding fuzzing algo-

rithm [14].

Syscall descriptions primarily include the available syscall in-

terfaces on the kernel and the inputs they require. Since syscalls

serve as the main interface between the user space and kernel space,

the fuzzer must be aware of the syscalls provided by the operating

system kernel. The quality of syscall descriptions is mostly decided

by the syscall argument descriptions, e.g., type (e.g., whether it is a
pointer, the structure and the fields of the memory), size (e.g., the
size of an array), and any additional constraints (e.g., supported
values or ranges), as shown in Figure 1. An example is that a syscall

argument can even involve pointer fields within a struct that points

to other memory, e.g., the data and tags fields in Figure 1. If the

syscall descriptions do not specify this nested structure, it becomes

challenging for the fuzzer to randomly generate a valid syscall ar-

gument. Specifically, generating a structure with an integer field

that correctly points to another memory location of the appropriate

size is difficult.

Generally speaking, it is preferable to have detailed descriptions,

even if they are not completely accurate all the time. This is because

if an inaccurate description does not lead to new code coverage

(e.g., wrong value ranges or wrong type of user inputs), syzkaller
can still recover from it by ignoring the inaccurate description

by its fuzzing algorithm. On the other hand, if some description

is missing completely, e.g., lack of type description of a syscall

argument, syzkaller will be almost unable to generate a proper

input for the argument.

Syscall Description Generation. Currently, the project repos-

itory of syzkaller includes a large number of syscall descriptions.

These descriptions are manually created and face several chal-

lenges [13]. First, these descriptions may be incomplete or even in-

accurate due to the labor-intensive nature of writing syscall descrip-

tions. Second, maintaining these descriptions is resource-intensive,

requiring continuous monitoring of kernel code changes which

require description updates. Third, the approach is not scalable —

hard to keep up with a continuous stream of new kernel modules,

e.g., Android kernel drivers for OEM-specific devices [7, 32]. These

challenges demonstrate the need for methods to automatically gen-

erate syscall descriptions. While some recent solutions have been

proposed, they have important limitations in different aspects. As

shown in Figure 2, we briefly outline these solutions and discuss

their advantages and disadvantages.

DIFUZE [7] and SyzDescribe [13] rely on static analysis, with

a focus on recovering syscall interfaces. They are less focused
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Figure 2: Conceptual comparison of different tools in terms
of Analysis Scope and Precision.

on recovering syscall argument descriptions. In particular, they

have hard-coded programming patterns regarding how syscall ar-

guments are processed in driver-specific syscalls. Specifically, they

focus on analyzing ioctl() handler functions through an inter-

procedural static analysis, to extract the supported command values

through various equality constraints, such as switch cases and
if conditions. It also determines the argument type by examining

the pointer types used in functions such as copy_from_user(),
which transfer data from user space to kernel space. Unfortunately,

while they handle the common cases, static analysis is inherently

ill-suited to handle complex code constructs such as pointer op-

erations, type casting, and arithmetic. For example, the ioctl()
handler functions may apply complex operations to user input,

including arithmetic or bitwise operations, or may involve custom

data structures (e.g., zero-length array). Additionally, syscall han-

dlers might take user inputs to index tables or arrays, which are

difficult to handle through static analysis alone.

Symbolic execution is an appropriate solution to address the

limitations of static analysis, because it is designed to be precise

in reasoning about program behaviors at the path level. Two no-

table tools that leverage symbolic execution are KSG [30] and Syz-

Gen++ [5]. Unfortunately, KSG limits the symbolic execution scope

to a single function, which is insufficient. In contrast, SyzGen++

performs inter-procedural dynamic symbolic execution. But it has

its own downsides primarily because it relies on concrete mem-

ory snapshots which will limit its exploration space. For example,

if the condition of an if statement depends on global variables

that are fixed in the memory snapshot, this condition cannot be

dynamically analyzed. Another example is the challenge of indi-

rect function calls, where SyzGen++ simply takes one particular

indirect call target (based on the memory snapshot), which misses

other potential targets, leading to incomplete syscall descriptions.

Additionally, SyzGen++ is built on Angr [29], a symbolic execution

engine for binaries, it inevitably lacks the ability to infer the types

of user input. This limitation is significant because accurate type

information is crucial for a fuzzer to generate valid test cases.

3 Motivation
Given the limitations of existing approaches in generating syscall

descriptions, we propose that under-constrained symbolic execution
based on KLEE [4] offers a promising solution. First, as discussed

earlier, unlike static analysis, symbolic execution is path-sensitive

and includes path constraints, enabling it to handle complex oper-

ations on user inputs, such as arithmetic and bitwise operations.

Second, compared to the dynamic symbolic execution used in Syz-

Gen++, under-constrained symbolic execution not only initiates

analysis on handler functions but also examines all possible code

paths within these functions, leading to more accurate recovery of

user inputs. Third, since KLEE is designed for symbolic execution

on LLVM bitcode [19], we can infer the types of user inputs more

accurately by performing analysis at the LLVM bitcode level com-

pared to analysis at the binary level. However, symbolic pointer

reasoning is complex and presents a major challenge, not only for

under-constrained symbolic execution but for symbolic execution

in general.

Under-Constrained Symbolic Execution is a variant of sym-

bolic execution, which focuses on analyzing parts of a program

where some prior constraints on the execution paths are not avail-

able. Unlike traditional symbolic execution, which requires starting

from the entry point of the program with fully collected path con-

straints, under-constrained symbolic execution allows analysis to

begin from any point within the program. In the context of the

Linux kernel with multiple syscalls (entry points), it allows the

analysis to pick any syscall handler and start the analysis, without

worrying about dependencies (e.g., needing to call open() before
read()). All the variables, including pointers, that are allocated or

initialized outside of the analysis scope will be considered symbolic

or “under-constrained” (i.e., the constraints of those variables are
incomplete). In essence, the analysis offers an over-approximation

compared to standard symbolic execution. This approach allows the

analysis to explore a broader state space by eliminating the need for

a memory snapshot (used in SyzGen++) and instead assuming that

variables can take on arbitrary values. This tradeoff is desirable in

the application of syscall description generation due to its need for

a complete rather than perfectly accurate description, as alluded to

earlier.

Challenges of Symbolic Pointer Reasoning. To accurately per-

form under-constrained symbolic execution and thoroughly explore

all potential user inputs in syscall handler functions, it is crucial to

effectively handle symbolic pointer reasoning during symbolic exe-

cution. However, dealing with symbolic pointers is a complex task

that poses a significant challenge not only for under-constrained

symbolic execution but for symbolic execution overall. Specifically,

in the context of under-constrained symbolic execution, upon see-

ing a pointer variable for the first time, one needs to first decide

whether the pointer points to a new abstract memory object or any

of the existing objects. In current under-constrained symbolic exe-

cutionwork, they prefer to allocate a newmemory object every time

a new symbolic pointer variable is encountered [2, 5, 9, 27, 37, 38].

In other words, these pointers will be assigned distinct concrete

addresses, missing possibilities that some of these pointers may

be aliased with each other, causing under-exploration of the state

space. This also means that they are unable to handle cyclical data

structures such as linked lists (which are common in the Linux

kernel). Conversely, if we follow the standard approach to handling

generic pointers [4], i.e., considering all possible memory objects,

it can lead to a sharp increase in execution paths, a phenomenon

known as path explosion, which can make the analysis nearly im-

possible. This complexity is one of the main reasons why SyzGen++

uses memory snapshots to limit the scope of the code it explores [5].

Nonetheless, to improve the generation of syscall descriptions, we
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1. struct A {int a1;  int a2;};
2.  
3. struct B {struct A b1;  int b2;};
4.  
5. void handler(long arg1, long arg2, long user_inputs) {
6.   struct A* var1= (struct A*)arg1;                               // bitcast sym1
7.   if (var1->a2 == 1) {                                                     // load sym1+4
8.     struct B* var2 = container_of(var1, struct B, b1); // bitcast sym1
9.     var2-> b2 = 1;                                                           // store sym1+8

10.   }
11.   struct A* var3= (struct A*)arg2;                               // bitcast sym2
12.   var3->a2 = 2;                                                              // store sym2+4
13.   if (var1->a2 == 2) {                                                     // load sym1+4
14.     ... // code related to user_inputs
15.   }
16. }

Figure 3: Motivating Example: The value of arg1 and arg2
are two symbolic variables, i.e., sym1 and sym2. How can we
explore all possible paths with under-constrained symbolic
execution?

int

struct Bstruct A

pre_padding post_padding

MO1:

MO2:

MO4:MO3:

UCMO1: real MOsymbolic address

int

Figure 4: Memory objects of the symbolic pointers in Figure 3

must address the challenges associated with symbolic pointer rea-

soning in under-constrained symbolic execution.

One intuitive approach is to leverage static alias analysis for sym-

bolic pointer reasoning. While static alias analysis can be helpful,

it lacks the precision needed for this specific problem. For example,

in loops, static analysis often fails to distinguish between pointers

across iterations, whereas symbolic execution inherently differenti-

ates them by assigning distinct symbolic values.

Motivating Example. Figure 3 provides a motivating example. It

demonstrates the need for symbolic pointer reasoning. Without it,

important code blocks will be missed altogether during the explo-

ration, leading to incomplete syscall descriptions. First, we have

arg1 and arg2 are symbolic variables, denoted as sym1 and sym2,
which are in fact pointers (see line 6 and line 11). As mentioned,

when encountering symbolic pointers, (e.g., load operation at line

7), existing solutions prefer to create a new memory object, MO1,
as shown in Figure 4, for the pointer sym1+4 and add a constraint

sym1+4 = address of MO1. However, when we reach the store

operation at line 10, we find that the pointer sym1+8 results in an

out-of-bound write because the size of MO1 was not properly de-

termined. A simple approach would be to create a larger memory

object, such as MO2 as shown in Figure 4, during the load operation

at line 7, to avoid the out-of-bound write at line 10. However, this

approach has several limitations: 1) The larger memory object may

still not be large enough, leading to continued out-of-bound errors.

2) It increases memory usage and requires more time to handle state

forking. 3) It places an additional computational burden on the SMT

solver, making constraint resolution more time-consuming.

Alternatively, one can infer the size of a memory object early on.

For instance, we can deduce that the memory size of the pointer

sym1 is sizeof(struct A) given line 6. Accordingly, we can create

a memory object MO3, as illustrated in Figure 4. However, there is

also a possibility that the memory size of sym1 could be sizeof
(struct B), according to line 8. This uncertainty makes it difficult

to accurately determine the correct size of the memory object for

the symbolic pointer at the beginning.

Furthermore, it is important to determine whether a symbolic

pointer can reference an existingmemory object or if a newmemory

allocation is necessary. For instance, we need to understand that the

symbolic pointer sym2+4 at line 12 has the possibility to refer to the
same memory location as the symbolic pointer sym1+4 at line 13.
This means the condition at line 13 can be satisfied and we should

continue to explore the code in line 14 where user_inputs is used

for proper syscall argument description generation, e.g., we are yet
to see the real type of user_inputs and its expected value ranges

are missing. As mentioned, previous solutions [2, 5, 9, 27, 37, 38]

prefer to ignore this possibility and have always created a newmem-

ory object for the symbolic pointer. A straightforward solution to

solve this problem is to conservatively assume the symbolic pointer

could point to any memory location and then verify each potential

location separately to determine whether the path constraints are

satisfied [4]. However, this method is impractical because it would

result in an overwhelming number of states, leading to excessive

computational overhead due to constraint solving.

4 SyzSpec Design
Now we present the workflow of SyzSpec, as illustrated in Figure 5.

SyzSpec requires the LLVM bitcode [19] of Linux kernel compo-

nents, e.g., kernel modules, as well as their entry functions (syscall

handlers) as inputs. The output of SyzSpec is a set of syscall descrip-

tions in the syzlang [12] format. As depicted in Figure 5, SyzSpec

is composed of following main components:

• User Input Exploration. At a high level, SyzSpec initiates its

process by analyzing user inputs using under-constrained sym-

bolic execution on the entry functions. It leverages KLEE [4]

to perform the under-constrained symbolic execution and ac-

curately collect execution paths. To reduce inaccuracies dur-

ing this symbolic execution, SyzSpec symbolizes all user inputs

and non-constant global memory, including global variables and

heap memory referenced from symbolic pointers. This allows

the under-constrained symbolic execution to explore all possi-

ble branches of if and switch statements. It conducts a com-

prehensive inter-procedural analysis, also accounting for callee

functions in indirect function calls.

• Symbolic Pointer Reasoning. The core of SyzSpec is a novel
symbolic pointer reasoning method. This method is specifically

designed to manage under-constrained symbolic pointers. It al-

lows for a comprehensive exploration of user inputs, and mit-

igates the path explosion problem caused by the brute force

symbolic pointer reasoning in under-constrained symbolic ex-

ecution (that will consider a symbolic pointer to point to all
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possible objects subject to path constraints) [4]. In the end, sym-

bolic pointer reasoning helps generate accurate specifications

for the user inputs.

• Specification Generation. After analyzing the execution paths,
SyzSpec generates the corresponding specifications. For each ex-

ecution path, SyzSpec generates specifications for user inputs.

By examining the complete execution path and its final state,

SyzSpec determines the types, sizes, and constraints of user in-

puts, such as identifying whether they are inputs or outputs

and specifying their possible values or ranges (as discussed in

§4.2). SyzSpec then merges these specifications to remove redun-

dancies, enhancing the efficiency of the syscall descriptions for

fuzzing purposes. Finally, SyzSpec converts the syscall descrip-

tions into the syzlang [12] format.

• Specification Guided Search. Furthermore, SyzSpec employs

a specification guided search (detailed in §4.3) to prioritize the

exploration of execution paths. The key idea is to use feedback

on whether an execution path can contribute to new syscall

descriptions, guiding the exploration process and mitigating the

path explosion problem.

The following sections will provide a detailed explanation of the

components of SyzSpec: Symbolic Pointer Reasoning (in §4.1), Spec-

ifications Generation (in §4.2) and Specifications Guided Search (in

§4.3).

4.1 Symbolic Pointer Reasoning
Our approach provides the first relatively complete solution to

overcome the challenges of symbolic pointer reasoning in under-

constrained symbolic execution, We first introduce the concept of

an under-constrained memory object (UCMO), designed specifi-

cally to handle symbolic pointers in under-constrained symbolic

execution. As shown in Figure 4, in addition to using general mem-

ory objects with fixed, concrete addresses, a UCMO has a symbolic

address paired with a corresponding memory object (with a con-

crete address). The symbolic address uniquely identifies the UCMO,

while the real memory object (MO) is the concrete memory lo-

cation that the symbolic pointer refers to. The key property of a

UCMO is that it allows for the dynamic relocation and resizing

of memory objects during symbolic execution. This means that if

we discover that the size of a memory object is incorrect, we can

adjust it as needed. Going back to the motivating example in Fig-

ure 3, we initially create a UCMO without a concrete size, named

UCMO1, for the symbolic pointer sym1. The size of UCMO1 can be

adjusted later as needed. At line 6, we can deduce that the size of

Algorithm 1 Under-Constrained Symbolic Pointer Reasoning

1: SymBaseMap← {}

2: SymTypeMap← {}

3: UCMOMap← {}

4: function CollectBaseAndType(Inst)

5: if Inst is GEP then
6: if GEP.offset ≥ 0 then
7: SymBaseMap[GEP.result]← GEP.source

8: UpdateType(SymTypeMap, GEP.source)
9: else ⊲ For negative offsets

10: SymBaseMap[GEP.source]← GEP.result

11: UpdateType(SymTypeMap, GEP.result)
12: else if Inst is BitCast then
13: UpdateType(SymTypeMap, BitCast.ptr)
14: function PointerReasoning(state, symPtr)

15: basePtr← StaticBackTrace(symPtr)

16: while SymBaseMap.contains(basePtr) do
17: basePtr← SymBaseMap[basePtr]
18: for all ucmo ∈ UCMOMap do
19: if not TypeCompatible(ucmo, basePtr) then
20: continue
21: if Sat(state.pc, ucmo, basePtr, symPtr) then
22: RelocateResize(ucmo, symPtr)

23: state← fork(state, ucmo, symPtr)

24: if state = NULL then
25: break
26: if state ≠ NULL then
27: state.result← CreateUcmo(basePtr)

28: UCMOMap[basePtr]← state.result

UCMO1 should be sizeof(struct A), allowing us to create the cor-

responding real memory object MO3 (as shown in Figure 4). Similarly,

at line 8, the size of UCMO1 should be updated to sizeof(struct
B). Consequently, we can relocate and resize UCMO1, updating the
corresponding real memory object to MO4.

Next, we design an efficient solution to check whether symbolic

pointers can point to existing UCMOs as opposed to creating new

UCMOs all the time. First, our approach resolves the symbolic

pointer to a base address with an offset. The key insight is that

the base address is crucial in determining whether the symbolic

pointer could reference an existing UCMO. If the base address can

be resolved to a UCMO, the symbolic pointer (i.e., base address

plus offset) might point to the memory before or after the UCMO.

This indicates that the current size of the UCMO is not correct and

that the UCMO needs to be updated/resized. However, the base

address of the symbolic pointer must still fall within the UCMO.
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Second, rather than fully relying on the path constraints resolved

by an SMT solver, we integrate a basic type-based analysis [8] with

constraint-based solution [4] to determine if the base address could

reference an existing UCMO. Type analysis is less accurate but

computationally cheaper compared to constraint solving.

The exact procedure is outlined in Algorithm 1. First, during

the symbolic execution, we maintain two maps: SymBaseMap (line
1) and SymTypeMap (line 2). SymBaseMap stores the base addresses
of symbolic pointers, while SymTypeMap stores the possible type

information associated with each base address. When a GetEle-

mentPtr (GEP [24]) instruction is encountered, we extract the base

address and update the type information of the symbolic pointer

(lines 5 to 11). It is important to consider negative offsets in the GEP

instructions, such as container_of, because these offsets indicate
that the base address is the result of the GEP instruction, not its

source (lines 9 to 11). For example in Figure 3, the symbolic expres-

sion sym1 is the base address of both the symbolic pointer sym1+4
at line 7 and the symbolic pointer sym1+8 at line 9. If a type cast

is encountered, we update the type information of the symbolic

pointer accordingly (lines 12 to 13). During this update, we account

for multiple potential types that a single pointer might represent.

As illustrated in the example in Figure 3, the pointer sym1 could

correspond to struct A at line 6 and struct B at line 8.
With this information, when we encounter a symbolic pointer,

symPtr, we first resolve it to its base address, basePtr, by perform-

ing a basic static backtrace (line 15) based on LLVM. Next, we look

up the SymBaseMap to recursively find the possible base addresses

(lines 16 to 17). This lookup process is essentially a path-sensitive

backward value flow analysis (based on the propagation of symbolic

expressions). After identifying the possible base address, basePtr,
we iterate through all UCMOs to determine if the basePtr could
reference an existing ucmo. Note that we exclude memory objects

whose allocation sites have been observed, e.g., stack memory ob-

jects or newly allocated heap memory objects, because they are

relatively well-constrained (i.e., the execution path includes their

allocation) and do not need to be considered potential memory

objects for symbolic pointers. For each ucmo, we first check if its

type is compatible with the basePtr (lines 19 to 20). If the type

is incompatible, we skip this impossible ucmo. Otherwise, we are
left with typically a few candidate UCMOs. We then use the ex-

pensive but accurate SMT solver to check if the constraints are

satisfied (line 21). In addition to path constraints, we also need to

add memory constraints for solving. These include: 1) the symbolic

base addresses of ucmo should match the concrete addresses of

their corresponding read memory objects. and 2) the value of the

symbolic pointer should be within the range of the UCMO. If all

the constraints (including path and memory ones) are satisfied, we

consider the ucmo to be an object that the symbolic pointer can

point to. At this point, we will relocate and resize the ucmo if nec-
essary (line 22). We then fork the state to explore new potential

UCMOs for the pointer symPtr (line 23). If the state is NULL at any

time, it means the pointer symPtr cannot be resolved to any other

objects (lines 24 to 25). It will break the loop and end the analysis.

However, if after iterating through all UCMOs, the state is still not

NULL, it means that symbolic pointer symPtr could still reference

a new memory object, we thus would create a new UCMO for the

base address basePtr (lines 26 to 28).

struct AUCMO1:

struct AUCMO2:

arrayUCMO3:

struct B array

Figure 6: Possible types for UCMO.

For instance, in Figure 3, when we encounter the instruction

load sym1+4 at line 7, we recognize that its base address is sym1,
and its type should be struct A. Consequently, we create UCMO1,

with its corresponding real MO being MO3 as shown in Figure 4.

Later, when we encounter the instruction store sym1+8 at line 9,
we again determine that the base address is sym1. Based on memory

constraints, we resolve this to UCMO1. Given that the type could now
be strcut B, the algorithm will relocate and resize the real MO of

UCMO1 to MO4. When we reach the instruction store sym2+4 at line
12, we identify its base address as sym2, with its type being struct
A. Since it shares the same type with UCMO1, and the constraints are
satisfied (with no current constraints for sym2), we first resolve it to
UCMO1. We then fork the state with the constraint sym2 = address
of UCMO1. Since the constraint sym2 ≠ address of UCMO1 can

also be satisfied, the forked state is not NULL, allowing the symbolic

pointer sym2 to reference a new memory location. In other words,

the algorithm could consider two possible states when analyzing

the code: (1) arg1 and arg2 being aliased, and (2) arg1 and arg2
not being aliased.

In summary, by dynamically relocating and resizing objects and

allowing symbolic pointers to reference existing objects, our solu-

tion effectively manages symbolic pointers in under-constrained

symbolic execution, ensuring that no possibilities are overlooked.

In this example, this would allow us to explore important code

blocks that would otherwise be missed (line 14) and critical for

syscall description generation.

4.2 Specification Generation
This component generates specifications from the execution paths.

These specifications include type information and constraints re-

lated to user inputs. Currently, our focus is on recovering four types

of user inputs: primitive types (e.g., integers with different widths

and char), pointers, arrays, and structures (including unions).

For symbolic expressions of primitive types, we use an SMT

solver to determine the possible values or range of the expression.

Considering type casting, an integer type might represent a pointer.

To decide whether the integer is actually a pointer, we feed the cor-

responding symbolic expression to our symbolic pointer reasoning.

If the symbolic expression resolves to a UCMO, it indicates that the

integer is a pointer.

For pointers, we first determine their direction, i.e., whether it is
an input, output, or input/output pointer. If the associated memory

object has been written during the path, it is classified as an output

pointer. If the associated memory object has been read from during

the path, it is classified as an input pointer. If both, it is classified

as an input/output pointer. Regarding the type of the pointer, we

record the size and the most precise type for the UCMO during

symbolic execution. Then we can recover the type of the pointer

from the UCMO. Since we can easily distinguish between integers
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and pointers, we only record the struct, union, and array types for

the UCMO. There are several considerations. First, when recording

the type, we prefer the type with a larger size. The reason is that

during fuzzing, it is almost impossible to generate valid user inputs

when the input size is small. However, if the input size is large,

fuzzing can still produce valid inputs by allocating a large memory

block and using only a portion of it. Second, when the sizes are

equal, we consider structs to be more precise than unions, and

unions are more precise than arrays. During fuzzing, the fuzzer

can only do random mutation for the array. it can randomly select

one structure of the unions. But for structure, it can mutate each

field based on its type. So structure is more effective for fuzzing

than union and array. Second, when the sizes are equal, structs are

considered more precise than unions, and unions are more precise

than arrays. The reason is that structs are more effective for fuzzing

compared to unions and arrays. During fuzzing, the fuzzer can only

perform random mutations on arrays. For unions, it can randomly

select one possible strcuts and then mutate it. However, for structs,

the fuzzer can mutate each field based on its type. Third, a UCMO

may have one or more segments (at different offsets), each with its

own type. We consider three possible scenarios: 1) The UCMO has

only a single type and its size matches the size of the entire object.

In this case, we can directly infer the type information (e.g., UCMO1
in Figure 6). 2) The UCMO has multiple segments. For example, the

object may initially be a large byte array, and only a subset of bytes

are cast into more specific types. In such cases, we will construct a

new struct type for the UCMO, filling in fields with the most precise

type information available at the corresponding offsets and using

arrays to fill in the remaining parts (e.g., UCMO2 in Figure 6). 3) If

no type information is available at all, we recover the type of the

UCMO as an array of bytes whose size matches the UCMO (e.g.,
the UCMO3 in Figure 6).

For arrays, currently, we only recover their overall size without

retrieving the constraints for individual elements. This is because

syzlang [12] does not currently support specifying constraints for

each element within an array.

Finally, for structures, we recursively retrieve the type informa-

tion and constraints for each field. If a field is a pointer, we also

recursively retrieve the type of the memory it points to.

After generating the specifications for each execution path, the

next step is to determine whether there are any new specifications

from this path. These new specifications could include new types

or constraints on user inputs, which would serve as feedback for

the specifications guided search (mentioned later in §4.3). If no new

specifications are found, we discard the current specifications to

avoid redundancy. If new specifications are identified, we handle

them in one of two ways: we either merge them with existing

specifications of the same type or keep them separate if they differ

in type. While the fuzzer can effectively mutate user input values

based on comparison feedback from KCOV [17], mutating the type

of user input is more difficult. For this reason, we choose to merge

the value constraints of specifications that share the same type.

4.3 Specifications Guided Search
Unlike traditional (under-constrained) symbolic execution, which

aims to explore all possible execution paths, our goal focuses on

Algorithm 2 Specifications Guided Search

1: StateSet← {}

2: state← initState

3: while state do
4: while state.pc is valid do
5: if ForkAt(state.pc) then
6: RecordFork(state)

7: if CheckPriority(state) then
8: forkedState← Fork(state)

9: StateSet← StateSet ∪ {forkedState}

10: state.pc++

11: spec← GenerateSpec(state)

12: UpdatePriority(state, spec)

13: state← SelectState(StateSet)

exploring all possible user inputs and generating their specifica-

tions. To achieve this and mitigate the path explosion issue, we

need to prioritize the exploration of execution paths that are likely

to lead to new specifications. Otherwise, our under-constrained

symbolic execution will not be able to complete the analysis in a

reasonable time for most complex modules. Inspired by coverage-

guided fuzzing, which uses code coverage as feedback to guide

input exploration in fuzzing, we introduce the specifications guided

search. The main idea is to prioritize the exploration during the

under-constrained symbolic execution based on whether a prior

relevant path contributed to new specifications.

The specifications-guided search algorithm is presented in Algo-

rithm 2. The process starts by selecting an initial state for explo-

ration (line 2). Note that we need to generate the specifications of

a path first, only then can we determine if any new specifications

arise from that path. Thus, for each selected state, the algorithm first

executes one path of the state until the end (similar to a depth-first

search) to generate its specifications, which is done by the while
loop from line 4 to line 10.

If the algorithm encounters a fork point during execution (line 5),

it records these fork points along with the corresponding branches

and execution paths (line 6). This information is used later to update

the priority of the forked state. The algorithm then picks a branch

with high priority to continue execution (line 7).

When the execution path ends, the algorithm generates speci-

fications from that execution path and merges them as described

in §4.2 (line 11). The priority of branches at the fork points and

the states forked from those points along the execution path is

updated (line 12). If it contributes anything new to the existing

specifications, all previously recorded branches whose priorities

will increase. The intuition is that the success of an execution path

“depended” on all the fork points (e.g., their constraints being useful
to the specification generation) along the way. Therefore, we re-

ward all fork points (branches). More specifically, a branch priority

is computed as the total number of paths and the ratio of paths

containing new specifications to the total number of paths that

forked such a branch. Conversely, if an execution path finally does

not contribute to any new specification, we will update the total

number of paths for the branches and decrease their priority.

Finally, when selecting the next state to explore, the algorithm

prioritizes the state associated with a higher-priority branch (line



CCS ’25, October 13–17, 2025, Taipei, Taiwan. Yu Hao, Juefei Pu, Xingyu Li, Zhiyun Qian, and Ardalan Amiri Sani

13). Furthermore, if a branch’s priority falls below a certain thresh-

old— the total number of the paths is above a threshold (i.e., 100) and
the ratio of paths with new specifications is below a threshold (i.e.,
0.01) — that branch can be skipped, and the algorithm continues

with the next state. Otherwise, the algorithm forks the state and

adds the forked state to the set of states for further exploration

(lines 8-9).

5 Implementation
Asmentioned before, SyzSpec is built on top of KLEE [4], a symbolic

execution engine designed for LLVM bitcode. We have modified

approximately 8,600 lines of C++ code to adapt KLEE for SyzSpec.

These modifications include adding support for under-constrained

symbolic execution
1
, specification generation, general symbolic

execution improvements, and Linux-specific support. In this section,

we will discuss some implementation aspects of SyzSpec in more

detail.

LLVM Version. KLEE is now built on top of LLVM 13, while the

latest stable version of the Linux kernel (i.e., v6.10) officially sup-

ports to be compiled with the LLVM/Clang 14 toolchain [20]. We

updated KLEE to work with LLVM 14 to support the latest Linux

kernel.

Function Pointer. Unlike a regular symbolic pointer, a function

pointer should reference an existing function. To accurately deter-

mine the potential targets of a function pointer, we combine a static

type-based method analysis [25] with our new symbolic pointer

reasoning approach. The static type-based method analysis narrows

down possible targets to existing functions by considering type in-

formation, while our symbolic pointer reasoning approach further

refines the target resolution using path constraints and memory

constraints. This combined approach enables more accurate han-

dling of function pointers and allows for a fully inter-procedural,

under-constrained symbolic execution.

Assembly Code. The LLVM bitcode of the Linux kernel contains

several instances of assembly code. However, KLEE currently does

not support the symbolic execution of assembly code. To support

the Linux kernel, we need to manage these assembly code segments

appropriately. Since our goal is to perform under-constrained sym-

bolic execution, our approach is just to return under-constrained

symbolic expressions for assembly code with return values. We pri-

marily handle two types of assembly instructions: the callbr[22]
instruction and call asm "inline assembler expressions"[23].
Additionally, certain assembly code blocks involving memory oper-

ations, e.g., put_user and get_user, are crucial for analyzing user

inputs. For these instructions, we implement the corresponding

memory operations in KLEE to ensure accurate symbolic execution.

Linked List. Our symbolic pointer reasoning approach effectively

handles pointer operations in linked lists, e.g., list->next = list
and container_of. However, tomaintain the structure of the linked

list, additional constraints are required, e.g., list->prev->next =
list and list->next->prev = list. We ensure these constraints

are maintained by adding those additional memory constraints (as

1
UCKLEE [27] was built on an older version of KLEE and was not open source. There-

fore, we implemented support for under-constrained symbolic execution in the latest

version of KLEE.

mentioned in §4.1) during symbolic execution. In this way, we en-

sure that the linked list structure remains complete and that the

symbolic execution is accurate.

Additional Type Information Collection. Typically, type infor-
mation for memory can be obtained from the pointer referencing

that memory. However, during memory copy operations, although

only the value of the memory value is copied, the type information

associated with the memory can also be shared with the new loca-

tion. In the Linux kernel, this scenario is common with user input

operations, e.g., copy_from_user, copy_to_user, and memdup. To
address this, we maintain a connection between the source and

destination memory, allowing type information to be shared be-

tween them. This approach enables the collection of additional type

information for user input, thereby improving the accuracy of the

generated specifications.

Common Functions Modeling. We handle hundreds of common

functions in the Linux kernel to ensure compatibility with KLEE

operations and enhance performance. These common functions

mainly include memory operations (e.g., allocation, free, copy) and
lock operations to ensure compatibility with KLEE operations. If

these functions have unclear return values, we generate new under-

constrained symbolic expressions to represent them.

Loop Unrolling. Although our specifications-guided search (as

mentioned in §4.3) can help limit excessive loop unrolling, we also

employ a standard method in symbolic execution: setting a maxi-

mum depth (i.e., three in our implementation) for loop unrolling.

However, since our primary focus is on exploring user inputs, we

increase this maximum depth (i.e., 256 in our implementation) if

the loop conditions are fully related to user inputs, i.e., all symbolic

variables in the loop conditions are from user inputs.

6 Evaluation
In this section, we present our evaluation results. Specifically, we

aim to answer the following questions:

• RQ1. How effective are syscall descriptions generated by

SyzSpec in fuzzing compared with others? (§6.1)

• RQ2. What is the the performance of SyzSpec and our sym-

bolic pointer reasoning solution? (§6.2)

• RQ3. Can syscall descriptions generated by SyzSpec find

new vulnerabilities? (§6.3)

Dataset. As shown in Table 1, we selected 10 drivers in different

categories and one non-driver kernel module, io_uring, from the

Linux kernel as our target. We selected these 10 drivers because,

based on the manual inspection of 100 drivers in the evaluation

of SyzDescribe [13], there is still room for improvement in the

syscall descriptions generated by existing automated tools for these

drivers. In contrast, SyzDescribe has shown that for other drivers,

especially simpler ones, its results are already close to the ground

truth. Moreover, we do not fully include all 8 drivers in SyzGen++

as it primarily focuses on dependency inference, while these dri-

vers involve syscall dependencies. In essence, the two tools are

somewhat orthogonal in their objectives and can function comple-

mentarily. Additionally, we included a non-driver kernel module to

demonstrate SyzSpec’s ability to generate descriptions for general

syscalls. We specifically chose io_uring because it is widely used
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Name Category Syscalls

capi20 Communication ioctl, read, write

i2c Communication ioctl, read, write

infiniband Networking read, write

input_event Input Devices ioctl, read, write

mapper_control Device Management ioctl

ppp Networking ioctl, read, write

ptmx Pseudo Terminals ioctl

sg SCSI Generic ioctl, read, write

snd_seq Sound ioctl, read, write

uinput Input Devices ioctl, read, write

iouring I/O Optimization io_uring_register

Table 1: Dataset of fuzzing experiments, including 10 device
drivers and one non-driver kernel module.

in many applications, and current automated tools do not support

it.

Experimental Setup. All fuzzing experiments were conducted on

a machine equipped with an Intel(R) Xeon(R) Gold 6248 CPU and

1024GB of RAM, running Ubuntu 18.04 LTS. The version of syzkaller

and its syscall descriptions are both based on the 1e9c4cf commit

(dated 07/31/2024) from the syzkaller Git repository [11]. For the

Linux kernel of the fuzzing experiments, we used the syzbot [10]
configuration, which is the same setup that Google uses when

fuzzing the Linux kernel with syzbot. And we compiled the kernel

using the LLVM/Clang 14 toolchain. For the syzkaller configuration,

we used the default configuration provided by syzkaller with QEMU

virtual machines. SyzSpec requires the entry functions of kernel

modules as input. For device drivers, SyzDescribe effectively identi-

fies these entry functions, so we use its results directly. However,

for other kernel modules, we currently collect the entry functions

manually.

6.1 Effectiveness of SyzSpec in Fuzzing
In this section, we evaluate the effectiveness of SyzSpec by com-

paring fuzzing on the syscall descriptions it generates with others.

We compare our results with three other tools—SyzDescribe [13],

KSG
2
[30], and SyzGen++ [5]—as well as with manually written

syscall descriptions from the official syzkaller project. For our eval-

uation, we fuzz each kernel driver individually for 24 hours, con-

ducting three separate runs per driver. During each fuzzing session,

we use 4 CPU cores, split into 2 QEMU instances with 2 cores each.

The cpu time is enough for a single module and the coverage in-

creases have plateaued based on our experience. After the sessions,

we calculate the average code coverage and the average number

of unique crashes for each driver based on these three runs. We

selected the Linux kernel v6.6 for our experiments, as it is the latest

long-term support (LTS) release as of October 29, 2023. This version

was chosen because, while SyzSpec is compatible with the latest

Linux kernel versions, the other tools we are comparing it with

only work up to v6.6. However, some of their generated syscall

descriptions do not have type information or value constraints for

certain drivers, resulting in "N/A" entries. Table 2 shows the average

code coverage achieved by the syscall descriptions generated by

each tool, and Table 3 lists the average number of unique crashes.

Overall, for the kernel modules that are supported, the descriptions

2
KSG was not open source and we use binary received from its authors for testing.

generated by SyzSpec outperform or at least are comparable to

those produced by the other automated tools.

SyzDescribe can generate syscall descriptions for all 10 drivers,

and it explicitly indicates that 2 of these descriptions are incom-

plete (i.e., infiniband and snd_seq). For the syscall descriptions of
the other 8 drivers, SyzSpec achieves higher average coverage and

discovers more unique crashes. This is primarily because SyzDe-

scribe performs static analysis to recover specifications of user

inputs, which works effectively for most ioctl syscalls. However,

as shown in Table 1, some modules also use other syscalls like

read, write, and even io_uring. For instance, the infiniband
module only involves read and write syscalls, without ioctl at

all. In the case of snd_seq, even though it uses the ioctl syscall,
it involves complex user inputs that SyzDescribe cannot recover.

In contrast, SyzSpec accurately handles complex user inputs for

different syscalls through its precise under-constrained symbolic

execution.

KSG can generate syscall descriptions for all 10 drivers. But for 7

of them, it cannot include any type information or value constraints.

Although KSG can recover specifications for the syscall read and
syscall write, it only performs an intra-procedural analysis. This

limitation is significant because most kernel modules process user

inputs in the callees of the handler function. As a result, KSG cannot

recover any type information or value constraints for these 7 kernel

modules. In contrast, SyzSpec performs a fully inter-procedural

analysis, allowing it to generate specifications for these modules.

For the snd_seq module, although user inputs are directly used in

the syscall handler function, the analysis involves symbolic pointers,

which KSG cannot handle effectively. However, SyzSpec can reason

about symbolic pointers efficiently, achieving 85% (4835 vs. 2606)

more coverage than KSG in snd_seq module. For the remaining

two modules, SyzSpec performs comparably to KSG.

SyzGen++ successfully generates syscall descriptions for 4 dri-

vers in our dataset. For the ppp and sg drivers, our tool performs

better than SyzGen++. One main reason is that there are condi-

tions whose values come from global memory, as well as sym-

bolic pointers and function pointers. As discussed previously, Syz-

Gen++ directly uses a fixed value from amemory snapshot for them,

limiting the possibilities. In contrast, SyzSpec performs an under-

constrained symbolic execution, which leads to more complete

syscall descriptions.

The official syzkaller provides syscall descriptions for 9 dri-

vers and the io_uring module. The syscall descriptions generated

by SyzSpec are competitive with those from syzkaller. SyzSpec

achieves better coverage in 6 kernel modules, while the official

syscall descriptions perform better in 3 modules. For the remaining

2 modules, we observe comparable coverage. Note that since the

syzkaller descriptions for these drivers were improved due to the

reporting by SyzDescribe authors [13], these descriptions serve as

a stronger target for comparison. It is important to note that for the

non-driver io_uring module, SyzSpec is the only automated tool

that supports it, as all prior solutions specialized in driver-related

syscall handlers. For example, SyzDescribe hard-code the handling

of the cmd parameter in ioctl() assuming it will never be cast into

a pointer. In contrast, SyzSpec treats all parameters the same and

does not apply special handling to any syscall or syscall handler
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Name Syzkaller SyzSpec SyzDescribe KSG SyzGen++

capi20 2,881.7 3,189.3 2,756.3 2,996.7 N/A

i2c 4,681.3 6,167.3 4,698.0 N/A N/A

infiniband 7,073.7 4,708.3 N/A N/A N/A

input_event 4,749.7 6,382.3 5,286.3 N/A N/A

mapper N/A 3,223.0 1,997.7 N/A N/A

ppp 6,253.7 6,124.3 5,887.3 N/A 5,633.0

ptmx 14,190.3 10,099.0 10,213.7 10,232.3 10,879.0

sg 7,023.0 9,813.7 8,352.3 N/A 7,528.7

snd_seq 4,384.3 4,835.0 N/A 2,606.3 4,878.7

uinput 5,759.0 4,493.7 4,531.0 N/A N/A

iouring 6,716.0 6,656.7 N/A N/A N/A

Table 2: Comparison of the average code coverage between SyzSpec and previous work.

Name Syzkaller SyzSpec SyzDescribe KSG SyzGen++

capi20 0.0 0.0 0.0 0.0 N/A

i2c 0.0 0.3 0.0 N/A N/A

infiniband 0.0 0.7 N/A N/A N/A

input_event 0.0 0.0 0.0 N/A N/A

mapper N/A 0.7 0.0 N/A N/A

ppp 0.0 0.3 0.0 N/A 0.3

ptmx 1.3 0.0 0.0 0.0 0.0

sg 3.3 2.7 1.7 N/A 2.0

snd_seq 1.3 0.0 N/A 0.3 0.0

uinput 1.7 1.0 0.7 N/A N/A

iouring 0.0 0.0 N/A N/A N/A

Table 3: Comparison of the average number of unique crashes
between SyzSpec and previous work.

parameters. Furthermore, for io_uring, SyzSpec achieves cover-
age similar to that of the official syscall descriptions. We are also

working on sharing syscall descriptions generated by SyzSpec with

the syzkaller team.

6.2 Performance of SyzSpec and Symbolic
Pointer Reasoning

Table 4 shows how long SyzSpec takes to generate syscall descrip-

tions for 11 different kernel modules and the number of times

symbolic pointer reasoning is invoked (i.e., how many symbolic

pointers are dereferenced) during the execution paths. The execu-

tion times range from 0.13 hours to 16.60 hours, depending on the

module. We acknowledge the additional computation time required

by SyzSpec, compared to existing lightweight solutions such as

SyzDescribe. Nevertheless, our solution is designed to handle the

complex syscall handlers, e.g., with complex constraints on user

inputs, pointer arithmetic, and type casting. We argue that these

difficult cases are more likely to contribute to more coverage and

bugs. Indeed, Table 2 showed that SyzSpec has a higher coverage

and Table 3 showed that SyzSpec can uncover more bugs compared

to SyzDescribe and other existing solutions.

Specifications Guided Search. The number of execution paths

analyzed by SyzSpec ranges from 209 to 23,297 across different

kernel modules. However, we find that there is no direct correlation

between the execution time and the number of paths analyzed. Some

paths take longer to analyze because they involve more complex

constraint-solving processes. For example, the uinputmodule took

8.00 hours to analyze merely 422 paths. The table also includes

the number of partially completed paths. These are paths that are

terminated early, mainly due to the specification-guided search

or loop unrolling limit. Note that even if they did not reach the

end of the syscall handler, they may still contribute to new syscall

descriptions. That is why we always try to generate descriptions

for every terminated path. Generally, as the number of execution

paths increases, the proportion of paths that are partially completed

also tends to rise. This happens because, initially, each execution

path generates new specifications for user inputs. However, as more

paths are forked, the new paths eventually stop providing additional

useful information about the user inputs.

Symbolic Pointer Reasoning. During these execution paths, the

number of times symbolic pointer reasoning is invoked or the num-

ber of symbolic pointers are dereferenced (i.e., #Symbolic Pointer

Reasoning) ranges from 776 to 33781 across different kernel mod-

ules. This indicates that symbolic pointer reasoning is broadly ap-

plicable during under-constrained symbolic execution. The num-

ber of possible memory objects for symbolic pointers resolved by

SyzSpec (i.e., #MO by SyzSpec) ranges from 886 to 34,354, while the

average number of memory objects per symbolic pointer resolved

by SyzSpec (i.e., #Avg. MO by SyzSpec) falls between 1.00 and 1.14.

In contrast, if we resolve the symbolic pointers using the standard

method in KLEE, the number of possible memory objects (i.e., #MO

by standard KLEE) would range from 11469 to 4541465, and the

average memory objects per symbolic pointer (i.e., #Avg. MO by

standard KLEE) would range from 1.07 to 232.22. It is important

to note that this statistic underestimates the path explosion issue

caused by KLEE’s standard symbolic pointer reasoning method.

This is because we only calculate the number of possible memory

objects without forking on pointer reasoning and executing paths

based on those objects. Otherwise, the executionwould be infeasible

to complete due to the intensive use of the SMT solver. Specifically,

the analysis of all modules, except mapper_control, cannot finish
within 24 hours and fails to generate valid syscall descriptions for

fuzzing. Despite this underestimation, the data still demonstrates

that KLEE’s standard symbolic pointer reasoning method results

in significant path explosion in most modules, while our method

significantly alleviates this issue.
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Name Time Total Path

Partially

Completed

Path

Partially

Completed

/ Total

#Symbolic

Pointer

Reasoning

#MO by

SyzSpec

#Avg. MO by

SyzSpec

#MO by

standard KLEE

#Avg. MO by

standard KLEE

capi20 2.29 209 119 56.94% 776 886 1.14 85372 110.02

i2c 1.86 12,628 8,403 66.54% 12885 14570 1.13 2653234 205.92

infiniband 0.13 567 136 23.99% 7363 7478 1.02 132162 17.95

input_event 4.49 17,451 12,532 71.81% 21678 22749 1.05 1345485 62.07

mapper_control 0.27 627 359 57.26% 10750 10751 1.00 11469 1.07

ppp 10.75 4,257 2,410 56.61% 2386 2618 1.10 350817 147.03

ptmx 16.60 16,934 13,832 81.68% 33781 34354 1.02 4541465 134.44

sg 0.54 5,154 3,450 66.94% 27084 27582 1.02 4009177 148.03

snd_seq 7.01 5,197 3,211 61.79% 10426 10808 1.04 547282 52.49

uinput 8.00 422 100 23.70% 5883 6002 1.02 128273 21.80

iouring 7.31 23,297 19,711 84.61% 15395 16826 1.09 3574961 232.22

Table 4: Execution time required by SyzSpec to generate syscall descriptions for those 11 kernel modules and the number of
the symbolic pointer reasoning during the execution paths.

Risk Sum

C

repro

Syzlang

repro

no

repro

out-of-bounds 1 1

use-after-free 4 1 3

use-before-initialization 6 1 5

null-ptr-deref 29 7 3 19

corrupted stack 4 2 1 1

corrupted list 9 3 6

corrupted lock 2 2 0

page fault 4 1 3

deadlock 5 2 1 2

task hung 12 2 10

logic bug 10 2 1 7

Sum 86 23 6 57

Table 5: Overview of the unknown crashes.

6.3 Bug Finding Capability of SyzSpec
To evaluate how well the syscall descriptions generated by SyzSpec

can identify bugs, we conducted a one-month fuzzing campaign

on the latest stable version of the Linux kernel (v6.10, released on

07/14/2024) using 70 CPU cores. The fuzzing results are shown in

Table 5. This effort resulted in the discovery of 100 unique crashes.

After cross-validation with bugs in syzbot [10], we find that 86 of

which were previously unknown.

As shown in Table 5, there are a total of 86 previously unknown

crashes, which can be categorized into 11 different risk types, in-

cluding out-of-bounds errors, use-after-free errors, and use-before-

initialization errors. Notice that the reproducer can be highly ben-

eficial in assisting developers with diagnosing the root causes of

bugs. However, only 23 of these crashes have a C reproducer (a test

case written in C that can trigger the crashes), 6 have a syzlang re-

producer (a test case written in syzlang that can trigger the crashes

but a corresponding C test case can not trigger the crashes), and 57

do not have any reproducer at all.

Table 6 list the details of previously unknown crashes in the

Linux kernel, identified using syscall descriptions generated by

SyzSpec. Table 6 includes 38 crashes that either have a reproducer

1. struct A {int a_1;  int a_2;}
2. struct B {struct A b_1; struct A b_2;}
3. struct C {struct A c_1; struct A c_2; struct A c_3}
4. array[struct A]

Figure 7: An example of specification merging.

or involve memory corruption, while ?? contains the remaining

crashes. Among the crashes with a reproducer, 8 require multiple

threads to trigger, which means those bugs are more difficult to

be fixed. We have finished the report process to the Linux kernel

security team and the relevant maintainers. Our first focus is on

fixing crashes that have a reproducer (a way to reliably replicate the

issue) or involve memory corruption. We will provide an update on

the status of these crashes in the final version of the paper (some

bugs can still be triggered in the latest version of the linux kernel).

7 Discussion and Limitations
There are a few limitations of SyzSpec, which can be areas for future

improvements.

Specifications Merge. Currently, we only merge specifications of

the user inputs with the same type. However, there are situations

where specifications of different types can also be merged. For

example, in Figure 7, there is a case where specifications of different

types need to be merged. The structures struct B and struct c
represent the second situation mentioned in §4.2. Although all

three structures are of different types, they can be merged into

the array on line 4, where the elements are of type struct A and
without fixed length. However, these potential merges heavily rely

on heuristics, and it is challenging to encode all of them.

Entry Functions. Currently, the SyzSpec requires entry functions

as input. However, existing tools are limited to automatically re-

covering entry functions specifically for drivers with hard-coded

domain knowledge. For instance, DIFUZE identifies handler func-

tions for syscall interfaces by first locating syscall handler structures

using a predefined list of struct types. SyzDescribe recovers syscall

handlers by statically reconstructing the initialization process of a

kernel driver. KSG and SyzGen++ scan all device files under /dev,
searching for syscall handler structures triggered when the open()
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Crashed Function Risk Repro Threaded Crashed Function Risk Repro Threaded

fast_imageblit out-of-bounds stack_depot_save_flags null-ptr-deref C

addrconf_verify_rtnl use-after-free update_io_ticks null-ptr-deref C

dup_fd use-after-free dup_mmap corrupted stack Syzlang

nsim_fib6_rt_nh_del use-after-free sg_ioctl corrupted stack C Yes

rcu_core use-after-free C Yes worker_thread corrupted stack C

addrconf_ifdown use-before-init C call_timer_fn corrupted list C

calculate_sigpending use-before-init dst_init corrupted list C

exit_fs use-before-init free_pgtables corrupted lock C

neigh_periodic_work use-before-init process_measurement corrupted lock C

schedule_timeout use-before-init deliver_ptype_list_skb page fault C

tipc_release use-before-init __run_timer_base deadlock Syzlang

__free_object null-ptr-deref C hci_dev_do_close deadlock C

batadv_bla_del... null-ptr-deref C serial8250_console_write deadlock C Yes

batadv_iv_send... null-ptr-deref Syzlang gsm_cleanup_mux task hung C

blk_mq_put_tag null-ptr-deref C kvfree_rcu_bulk task hung C Yes

fib_table_lookup null-ptr-deref Syzlang rss_counter logic bug C

get_mem_cgroup... null-ptr-deref C depot_fetch_stack logic bug Syzlang Yes

mmap_region null-ptr-deref C free_pgtables logic bug C Yes

seccomp_run_filters null-ptr-deref C Yes input_mt_init_slots logic bug C Yes

Table 6: Parts of previously unknown crashes found by syscall descriptions generated by SyzSpec in the Linux kernel, including
the crashes that have a reproducer or involve memory corruption.

syscall is executed on these files, identifying explicitly referenced

structures. Therefore, it would be useful to develop a more gener-

alized method to recover handler functions for syscall interfaces.

There are several options: one could manually encode the domain

knowledge related to other non-driver kernel components, e.g.,

socket and file system. Alternatively, we envision that it is possible

to leverage large language models, which already have significant

knowledge about the Linux kernel and syscall internals, to au-

tomatically extract the necessary domain knowledge. These are

orthogonal to our project and we leave them as future work.

Finally, while our under-constrained symbolic execution ap-

proach has been applied to generate specifications for Linux kernel

syscalls, this technique is not limited to this particular use case. It

can be extended to other types of interfaces, such as library APIs.

Specifically, as long as the interfaces of other programs are provided,

SyzSpec can be easily adapted to support those programs.

8 Related Work
Linux Kernel Fuzzing. Recent studies have made significant

improvements in various aspects of kernel fuzzing, and most of

them are building upon the state-of-the-art kernel fuzzer, syzkaller.

HFL [18] enhances kernel fuzzing by combining syzkaller with

symbolic execution. This approach improves various aspects of

kernel fuzzing, e.g., resolving nested argument types and identify-

ing dependencies that involve non-open file descriptors. Although

HFL does not focus on directly generating syscall descriptions, the

inferences gained through this method can be adapted to enhance

certain aspects of syscall descriptions. HEALER [31] improves the

quality of test cases andmaximizes code coverage by learning the re-

lationships between syscalls. This method relies on existing syscall

descriptions provided by syzkaller. A recent study [14] measured

the code that remains uncovered after extensive fuzzing and identi-

fied gaps in the existing kernel fuzzing. FUZZNG [3] introduces a

dynamic approach that hooks all copy_from_user-like functions

to directly inject data. Instead of generating complex nested input

structures, this method simplifies the process by breaking down

multi-layer pointers into a series of single-layer buffers.

Under-Constrained Symbolic Execution. There are several

works employing under-constrained symbolic execution to finish

the analysis task. The work by Ramos et al. [27] is one of the most

significant contributions to under-constrained symbolic execution

in recent years. It presents a relatively complete framework for

under-constrained symbolic execution and demonstrates its appli-

cation in verifying real-world code, such as vulnerability detection

and patch verification. Subsequent works such as UBITect [37] and

Progressive Scrutiny [38] leverage under-constrained symbolic ex-

ecution to reduce false positives in static analysis when detecting

use-before-initialization bugs in the Linux kernel. LinKRID [21]

applies under-constrained symbolic execution to analyze detailed

refcount and global reference changes, effectively identifying imbal-

ance reference counting bugs in the Linux kernel. Sys [2] integrates

under-constrained symbolic execution with static analysis to iden-

tify bugs in web browsers.

Symbolic Pointer Reasoning. Recent research studies have been

conducted on symbolic pointer reasoning within symbolic execu-

tion. MemSight [6] offers a novel approach to symbolic pointer

reasoning. Rather than resolving symbolic pointers in some mem-

ory, MemSight focuses on efficiently associating values with sym-

bolic address expressions. It assigns a dereferenced value of the

pointer to the most recent value based on timestamps sequentially.

However, MemSight is not designed for under-constrained sym-

bolic execution. MemSight is primarily effective in situations where

symbolic offsets are applied to specific allocated memory, and the

dereferenced value of the pointer should be one of that memory. In

contrast, under-constrained symbolic execution requires first deter-

mining which memory—potentially even a new one—the symbolic

pointer refers to. Past-Sensitive Pointer Analysis [33] differentiates
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between objects that were allocated in the past, during the execu-

tion path, and objects that will be allocated in the future, which may

share allocation sites depending on the sensitivity of the pointer

analysis. David et al. [35] propose a relocatable addressing model

for symbolic execution, aimed at enhancing the segmented memory

model and lowering the computational cost of solving large array

theory constraints. However, both approaches may not be suitable

for under-constrained symbolic execution because the allocation

sites might exist before the entry point of the symbolic execution.

Symbolic Execution Optimization. Several studies have focused
on optimizing symbolic execution. The work [16] proposes a seg-

mented memory model for symbolic execution. The main idea is to

divide memory into multiple segments, so that any symbolic pointer

can only refer to memory objects within a single segment. Mul-

tiSE [28] introduces a method that allows executing multiple paths

simultaneously, which naturally supports state merging. FastK-

LEE [36] enhances the speed of KLEE by reducing redundant bound

checks for type-safe pointers. Chopped symbolic execution [34]

aims to skip certain functions and continue symbolic execution.

Borzacchiello et al. [1] improve constraint solving by fuzzing sym-

bolic expressions He et al. [15] apply machine learning to explore

paths for symbolic execution. SymQEMU [26] increases execution

speed through a compilation-based method for binaries.

9 Conclusion
In conclusion, we introduced SyzSpec, a tool designed to thor-

oughly explore all possible user inputs and generate more accu-

rate syscall specifications by performing fully inter-procedural

under-constrained symbolic execution on syscall handler func-

tions. The primary innovation of SyzSpec is its novel method for

enhancing symbolic pointer reasoning within the context of under-

constrained symbolic execution, which works together with the

under-constrained memory object (UCMO). We compared SyzSpec

against existing automated solutions and the manually written

syscall descriptions provided by the official syzkaller tool. Our re-

sults indicate that SyzSpec achieves superior coverage compared

to other automated tools, and offers coverage that is comparable to

manually crafted syscall descriptions. Furthermore, we evaluated

SyzSpec using the latest stable version of the Linux kernel (v6.10),

uncovering 86 previously unknown crashes across 11 different cat-

egories.
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A Appendix
Ethical Consideration
All crashes identified by SyzSpec are being reported to the Linux

kernel security team and the respective maintainers. We have pro-

vided comprehensive descriptions and detailed bug reports for all

bugs. Additionally, if we successfully reproduced a bug, we included

a reproducer/Proof of Concept (PoC) to facilitate reproduction. We

are collaborating with the maintainers to resolve these bugs and

develop appropriate patches. Throughout this process, we have

followed the responsible disclosure process and are in the process

of requesting CVE identifiers for discovered crashes.

Data Availability
We will open source the implementation of SyzSpec and the gen-

erated syscall descriptions to facilitate the reproduction of results

and future research. The source code of SyzSpec and the generated

syscall descriptions would be available at would be available at

https://github.com/seclab-ucr/SyzSpec.
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