
Statically Discovering High-Order Taint Style Vulnerabilities in
OS Kernels

Hang Zhang
hzhan033@ucr.edu

UC Riverside

Weiteng Chen
wchen130@ucr.edu

UC Riverside

Yu Hao
yhao016@ucr.edu
UC Riverside

Guoren Li
gli076@ucr.edu
UC Riverside

Yizhuo Zhai
yzhai003@ucr.edu

UC Riverside

Xiaochen Zou
xzou017@ucr.edu
UC Riverside

Zhiyun Qian
zhiyunq@cs.ucr.edu

UC Riverside

ABSTRACT
Static analysis is known to yield numerous false alarms when used
in bug finding, especially for complex vulnerabilities in large code
bases like the Linux kernel. One important class of such complex
vulnerabilities is what we call “high-order taint style vulnerability”,
where the taint flow from the user input to the vulnerable site
crosses the boundary of a single entry function invocation (i.e.,
syscall). Due to the large scope and high precision requirement,
few have attempted to solve the problem.

In this paper, we present SUTURE, a highly precise and scalable
static analysis tool capable of discovering high-order vulnerabili-
ties in OS kernels. SUTURE employs a novel summary-based high-
order taint flow construction approach to efficiently enumerate the
cross-entry taint flows, while incorporating multiple innovative en-
hancements on analysis precision that are unseen in existing tools,
resulting in a highly precise inter-procedural flow-, context-, field-,
index-, and opportunistically path-sensitive static taint analysis.

We apply SUTURE to discover high-order taint vulnerabilities
in multiple Android kernels from mainstream vendors (e.g., Google,
Samsung, Huawei), the results show that SUTURE can both confirm
known high-order vulnerabilities and uncover new ones. So far,
SUTURE generates 79 true positive warning groups, of which 19
have been confirmed by the vendors, including a high severity
vulnerability rated by Google. SUTURE also achieves a reasonable
false positive rate (51.23%) perceived by users of our tool.

CCS CONCEPTS
• Security and privacy→ Systems security; • Theory of com-
putation → Program reasoning.

KEYWORDS
OS kernels; Vulnerability discovery; Static program analysis
ACM Reference Format:
Hang Zhang, Weiteng Chen, Yu Hao, Guoren Li, Yizhuo Zhai, Xiaochen
Zou, and Zhiyun Qian. 2021. Statically Discovering High-Order Taint Style

Hang Zhang is a postdoc researcher at Georgia Tech at the time of publication.
The second to sixth authors contribute equally in helping with the evaluation.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea.
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8454-4/21/11.
https://doi.org/10.1145/3460120.3484798

Vulnerabilities in OS Kernels. In Proceedings of the 2021 ACM SIGSAC
Conference on Computer and Communications Security (CCS ’21), November
15–19, 2021, Virtual Event, Republic of Korea. ACM, New York, NY, USA,
14 pages. https://doi.org/10.1145/3460120.3484798

1 INTRODUCTION
A major weakness of static analysis for bug finding is the high false
positive rate, which is one reason why dynamic approaches such as
fuzzing is gaining much more popularity where any bugs found are
technically true positives. This weakness is especially significant
with large and complex software such as the Linux kernel, where
many bugs are triggered after a sequence of syscall invocations.
Specifically, the large state space created by multiple program entry
points (permutation of syscalls) makes it extremely challenging for
static analysis to be both precise and scalable. On the other hand, a
fuzzer like Syzkaller [3] can generate random but meaningful test
cases involving different sequences of syscalls guided by coverage,
and proves to be effective at finding such bugs. However, there is no
guarantee that it will be able to uncover all bugs due to its nature
of random exploration.

One important class of the aforementioned complex bugs is the
high-order taint style vulnerabilities, where an attacker-controlled
input (i.e., taint source) is propagated to sensitive operations (i.e.,
taint sink) without proper sanitization, following a complex
control/data flow involving multiple entry function invocations.
For example, an entry function A() copies its user-provided
argument to a global variable G, which is later used as an array
index unchecked in another entry function B(), causing an
out-of-bound access. The order here refers to the number of entry
function invocations that are needed to trigger the vulnerability.
Compared to the simple “one-shot” taint vulnerabilities where the
taint propagation is confined within a single entry function
invocation (i.e., first-order), high-order bugs frequently seen in the
stateful software (e.g., Linux kernel) are much more difficult to
uncover, due to the need to reason about the complicated
cross-entry taint propagation.

Ideally, we want a static analysis tool that can systematically
analyze the program to identify the high-order vulnerabilities with
a good coverage, while minimizing false alarms. However, this is a
difficult task because of the following specific challenges:
Challenge 1. The tool needs to efficiently enumerate cross-entry
taint flows. Intuitively, since multiple entry functions can be
invoked in any order, an analysis needs to walk through many
possible permutations and repeatedly analyze a same entry in
different permutations, which is a significant scalability challenge.

https://doi.org/10.1145/3460120.3484798
https://doi.org/10.1145/3460120.3484798

Challenge 2. The analysis needs to be accurate and precise enough
to handle the cross-entry taint flows which can be lengthy. Since
these flows are usually “concatenated” from multiple local flows
within individual entry functions, any inaccuracy will accumulate
and eventually cause an unacceptable number of false alarms.

Given these challenges, although there are many existing works
on statically discovering taint style vulnerabilities [8, 10, 26, 40],
few can discover high-order ones. The closest work is by Dahse et
al. [14], focusing on only the second-order vulnerability in web
applications, which are very different and relatively simple
compared to Linux kernel (e.g., higher-level programming
languages compared to C, fewer entry points and fixed taint
propagation paths around the limited central data storage).

In this paper, we develop a novel static analysis tool that can
address the above challenges and discover high-order (arbitrary
orders) taint vulnerabilities in the Linux kernel (and potentially
any other stateful C programs) effectively and efficiently. To
overcome the first challenge (i.e., scalability), our core idea is to
first analyze each entry function independently (only for once) and
create an abstract summary regarding its taint behaviors for both
local and global variables, then in the vulnerability discovery
phase, we construct high-order taint flows on demand by querying
the individual summaries. This enables an efficient high-order
taint flow enumeration. As for the second challenge (i.e., accuracy
and precision), we integrate many innovative and/or practical
features into the static analysis to boost its precision. They include
an opportunistic path-sensitive analysis piggybacked through a
flow-sensitive one, handling ambiguous all-to-all memory updates,
and many others that result in a highly precise inter-procedure
flow-, context-, field-, index-, and opportunistic path-sensitive
static taint analysis. Besides, we also make considerable efforts
handling kernel code patterns (e.g., indirect calls).

We evaluate our tool on driver modules of different Android
kernels used in various mobile devices (e.g., Google, Samsung,
Huawei). The results show that our tool can discover previously
unknown high-order taint vulnerabilities. So far, our tool has
reported 79 true positive warning groups, of which 19 have been
confirmed by developers, including one high severity vulnerability
as rated by Google. Our tool also achieves a reasonable false
positive rate as perceived by the warning reviewers (51.23%) and
an acceptable performance (e.g., concurrently analyze all 37
modules of a target kernel within 30 hrs).

We summarize our major contributions as below:
(1) To our best knowledge, we are the first to attempt to system-

atically and statically discover high-order taint style vulnerabilities
in the Linux kernel. Our method can also be easily generalized to
other stateful software.

(2) We implement a prototype tool SUTURE, which is able to
construct high-order taint flows with high-precision points-to and
taint analyses, making it general enough for our problem as well as
others requiring static taint analysis. We will open source SUTURE1
to facilitate the reproduction of results and future research.

(3) We successfully discover previously unknown high-order
taint vulnerabilities in the kernel and report them to the developers,
including high-severity ones.

1https://github.com/seclab-ucr/SUTURE

00 struct data { int32_t a; char b[4]; } d;
01
02 entry0(int cmd, char user_input) {
03 switch(cmd) {
04 case 0:
05 d.b[0] = user_input; break;
06 default:
07 foo(cmd,user_input);
08 }
09 }
10
11 foo(int n, char c) {
12 if (n == 0)
13 d.b[1] = c;
14 }

15 entry1() {
16 bar((char*)&d);
17 ...
18 d.b[0] = 0;
19 }
20
21 bar(char *p) {
22 *(p+4) += 0xf0; // (1)
23 }
24
25 entry2() {
26 char a[8];
27 a[0] = d.b[1] + 0xf0; // (2)
28 ...
29 }

Local Taint Flows:
entry0: entry2:
user_input ► d.b[0] d.b[1] ► (2)
entry1: d.b[1] ► a[0]
d.b[0] ► (1)

Calling Sequences:
entry0 à entry1 : Overflow
entry0 à entry2 :
entry1 à entry1 :
…...

* Red: Input directly provided by the user, Blue: Global variables.

Figure 1: An Example of High-Order Bug Discovery

2 OVERVIEW
In this section we describe the architecture and overall workflow
of SUTURE, with a motivating example.

2.1 The Motivating Example
Fig. 1 shows an abstracted example of high-order vulnerabilities.
There are three entry functions, i.e., entry0(), entry1() and
entry2(), that can be invoked in any order. First, we note a byte
overflow at line 22 (site (1)). To trigger it, however, one needs to
first invoke entry0() with cmd=0, so that the user provided
user_input flows to the global variable d.b[0] (line 5). Then, a
different entry function entry1() needs to be invoked, which
subsequently invokes bar(). At that point, the value of d.b[0]
(previously set by the user input in entry0() whose address is
aliased with p+4) is retrieved and involved in an overflow-inducing
addition operation (line 22).

The most important characteristic of this vulnerability is that
the taint flow from the original user input to the final overflow
site is relayed via a global variable, making it a high-order (more
specifically, second-order) taint style vulnerability. As mentioned
in §1, it is difficult for existing tools to statically discover such
vulnerabilities since they usually only reason about the local taint
flows within a single entry function. For example, from the scope
of only entry1(), we do not know d.b[0] is actually controlled by
the user, while blindly assuming it can cause excessive false alarms.

Constructing high-order taint flows can be challenging, because
analyzing all possible permutations of entry invocations is not
scalable. Moreover, any analysis imprecision can be amplified when
stitching results from individual entry functions. We illustrate a
few potential sources of imprecision below.
(1) A path-insensitive analysis will wrongly conclude that
entry0(), with a non-zero cmd, can propagate user_input to
d.b[1] in its callee foo() (line 13), which is impossible since the
conflicting path conditions at line 6 and line 12. Such
path-insensitivity can eventually create a false alarm that line 27 in
entry2() (when invoked after entry0()) can cause an overflow.

(2) To discover the potential overflow at line 22, the static analysis
must be able to accurately resolve the pointer arithmetic and figure
out that *(p+4) is an alias to d.b[0], otherwise a false negative will
occur. Additionally, the analysis also needs to be inter-procedural
in order to figure out that argument p of bar aliases to d;
(3) An index-insensitive analysis may issue a false alarm at line 27,
following the calling sequence entry0(cmd=0,...) -> entry2(),
because d.b[0] and d.b[1] are not differentiated. If combined with
path-insensitivity in (2), there will likely be many more false alarms
after line 27 under the calling sequence entry0(cmd=1,...) ->
entry2, since the whole array a can be over-tainted instead of only
a[0]. Moreover, since d contains d.b as an embedded array, the
analysis also needs to handle such nested structures;
(4) The analysis must also correctly recognize that line 18 in
entry1() kills the existing taint of d.b[0], so that additional
entry1() invocations after the first one will no longer trigger the
overflow at line 22. This requires a cross-entry flow-sensitivity.

Unfortunately, to our best knowledge, no existing static analysis
tools possess all these precision we desire (with more manifested
later in §3). This motivates SUTURE, a highly precise static analysis
tool capable of discovering high-order taint vulnerabilities.

2.2 Workflow
Weprovide an overview of SUTURE in this section. The architecture
of SUTURE is shown in Fig. 2. We briefly describe its workflow in
four stages:
1. Input. SUTURE requires as input the LLVM bitcode file
compiled from the target program, along with a config file which
specifies the entry function information (e.g., function names,
user-controlled arguments). For the motivating example in Fig. 1,
entry0(), entry1(), and entry2() will be listed as three entry
functions in the config file, where the user_input argument of
entry0() is specified as the user controllable input.
2. Static Taint Analysis. SUTURE will then perform a precise
static taint analysis and generate an independent summary for
each entry function, which includes all the local taint flows within
it. In this phase both user input and global variables are treated as
taint source, while the local taint flow to every variable used in the
entry function is recorded. In Fig. 1 we show the local taint flows
of the three entry functions in the bottom left box (we omit the
intermediate variables visible only at the bitcode level for site (1)
and (2).). It is worth noting that SUTURE analyzes each entry
function only once in an order-insensitive way, e.g., entry0() can
be analyzed either before or after entry1()), avoiding the
expensive cost of repeatedly analyzing a same entry in different
calling sequences, however, SUTURE can still discover high-order
vulnerabilities as detailed later.
3. Vulnerability Discovery. In this stage, SUTURE tries to stitch
together various entry functions with various vulnerability
detectors to pinpoint different types of bug-inducing program
statements (e.g., an arithmetic operation may cause integer
overflow). For each such statement, SUTURE decides whether any
cross-entry taint flows exist from user input to the problematic
statement. In the motivating example, the local taint flows of
entry0() and entry1() are stitched to form the high-order taint
flow of the vulnerability.

Output

Input Static Taint Analysis

Vulnerability Detection

Program LLVM
Bitcode

Entry Function
Specification Taint Summary

Flow Constructor

Detector 0
Detector 1

Detector n

…...
Warning Reports

Figure 2: System Architecture of SUTURE

4. Output. For each issued warning, SUTURE outputs any relevant
information such as the warning type and full cross-entry taint
flow, SUTURE also calculates the order for each warning. For the
motivating example, SUTURE eventually fires one valid warning
whose calling sequence is shown in the right bottom (a second-order
vulnerability), while avoiding all the false alarms as mentioned in
§2.1.

3 STATIC ANALYSIS DESIGN
In this section we describe the design of SUTURE, including the
various enhancements made to make the precise and efficient high-
order taint analysis possible.

3.1 Positioning
Given the LLVM bitcode files and the entry function specification,
the goal of static taint analysis is to construct a taint summary
(detailed in §3.3) for each entry function, to achieve this goal, we
independently analyze each entry function and record its taint facts.
Our static taint analysis follows the basic design and reuses themain
data structures of Dr. Checker [26], which makes a soundy inter-
procedure traversal of each entry function in the top-down style and
for each visited LLVM IR, performing the alias and taint analysis,
which updates the points-to and taint information associated with
variables involved in the IR. The rules for points-to record update
and taint propagation are quite standard as manifested in [26], so
we will not elaborate on them again. Basically, Dr. Checker’s static
analysis is context-, flow-, and field- sensitive. However, as detailed
later, all these sensitivity are partial or limited (see §3.6.1 and §3.6.3)
which needs to be addressed in SUTURE. Moreover, SUTURE also
has many additional requirements for the static analysis compared
to Dr. Checker. Throughout the section, we primarily focus on
describing our enhancements over it.

In this section, we will first describe three novel features of
SUTURE that are not found in other static analysis tools, including
the essential techniques to support scalable high-order taint flow
construction (§3.3) and several innovative techniques to improve
analysis precision and efficiency (§3.4 and §3.5). Then we describe
various other improvements in SUTURE (§3.6) that are although
mostly well-known, but rarely packed together to achieve a highly
precise static analysis, which is critical for high-order bug discovery
since mistakes can be amplified when multiple local taint flows
connect (§2.1).

3.2 Definitions
Before we delve into the details, we start with a set of definitions
to simplify the later description of the design.
Def 0 An entry function 𝜀 of a program module (e.g., a kernel mod-
ule) serves as a part of the module interface, thus it does not have
any callers within the same module and intends to be invoked di-
rectly by the user or other modules (e.g., top-level ioctl() func-
tions of a driver).
Def 1 The taint source S includes both user-provided arguments of
entry functions (U) and all globally accessible variables or memory
regions (G which we refer to as global memory). Note that G con-
tains both explicitly defined global variables (e.g., a global integer)
and the ones reachable from them, e.g., a global object containing a
pointer field pointing to heap memory. This can go across arbitrary
layers of pointer indirection. Formally:

S = U ∪ G
U = {𝑣 |∃𝜀, 𝑣 is a user argument of 𝜀}
G = {𝑣 |𝑣 is globally accessible}

Def 2 A calling context △ is defined as a sequence of instructions:

△ = [𝑖0, 𝑖1, ..., 𝑖2𝑛]
An instruction with an even subscript denotes the entry instruction
of a caller function, while the odd denotes a call site instruction
within the caller (e.g., 𝑖2 is the entry of the function that is called at
𝑖1), the sequence always ends with the entry instruction of current
executing function, so its length is always odd. This definition
enables us to differentiate multiple callees at a same call site (e.g.,
an indirect call with multiple potential targets).
Def 3 We define an “instruction location” (𝐼𝑛𝑠𝑡𝐿𝑜𝑐 for short in the
remaining paper) as an instruction 𝑖 plus the calling context △ (Def
2) it is executed in, we use 𝐼 to denote an 𝐼𝑛𝑠𝑡𝐿𝑜𝑐 to differentiate it
with a static instruction 𝑖:

𝐼 = (𝑖, △)
Def 4 A taint flow 𝜏 is basically an 𝐼𝑛𝑠𝑡𝐿𝑜𝑐 sequence:

𝜏 = [𝐼0, 𝐼1, ..., 𝐼𝑛]
The first 𝐼𝑛𝑠𝑡𝐿𝑜𝑐 𝐼0 initiates the taint propagation from one taint
source variable 𝑣 ∈ S, while the remaining 𝐼𝑛𝑠𝑡𝐿𝑜𝑐s pass the taint
on.
Def 5We define the connect operator ◦ for taint flows as following:

𝜏0 = [𝐼00, 𝐼01, ..., 𝐼0𝑛], 𝜏1 = [𝐼10, 𝐼11, ..., 𝐼1𝑛]

𝜏0 ◦ 𝜏1 =
{
[𝐼00, ..., 𝐼0𝑛, 𝐼10, ..., 𝐼1𝑛], if sink(𝐼0𝑛)==src(𝐼10)
∅, else

This basically says that two taint flows can be sequentially
connected iff the last 𝐼𝑛𝑠𝑡𝐿𝑜𝑐 of one taint flow propagates the
taint to a variable that is used as the taint initiator at the beginning
of the other taint flow.
Def 6We now define the “order” of a taint flow with the 𝑜𝑟𝑑𝑒𝑟 ()
function, before that, we need to first define the 𝑟𝑒𝑎𝑐ℎ() function
to test the reachability between two 𝐼𝑛𝑠𝑡𝐿𝑜𝑐s:

𝑟𝑒𝑎𝑐ℎ(𝐼0, 𝐼1) =
{
𝑇𝑟𝑢𝑒, if ∃𝜀, 𝐼0 can reach 𝐼1 on 𝐼𝐶𝐹𝐺 (𝜀)
𝐹𝑎𝑙𝑠𝑒, else

𝐼𝐶𝐹𝐺 (𝜀) means the inter-procedure control flow graph of the entry
function 𝜀, 𝐼0 can reach 𝐼1 on 𝐼𝐶𝐹𝐺 (𝜀) implies that there is at least
one execution of 𝜀 that can reach the 𝐼𝑛𝑠𝑡𝐿𝑜𝑐 𝐼0 and after that, 𝐼1.
With the 𝑟𝑒𝑎𝑐ℎ() definition:

𝑜𝑟𝑑𝑒𝑟 (𝜏) = |{𝑘 |𝐼𝑘 ∈ 𝜏, 𝐼𝑘+1 ∈ 𝜏,¬𝑟𝑒𝑎𝑐ℎ(𝐼𝑘 , 𝐼𝑘+1)}|

Intuitively, 𝑜𝑟𝑑𝑒𝑟 (𝜏) is the number of “break points” in 𝜏 , where to
continue following the taint flow we have to make another entry
function invocation. We hereby call a taint flow 𝜏 high-order taint
flow if 𝑜𝑟𝑑𝑒𝑟 (𝜏) > 1.

It is worth noting that since 𝑟𝑒𝑎𝑐ℎ() is not transitive (e.g.,
𝑟𝑒𝑎𝑐ℎ(𝐼0, 𝐼1) ∧ 𝑟𝑒𝑎𝑐ℎ(𝐼1, 𝐼2) ↛ 𝑟𝑒𝑎𝑐ℎ(𝐼0, 𝐼2), because the path
between 𝐼0 and 𝐼1 may pose conflicting constraints to that between
𝐼1 and 𝐼2), our definition of 𝑜𝑟𝑑𝑒𝑟 () can underestimate the real
taint flow order. In other words, there can be more “break points”
in a taint flow than counted by 𝑜𝑟𝑑𝑒𝑟 () (e.g., 𝑟𝑒𝑎𝑐ℎ(𝐼0, 𝐼1) ∧
𝑟𝑒𝑎𝑐ℎ(𝐼1, 𝐼2) results in no “break points” between 𝐼0 and 𝐼2 by
𝑜𝑟𝑑𝑒𝑟 (), but there could be one.). However, it may be expensive to
calculate the real order due to the need of constraint solving.
Besides, we find that the underestimation rarely happens in
practice.
Def 7 We define the local taint flow set of an entry function 𝜀 as
𝐿𝑇𝜀 . It is the set of all taint flows that can be produced within one
invocation of 𝜀, naturally, we have ∀𝜏 ∈ 𝐿𝑇𝜀 , 𝑜𝑟𝑑𝑒𝑟 (𝜏) == 1.

3.3 Summary-Based High-Order Taint Flow
Construction

The foremost challenge SUTURE needs to address is to efficiently
construct high-order taint flows in the face of the enormous space
of the possible calling sequences of entry functions. To avoid
repeatedly analyzing a 𝜀 in different sequences as a naive solution
might do, SUTURE employs a summary based method, where each
𝜀 only needs to be analyzed once for summary generation, then
SUTURE can efficiently construct high-order taint flows, by
connecting the local taint flows as mentioned in Def 5. Note that
the global variable acts as waypoints in connecting the local taint
flows, e.g., one local flow may propagate user input taint source to
a global variable and then another local flow may propagate the
same global variable (as source) to a critical sink. We detail the two
main steps of this process below.

3.3.1 Taint Summary Generation. The taint summary of an entry
function 𝜀 is basically its local taint flow set 𝐿𝑇𝜀 (Def 7 in §3.2), in
other words, the summary records all local taint flows originating
from S (Def 1 in §3.2) and sinking to every accessed variable (local
or global) within 𝐼𝐶𝐹𝐺 (𝜀). SUTURE organizes the local taint flows
in 𝐿𝑇𝜀 by the sink variables - each sink variable is associated with a
set of local taint flows (𝜏) reaching it, while the source variable can
be obtained from the taint tag (§3.6.5) associated with each 𝜏 . This
enables a quick query of 𝜏 by sink, as well as the connect operation
(Def 5 in §3.2) for constructing high-order taint flows.

Conceptually, SUTURE’s taint summary is similar to those used
in prior bottom-up static analysis work [9, 10, 40]. However, one
important difference is that SUTURE relies on the summaries to
connect multiple top-level entry function invocations, instead of
connecting a caller to a callee (e.g., by applying the callee’s summary
at the call site). As such, SUTURE has a special focus on the shared

typedef struct {int X;} foo; struct {foo *p;} G; foo F;
e0(u0) {
 G.p = malloc(...);
 G.p->X = u0;
}
In Summary: G.p -> obj0 (solid)
Τ0 : u0 ►obj0.X
e2(u2) {
 int a = G.p->X + 1;
 G.p->X = u2;
}
In Summary: G.p -> obj2 (dummy)
Τ2 : obj2.X ►a; Τ3 : u2 ►obj2.X

e1() {
 G.p = &F;
 int a = G.p->X + 1;
}
In Summary: G.p -> F (solid)
Τ1 : F.X ►a
e3(u3) {
 int a = G.p->X + 1;
 G.p->X = u3;
}
In Summary: G.p -> obj3 (dummy)
Τ4 : obj3.X ►a; Τ5 : u3 ►obj3.X

Figure 3: Examples of Implicit Global Memory Matching

states in the taint summary, it comprehensively models the global
memory (seeDef 1 in §3.2) of arbitrary layers of pointer indirection.
Specifically, whenever pointers are involved in global variables, it
can be challenging to resolve them because the memory they point
to can in theory be changed in any 𝜀. It is therefore tricky to reason
about such global pointers, which represents a unique challenge
for connecting local taint flows of top-level entry functions.

3.3.2 High-Order Taint Flow Construction. Connecting two local
taint flows is relatively straightforward. However, to do so correctly,
we discuss two important considerations below.
Global Memory Matching. As mentioned earlier, two local taint
flows can be connected only when one’s sink matches the other’s
source (Def 5 in §3.2). Since high-order taint flows are relayed via
global memory, the question becomes how to match the global
memory tainted in one flow with the one used in another flow. As
mentioned in Def 1, SUTURE handles two types of global memory:
explicitly defined and those reachable by global pointers. For the
former, we can simply match them by their identifiers. However,
things get more complicated for the pointer case.

Consider the example in Fig. 3, e0() and e1() each assigns G.p
(a pointer field in a global object) to either a dynamically allocated
heap object or statically defined one, while both e2() and e3()
directly access whatever object pointed to by G.p. In this situation
SUTURE must correctly “guess” the relationship between the
objects visited in the four entry functions in order to connect the
local taint flows. For example, e0() and e1() obviously visit the
different object instances, so although u0 flows to G.p->X in e0(),
and the seemingly same G.p->X flows to a in e1(), there is no way
for u0 to flow into a, because obj0 in 𝜏0 (the heap object) cannot
match F in 𝜏1 (statically defined). However, since e2() and e3()
can access either obj0 or F (depends on whether e0() or e1() is
called earlier), we should allow their local 𝜏 to be connected to
each other, or to those in e0() and e1(). For example, 𝜏3 can
connect 𝜏1 because obj2 can potentially be F. Similarly, 𝜏3 can also
connect 𝜏4 because obj2 and obj3 can be identical).

To summarize, when objects are accessed but not defined in a
𝜀 (e.g., obj2 and obj3), we do not necessarily know which objects
are used (e.g., can be either obj0 or F), so we create a placeholder
dummy object. Instead, such bindings are instantiated by access-
path matching (e.g., both obj2 and F can be accessed via G.p) when
connecting local taint flows.

Taint Overwrite. Another point worth discussing is that not all
𝜏 should be preserved for flow connection. For example, a global
memory may be tainted during the middle of a 𝜀 invocation but
later untainted. Similarly, it may be tainted by different sources
at different points in the function. Therefore, SUTURE filters out
those 𝜏 whose taint will be overwritten later. Note that this may
prevent SUTURE from discovering some taint-style concurrency
bugs, where an intermediate taint of a global memory in one 𝜀 can
be visible to another. In favor of limiting the false taint flows, we
leave a better treatment of concurrency situations as future work.

3.4 Opportunistic Path Sensitivity
It is well known that static analysis can follow infeasible paths
due to unawareness of conflicting path constraints, causing both
inaccuracy (e.g., impossible taint propagation) and inefficiency (e.g.,
analyzing unnecessary branches). The straightforward solution is
to adopt path-sensitivity, however, a fully path-sensitive analysis
can be overly expensive, due to complex constraint solving and
path explosion. We thus aim to utilize path-sensitivity whenever
possible, while avoiding having to pay the high cost. To this end,
we propose what we call opportunistic path-sensitive analysis. We
make the design based on two important observations:

(1) A good fraction of the path constraints in the kernel are
simple, and yet collecting and solving them would allow us to
prune a large number of infeasible paths.

(2) It is possible to piggyback some form of path-sensitive analy-
sis into the workflow of a flow-sensitive analysis.

Based on the above, our idea is to opportunistically collect path
constraints during the flow-sensitive analysis and only in the
following simple forms: 𝑣 𝑜𝑝 𝐶 , where 𝑣 is a variable, 𝐶 is a
constant (e.g., a literal number), and 𝑜𝑝 ∈ {==, >, <, ≥, ≤}.
Specifically, whenever our flow-sensitive analysis enters a
conditional branch, we collect the corresponding constraint if it is
in such a simple form. Whenever branches merge, we remove the
constraints. At a first glance, no path-sensitive analysis is allowed
if we piggyback the flow-sensitive analysis in this way, since at the
merge point we lost the constraints for individual branches.

However, we note that within one branch, it is possible that
additional conditional statements can occur (intra- or inter-
procedure), making it possible for us to trim infeasible paths with
the opportunistic path-sensitivity. We show a real world example
in Fig. 4. As we can see, msm_lsm_ioctl() calls msm_lsm_ioctl_
shared() at line 3, under one specific switch case with the cmd
restricted to SNDRV_LSM_REG_SND_MODEL_V2, the same cmd is
passed to the callee and used again as the switch conditional at
line 8, since its value has already been restricted at the call site
(line 3), there is actually only one valid switch case in the callee
(line 9) under this calling context. Our opportunistic path-sensitive
analysis can collect the equality constraint on cmd at line 3 and
propagate it to the callee. This allows us to filter out 16 out of 17
infeasible switch cases due to the conflicting constraints,
simultaneously improving accuracy and efficiency.

3.5 Multi-Source Multi-Sink Pairing
One unique challenge for static analysis we identified during our
study is the multi-source multi-sink pairing problem. If not

00 static int msm_lsm_ioctl(..., unsigned int cmd, ...) {
01 switch (cmd) {
02 case SNDRV_LSM_REG_SND_MODEL_V2:
03 msm_lsm_ioctl_shared(..., cmd, ...); break;
04 case …
05 }
06 }
07 static int msm_lsm_ioctl_shared(..., unsigned int cmd, ...) {
08 switch (cmd) {
09 case SNDRV_LSM_REG_SND_MODEL_V2: ……; break;
10 case … //17 cases in total
11 }
12 }

Figure 4: An Example of Opportunistic Path-Sensitivity

properly handled, explosion of points-to records and taints can
happen, leading to a massive number of false positives. Fig. 5
illustrates the problem with a concrete example. When starting to
analyze the function start_endpoints(), the argument subs is a
pointer that points to two instances of snd_usb_substream
according to the previous static analysis results. Consequently, the
left side of the assignment at line 2 can be one of two memory
locations (i.e., data_subs field of snd_usb_endpoint, either
instance 0 or 1), while the right side subs points to either instance
0 or 1 of snd_usb_substream. In this situation, the common way
to perform the assignment (as used in many popular static analysis
tools like Dr. Checker [26] and SVF [34]) is all to all (e.g.,
data_subs field of snd_usb_endpoint 0 will point to both
snd_usb_substream 0 and 1). However, it is obvious that in the
real program execution, data_subs can only point back to its own
parent snd_usb_substream instance (e.g., 0 to 0 and 1 to 1). We
call this multi-source multi-sink pairing problem, failure to pair
the two sides (e.g., all-to-all update) will create many superfluous
data flow facts.

To solve this problem, our key observation is that in the
aforementioned scenario, two sides of the assignment actually
share the same source of multiplicity (e.g., the left side
ep0->data_subs at line 2 has two possible locations because ep0
can point to two structure instances, which is again because subs
is so at line 1, the same reason for the right side), thus, as long as
the unique source “collapses” to one of many possibilities in the
runtime, both sides of the assignment “collapse” as well. Following
this observation, for every LLVM IR that can serve as a “source of
multiplicity”, e.g., a phi instruction can aggregate multiple
points-to/taint records from different paths to its receiver variable,
SUTURE assigns each individual outcome record a unique label
< 𝐼𝑅, 𝑖 > (𝑖 is a numeric value to differentiate multiple outcome
records of the multiplicity 𝐼𝑅), which will also be propagated to all
derived records. For example, in Fig. 5 the pointer ep0 is derived
from subs, and the latter’s two points-to records for
snd_usb_substream 0 and 1 have their labels respectively
inherited by ep0’s two records for snd_usb_endpoint 0 and 1. By
matching these labels, when the multi-to-multi assignment
happens (e.g., line 2) we can precisely pair the source and the sink
if they share the same source of multiplicity, bringing the 2 ∗ 2
update to two 1 ∗ 1 ones in Fig. 5.

00 static int start_endpoints(struct snd_usb_substream *subs) {
01 struct snd_usb_endpoint *ep0 = subs->data_endpoint;
02 ep0->data_subs = subs;
03 …...
04 }

data_endpoint

data_subs

snd_usb_substream 0 snd_usb_endpoint 0

data_endpoint

data_subs

snd_usb_substream 1 snd_usb_endpoint 1

Figure 5: An Example of Multi-Source Multi-Sink Pairing

00 struct data {
01 int a,b; } d;
02
03 foo(int c) {
04 int r = 1;
05 if (c>0) {
06 r += c;
07 d.a += r;
08 } else {
09 r -= c;
10 d.a -= r;
11 }
12 }

if.then:
 %add = add 1, %c
 %0 = load i32* GEP (%struct.data* @d, 0, 0)
 %add1 = add %0, %add
 store %add1, i32* GEP (%struct.data* @d, 0, 0)
 br label %if.end

if.else:
 %sub = sub 1, %c
 %1 = load i32* GEP (%struct.data* @d, 0, 0)
 %sub2 = sub %1, %sub
 store %sub2, i32* GEP (%struct.data* @d, 0, 0)
 br label %if.end

Figure 6: Necessity of Memory SSA based Analysis

3.6 Other Improvements in SUTURE
3.6.1 Memory SSA based Analysis. One major source of
inaccuracy of Dr. Checker (and many other LLVM based static
analysis) is the lack of memory SSA (Static Single Assignment)
form [11]. While the top-level variables in LLVM IR are inherently
put in the SSA form [28], the address-taken memory objects are
not, causing difficulties when implementing flow- and context-
sensitive analysis. For example, in Fig. 6, two redefinitions of the
same local variable r (line 6 and 9) results in two individual
top-level variables at the LLVM IR level (i.e., %add and %sub), so
the static analysis can easily associate the later usage with the
unique definition simply by the LLVM variable identifier (e.g.,
%add). Based on this built-in SSA form, Dr. Checker achieves the
flow- and context- sensitivity for the top-level LLVM variables.
However, multiple redefinitions of the address-taken memory
object field (e.g., d.a at line 7 and 10) do not result in different
memory cells, instead, they go to the same memory location (e.g.,
the two store in Fig. 6), in other words, the SSA form for memory
objects is not enforced in LLVM IR. In this situation, the static
analysis must be able to correctly correlate the load of a memory
cell to one of (potentially) many store, otherwise, it will lost the
flow- and context- sensitivity for the widespread address-taken
memory objects, causing both false positives and negatives (e.g.,
over- and under- taint), as happened in Dr. Checker.

To address this problem, SUTURE implements an on-the-fly
memory SSA analysis. Specifically, we append an 𝐼𝑛𝑠𝑡𝐿𝑜𝑐 to each
points-to/taint update of a memory cell to represent where the
update happens (e.g., one store instruction in Fig. 6, together with

the calling context of foo()). Based on such information, SUTURE
can correctly figure out which points-to/taint records should be
propagated to a certain use site of the same memory cell, by
performing an inter-procedure reachability test between the
update site and the use site. The reachability test is implemented
based on the topology and the dominance relationship of the
control flow graph (e.g., if a strong points-to update site
post-dominates a previous one on a same memory cell, the old
points-to will be masked out from the new site), since the
algorithm is standard, we omit its details here.

3.6.2 Index Sensitivity. Besides being field-sensitive, SUTURE is
also index-sensitive (i.e., the ability to differentiate individual array
elements), whose importance has already been shown in the moti-
vating example in §2.1. In principle, our design of index-sensitivity
follows two rules for array read/write respectively:

(1) If an array element is read with a constant index (e.g., v =
a[2]), we return the points-to/taint records related to exactly that
index; If the index is a variable (e.g., v = a[i]), we conservatively
merge the records of all array elements and return them.

(2) If an array element is written with a constant index (e.g., a[2]
= v), we perform a strong update (i.e., the new records can overwrite
the old ones) for exactly that index; If the index is a variable (e.g.,
a[i] = v), we conservatively update every array element, and the
update is weak (i.e., new records co-exist with old ones).

3.6.3 General Language Feature Support. In this section we discuss
our enhancements in SUTURE for two C language features that are
critical for analysis accuracy.
Nested Structure. Nested structure (i.e., one structure is embedded
as a field in a parent structure) is a widely used language feature
and failure to correctly handle it can significantly impact the field-
sensitivity, for example, Dr. Checker only differentiates the top-
layer fields in the parent structure but not those in the embedded
ones, which can cause issues like over-tainting.

SUTURE addresses this problem by recursively creating a new
abstract memory object for each embedded field when it is accessed,
while maintaining the relationship between the new object and
the parent object, this way, SUTURE supports nested structure of
arbitrary layers. We also carefully design the LLVM IR processing
logics in the points-to and taint analysis to take nested structure
into account, for example, SUTURE processes all indices of the
GEP instruction instead of only the first 2 since it is required for
accessing the fields within the embedded structures.
Pointer Arithmetic. It is well known that pointer arithmetic in
the C language family can often cause inaccuracies in static analysis,
since it is difficult to keep track of the exact pointer location during
the arithmetic calculation, e.g., normally, LLVM IR accesses the
2nd field of a structure by simply specifying the field number 2 in
the GEP instruction with the structure base pointer, however, in
some cases (e.g., optimization) the field can be accessed by directly
subtracting an offset (between the 2nd and 5th fields) from the
pointer to the 5th field. To handle such cases, SUTURE records the
detailed layout (e.g., size and offset of each field in bytes) of each
structure and faithfully calculates the new target field after pointer
arithmetic according to the pointer type (e.g., pointer conversion
aware, like (char*)p-1 and (int32*)p-1 are different), offset to
add/sub, and the structure layout. It is worth noting that our pointer

Detector Description

ITDUD Tainted data usage in risky functions, e.g., strcpy()
TAD Tainted arithmetic operations, e.g., integer overflow
TLBD Tainted loop bound conditions, e.g., infinite loops
TPDD Tainted pointer dereference, e.g., arbitrary mem write

Table 1: Vulnerability Detectors used in SUTURE

arithmetic handling has a byte-level accuracy and we always try
to align to the field boundary, though rare, this may cause some
inaccuracies (e.g., a pointer to the middle of a field, or bit-level
pointer arithmetic), we leave the handling of these cases as the
future work.

3.6.4 Kernel Code Pattern Handling. To better support the
analysis of the kernel code, SUTURE also takes care of some
special kernel code patterns, of which the most important one is
the prevalent indirect calls. Dr. Checker uses the type-based
method to resolve indirect call targets, though being a common
and standard solution, it can cause many false positives in practice.
To further improve the accuracy, SUTURE employs a method
similar to PeX [42], which takes advantages of domain knowledge
on the kernel coding paradigm and resolves the indirect call
targets by matching the parent structure and field id of the
function pointer.

3.6.5 Multi-Tag Taint Analysis. To construct high-order taint flows
we must be able to differentiate multiple taint sources (see Def 1,5
in §3.2), e.g., in Fig. 1 we must know exactly that local taint flow
of entry1() originates from the specific global variable d.b[0]
to connect it to that of entry0(). So instead of only maintaining
the binary “tainted or not” state, SUTURE associates a unique taint
tag for ∀𝑣 ∈ S, the tag will also be propagated to all the tainted
variables by the related source, enabling us to easily query the taint
sources for each 𝜏 .

4 VULNERABILITY DISCOVERY AND
WARNING GROUPING

After generating the taint summary for each 𝜀, SUTURE can then
proceed to discover the high-order taint vulnerabilities and output
the warning report. This process includes two steps: (1) identify
the instructions that can potentially trigger vulnerabilities (e.g., an
arithmetic instruction may cause an integer overflow), this is done
by various vulnerability detectors. For each identified instruction,
SUTURE confirms the existence of the vulnerability by deciding
whether any involved variable is tainted (can be through a
high-order flow) by the user, and (2) fire and group warnings for
confirmed vulnerabilities. In this section, we detail the important
aspects of these two steps.
Vulnerability Detectors. Dr. Checker has a collection of simple
but well-defined vulnerability detectors, each targets instructions of
a certain pattern (e.g., conditional jump at the loop bound). Since our
goal is to discover taint style vulnerabilities, we reuse Dr. Checker’s
4 detectors aiming at them. We list our selected detectors and a
brief description of their purposes in Table 1, more details can be
found in the original paper [26]. We leave the development of more

detectors as future work. As mentioned above, SUTURE’s novelty
mainly lies in its ability to construct high-order taint flows, which
is independent of the detectors.
On-Demand Query of Taint Summaries. One way to apply the
vulnerability detector is to first construct the high-order taint
summaries by considering all permutations of entry functions,
which can be overly expensive. Instead, we construct the
high-order taint flows on demand in a backward fashion. In other
words, SUTURE provides a query utility (“Flow Constructor” in
Fig. 2) which takes a sink variable as input and taint flows from U
to it (including high-order ones) as output. For instance, we first
apply the vulnerability detector on each individual entry function
by looking at its local taint flows. If a warning is generated (e.g., a
potential integer overflow happens due to an addition operation
taking a tainted operand), we check if the taint source is user input
or some global memory. If it is global memory, we need to query
the summaries of other entry functions with a matching sink
(same global memory being the sink). There, if the corresponding
source is an user input, we conclude that it is a second-order
warning. We make this design choice because it is more flexible
(e.g., enabling us to focus only on sink variables of interest) and fits
better into the workflows of many existing static bug finding
tools [8, 26], which first pinpoints potential vulnerable sites in the
program with various detectors, and then take a closer look at the
involved variables (e.g., decide whether it is tainted by user).

It is worth noting that although SUTURE is able to discover
vulnerabilities of arbitrary orders by recursively performing the
aforementioned backward query, we observe that in practice it is
highly unlikely to have true high-order vulnerabilities above the
order of 4 (most likely false positives if it is longer than that). In
fact, our evaluation shows most true positives are second-order.
Therefore, we will stop searching for higher-than-4 order taint
flows when the current query already takes too long a time.
Warning Grouping. If an user tainted variable is detected in a
sensitive instruction (defined by the vulnerability detector as
mentioned in §4), a warning will be fired for it. SUTURE assembles
all the warnings issued in the input program as its output. Each
warning specifies the warned instruction and its calling context,
the warning type (e.g., integer overflow), and the complete taint
flow(s) from the user input to the sink site. SUTURE also calculates
the 𝑜𝑟𝑑𝑒𝑟 of each taint flow and attaches it to each warning.

One important observation we have during the warning review
process is that many warnings often share a same “prefix” in the
initial taint propagation while are only slightly different in the final
warning sites or taint sinks. For example, 𝑎 is the tainted variable in
an overflow inducing instruction 𝑐 = 𝑎+𝑏, and 𝑐 , which is tainted by
𝑎, is then immediately used as a loop bound, in this situation, two
rawwarnings will be generated for the overflow and the loop bound
respectively, obviously, instead of reviewing the two warnings one
by one, a better way is to first inspect the common trace prefix from
the original user input to 𝑎, and if no problem, then the different
sinks (often close to each other).

Based on this observation, to help the reviewers screen the
warnings more efficiently, SUTURE groups the similar warnings
together from the data flow perspective, regardless of the warning
types as listed in Table 1 (i.e., warnings of different types can be
put in a same group.). More specifically, two warnings will be

grouped together if i) their warning sites (i.e., the warned
instruction) locate in a same function 𝑓 , and ii) their taint
propagation traces share a same sub-trace starting from the entry
of 𝑓 . With this grouping strategy, the reviewer can avoid studying
the shared taint trace over and over and quickly go through a
warning group by only carefully inspecting a small subset, greatly
reducing the required review time. A real-world example of
warning grouping can be found in §6.7.

5 IMPLEMENTATION
As mentioned before, SUTURE is built on top of Dr. Checker,
however, to improve the accuracy of the static analysis and
support high-order taint flow construction, we re-write most parts
of Dr. Checker’s static analysis and implement many new
functionalities (detailed in §3), in total, compared to Dr. Checker,
SUTURE has 14,482 LOC added and 2,741 LOC removed in C++,
plus 630 LOC of python scripts. In this section we discuss some
implementation details of SUTURE.
LLVM Version. Dr. Checker is based on LLVM 3.8, which is too
old to compile newer kernel versions nowadays. To test the latest
kernels, SUTURE is based on LLVM 9.0.
Driver Module and Entry Function Identification. We follow
Dr. Checker’s approach [26] to identify the vendor driver modules
and their entry functions. However, we make some improvements
including (1) besides the modules identified by keyword search
in the kernel config file, we also review the kernel source tree
to include any missing ones, and (2) we update some out-of-date
kernel structure definitions in the Dr. Checker’s entry identification
script, as well as include some missing ioctl() functions.
FalseAlarms Filtering. We use some simple but reliable heuristics
to filter out certain obvious false alarms. Specifically, we cut off the
taint flows through (1) a modulo operation if the modulus is a small
integer (current threshold is 64), and (2) a logical “and” operation if
only limited number of bits (current threshold is 6) are not cleared.
Basically, these situations suggest that the tainted value is a well
bounded “index” or “flag” over which the user has a very limited
control, thus unlikely to cause security issues. We leave a more
systematical and principle false alarms filtering as a future work,
as will be discussed in §7.

6 EVALUATION
In this section we show the evaluation results of SUTURE as both
a static analysis engine (e.g., the efficacy of our static analysis im-
provements in §3) and a high-order bug finding tool (e.g., regard-
ing its accuracy, efficiency, and bug finding ability).

6.1 Experiment Setup and Procedure
Dataset. We evaluate SUTURE on the driver modules extracted
from a diverse set of kernels used in flagship Android devices,
manufactured by different vendors and based on different chipsets,
we summarize them in Table 2. The last column in the table lists the
number of driver modules we extract and test for the corresponding
kernel. Besides the relatively new kernels in the table, we also
compile older versions of the Qualcomm kernel modules which
contain 4 known high-order taint vulnerabilities (as seen in Table 5),
to test whether SUTURE can successfully catch them.

No. Vendor Chipset Model Version #Modules

0 Google Qualcomm Pixel 4 XL 4.14.150 37
1 Samsung Exynos Galaxy S20 4.19.87 20
2 Huawei Hisilicon Mate 40 Pro 4.14.116 30

3 Xiaomi Mediatek Redmi K30
Ultra 4.14.141 29

Table 2: Tested Android Kernels

Hardware Configuration. We run the evaluation on a server with
Intel Xeon E5-2695 v4 CPU @ 2.10GHz and 256 GB RAM.
Procedure. For each selected kernel in Table 2, we first try to
extract its vendor-specific driver modules and then identify their
entry functions, as described in §5. With the above input we run
SUTURE for high-order taint vulnerability discovery, the output
warning groups (§4) are thenmanually reviewed by us to decide true
and false positives. It is worth noting that although SUTURE is also
capable of discovering the simple first-order taint vulnerabilities
(i.e., only require one entry function invocation), in the evaluation
we focus on the high-order ones only.

6.2 Efficacy of SUTURE’s Static Analysis
Improvements

To achieve a highly precise analysis SUTURE ships with many
different static analysis improvements as detailed in §3. To better
understandwhether and how they benefit the analysis precision and
efficiency, we randomly pick 20 modules from the Qualcomm kernel
and run an instrumented SUTURE on them, collecting statistics
during the process for each of SUTURE’s improvements. These
statistics can be categorized into three groups as shown in Table 3:
(1) For opportunistic path-sensitivity (PATH), we can see that it
helps SUTURE get rid of infeasible basic blocks and/or callees (a
callee can contain many more basic blocks that we do not count in
Table 3) in 19 out of 20 modules, boosting both performance and
accuracy. For example, we find the analysis time of one largemodule
decreases from 54 hrs to 31 hrs by applying the opportunistic path-
sensitivity.
(2) For multi-source multi-sink pairing (MSMS), memory-SSA
(MEMSSA), and index-sensitivity (INDEX), our statistics show
that they can effectively trim false positive points-to records and
taint flows. Specifically, besides the data in Table 3, MEMSSA also
captures missing points-to records by Dr. Checker in all 20
modules (Min/Med/Max: 10/44/1351), though Dr. Checker adopts
an always weak taint update policy (e.g., no overwriting for old
taint records), missing points-to records will inevitably lead to
false negative taint flows from the very beginning. It is worth
noting that both false positive and negative data flow facts will
accumulate even more (possibly exponentially) if left unrecognized
as the analysis proceeds, thus, our statistics here are significantly
underestimated.
(3) For pointer arithmetic (POINTER) and nested structure (NEST),
we observe that in all tested modules, there is a considerable subset
of GEP operations (i.e., themain LLVM IR responsible for calculating
the structure field offset) that need to handle them - otherwise,
both false positive and negative analysis errors can happen and
accumulate.

Improvement #Affected
Modules

#Infeasible BBs
(Min/Med/Max)

#Infeasible Callees
(Min/Med/Max)

PATH (§3.4) 19 9/153/115336 0/8/2414
#Reduced Points-To
(Min/Med/Max)

#Reduced Taint Flows
(Min/Med/Max)

MSMS (§3.5) 18 8/174/852492 15/886/1024094
MEMSSA (§3.6.1) 20 10/1789/547733 52/5139/2480710
INDEX (§3.6.2) 20 0/14/17850 18/2922/276318

Ratio of Affected GEP Operations
(Min/Med/Max)

POINTER (§3.6.3) 20 3%/13%/79%
NEST (§3.6.3) 20 12%/27%/37%

Table 3: Statistics on SUTURE’s Static Analysis Improve-
ments from 20 Randomly Selected QualcommModules

Kernel
No.

#Warning Groups #TP2 #FPr3 (R4)
ITDUD0 TAD0 TLBD0 TPDD0 Unified1

0 0 188 87 277 488 30 22 (42.31%)
1 0 137 41 147 281 17 12 (41.38%)
2 0 201 63 171 365 22 22 (50.00%)
3 0 240 62 280 469 10 27 (72.97%)

SUM 0 766 253 875 1603 79 83 (51.23%)
0: #groups of warnings issued by specific detectors (Table 1) only.
1: #groups by standard grouping strategy regardless of warning types (§4);
2: #groups manually confirmed by us as true positives.
3: #false alarm groups as perceived by the reviewers. (§6.3)
4: Reviewer perceived false positive rate: #FPr/(#FPr+#TP) (§6.3)
Table 4: Vulnerability Discovery Accuracy of SUTURE

We further build a baseline version of Dr. Checker augmented
only with multi-tag taint analysis (§3.6.5) that is essential for taint
flow connection, but not any other enhancements, to verify whether
it can identify the same high-order vulnerabilities as discovered by
SUTURE. The result shows that none of our 19 vendor confirmed
warnings are identified (i.e., for each high-order warning at least
one component local taint flow is not recognized), because i) the
analysis is stuck due to too many false positive points-to and taint
records (e.g., the analysis progress of one module is almost frozen
after 329 hrs, around which point each LLVM variable has tens of
thousands of points-to and taint records on average), ii) failure to
resolve correct indirect call targets (§3.6.4), and iii) missing taint
propagation due to failure to handle pointer arithmetic and nested
structure. These results well justify the necessity and efficacy of
SUTURE’s various static analysis improvements in §3.

6.3 Vulnerability Discovery Accuracy
We show the evaluation results regarding the vulnerability
discovery accuracy of SUTURE in Table 4. SUTURE in total fires
1,603 high-order warning groups, where 79 are confirmed as true
positives by our manual inspection. Furthermore, 19 out of the 79
have been confirmed by the corresponding vendors. At the first
glance, this results in a very high false positive rate of 95.07%
((1603-79)/1603) which seems completely unusable in practice.
However, this is far from the truth. In the remaining of this section,

00 int mtk_session_set_mode(..., unsigned int session_mode) {
01 ...
02 if (session_mode >= MTK_DRM_SESSION_NUM) {
03 goto error;
04 }
05 …
06 mtk_crtc_path_switch(…,mode_tb[session_mode].ddp_mode[i], 1);
07 …
08 }

Figure 7: A Taint Trace Segment Leading to False Alarms

we will first describe the root causes behind these false alarms, and
then explain why the actually perceived false positive rate by the
SUTURE users is much lower (i.e., 51.23%).
False Positive Analysis. We summarize the major causes of SU-
TURE’s false alarms as following.
(1) Ignored Constraints for Tainted Variables. Except the simple false
alarm filtering heuristics described in §7, SUTURE in general
conservatively keeps all the taint flows, without reasoning about
the constraints posed on the tainted variables, which can lead to
false positive warnings (e.g., the tainted variable in the vulnerable
site has been properly sanitized). We show a concrete example in
Fig. 7. The argument session_mode of mtk_session_set_mode()
is user-controllable, which is then used to index the array mode_tb
at line 6. SUTURE thus determines that the whole retrieved array
element mode_tb[session_mode] is tainted, this is true since the
user does have the choice on which element to access. However,
session_mode is upper bound checked at line 2 and the array
mode_tb is also predefined, so the user cannot really control the
content of the obtained array element on desire. As a result,
continuing the taint propagation from mode_tb[session_mode]
causes false alarms subsequently. So far, the ignored constraints is
the most common FP cause for SUTURE, as well as many other
static analysis based bug detection works.
(2) Recursive Data Structures. The recursive data structure (e.g.,
linked lists) is another well-known difficulty for static analysis,
since it is hard to statically differentiate their contained elements.
To be conservative, SUTURE does not differentiate the elements
in the linked list which is widely-used in kernel. Though being a
common practice, it can cause false alarms in many cases, for an
example, a local taint flow 𝜏0 sinks to element 0 of a linked list
while 𝜏1 sources from a different element 1, in theory, 𝜏0 cannot
be connected to 𝜏1 since 𝑠𝑖𝑛𝑘 (𝜏0) ≠ 𝑠𝑜𝑢𝑟𝑐𝑒 (𝜏1) (Def 5 in §3.2), but
SUTURE connects them due to element-insensitivity, resulting in
invalid high-order taint flows.
(3) Infeasible Paths. By nature, static analysis may follow infeasible
paths, leading to false alarms. There are two reasons for SUTURE
to encounter with infeasible paths: i) SUTURE recovers infeasible
indirect call targets, and ii) SUTURE fails to recognize conflicting
path constraints with its opportunistic path-sensitivity (§3.4) be-
cause they are too complicated. This FP cause is actually the least
common out of the three.

As can be seen from the above analysis, the core problem behind
the false alarms is not that SUTURE generates inaccurate local taint
flows, on the contrary, in almost all cases, these local flows are valid
and precise (e.g., no over-taint), demonstrating SUTURE’s value as
a highly precise static taint analysis for a single entry function. In

CVE Bug Type Severity1 Order2 Discovered

CVE-2016-2068 Integer Overflow High 2 Yes
CVE-2016-5859 Integer Overflow High 2 Yes
CVE-2017-0608 Buffer Overflow High 2 Yes

N/A3 Buffer Overread N/A3 2 Yes
1: Based on the CVSS score in the CVE entry. 2: Def 6 in §3.2.
3: We cannot locate a CVE number, the patch can be found in [4].
Table 5: Evaluation on Known High-Order Vulnerabilities

other words, bug finding tools go beyond the requirement of precise
taint flow tracking - they also need to rigorously reason about the
constraints (reason (1) and (3)) where SUTURE falls short.

Other than the above, SUTURE’s false alarm count is greatly
boosted by high-order taint flow construction. First, even if two
local taint flows are both valid, connecting them incorrectly can
cause FPs (e.g., reason (2)), secondly, any false positives encountered
in one local taint flow will be “multiplied” by its connection to
potentially many other local flows. However, this also means that
many false alarms share exactly the same problematic sub- taint
trace. Exploiting this fact, the actual false positive rate perceived
by reviewers is orders of magnitude smaller with the following
review procedure: i) the reviewer picks and inspects a warning, if
it is a FP, then also identifies the problematic sub-trace which is
basically an instruction sequence in string format; ii) automatically
filter out all other warnings containing the same sub-trace by string
match; iii) pick the next warning to review from the filtered pool.
As a concrete example, once recognized, the taint trace in Fig. 7
helps us immediately exclude 94 warning groups without additional
reviewing efforts.

We hence define the reviewer perceived false positive rate
𝑅 as 𝑅 = #𝐹𝑃𝑟 /(#𝐹𝑃𝑟 + #𝑇𝑃), where #𝐹𝑃𝑟 is the number of false
alarms that actually need the reviewer to carefully inspect one by
one (e.g., does not include automatically filtered out ones) and the
#𝑇𝑃 is the count of valid warning groups. 𝑅 represents SUTURE’s
false positive rate in the real-world review scenario, as shown in
Table 4, SUTURE achieves an aggregated 𝑅 of 51.23%, which is
much more acceptable for a static analysis tool. We will discuss
potential ways to further reduce the false positive rate in §7.

6.4 Known High-Order Taint Vulnerabilities
It is usually difficult to test the false negative rate of a bug finding
tool due to the lack of ground truth, this is especially true for SU-
TURE since there is no available large dataset of high-order taint
bugs. Thus, as a small-scale validation, we assemble four known
high-order taint vulnerabilities and confirm that SUTURE can suc-
cessfully re-discover them in older versions of driver modules, as
shown in Table 5. Though not being a comprehensive evaluation,
we can still envision potential reasons for false negatives.
False Negative Analysis. We summarize some potential false
negative causes as following.
(1) Soundy Analysis. SUTURE is built on top of Dr. Checker and
inherits its soundy but not sound static analysis (e.g., skip the
general kernel functions and limit the loop iteration times) for
efficiency and accuracy [26], which can possibly lead to false
negatives. Moreover, since the general kernel functions are

1 2 3 4 5 6 7 8 9 10
0

10

20

30 29.92

18.89
13.2311.51

8.21 5.87 5.59 4.88 2.79 1.6

Module No.

Ti
m
e
(h
rs
) Static Taint Analysis

Vulnerability Detection

Figure 8: Time Breakdown for QualcommModules (> 1 hr)

skipped, Dr. Checker and SUTURE need to model the behaviors of
some important utility functions such as copy_from_user() (e.g.,
as a taint source), in this situation, it is possible for SUTURE to
miss some vulnerabilities due to the incomplete or incorrect
modeling. In fact, this has already happened in Dr. Checker due to
the lack of modeling of memdup_user() (another taint initiator
function), which we add in SUTURE.
(2) Incomplete Call Chains. SUTURE cannot guarantee to analyze
all possible call chains, mainly due to two reasons: i) SUTURE may
miss indirect call targets, and ii) SUTURE limits the call stack depth
when analyzing each entry function in the top-down manner for
scalability, currently, the depth limit is 8, increased from 5 in Dr.
Checker.

We will discuss possible fixes to some of these issues in §7.

6.5 Efficiency
SUTURE analyzes one kernel module with one instance on a single
CPU core, so naturally, multiple modules can be concurrently
analyzed on multi-core systems that are widely available
nowadays (e.g., our evaluation server has 72 cores). Thus, the
efficiency bottleneck is mainly those most demanding modules. In
Fig. 8, we show the time cost of all Qualcomm kernel modules
which take more than 1 hr to analyze. The time cost covers two
parts: i) the static analysis to generate per-entry taint summaries
(§3), and ii) the vulnerability discovery involving on-demand taint
flow construction (§4). Basically, SUTURE’s static analysis is
significantly more costly than Dr. Checker’s - even the most costly
module in latter’s evaluation takes about only 16 mins [26]. This
performance, however, is well expected due to our improvements
on static analysis precision (§3). The vulnerability discovery time
is generally not correlated to the static analysis time, because it
mainly relies on the amount of cross-entry shared states - the
more of them, potentially the more high-order taint flows we need
to construct during the vulnerability discovery process.

Due to space limit, we only show the performance details of the
Qualcomm kernel as the other kernels bear a similar characteris-
tic. As a conclusion, we believe SUTURE achieves a reasonable effi-
ciency (e.g., analyzes all Qualcomm modules concurrently within
30 hrs) given its precision and capability.

6.6 Discussion of Order
One interesting aspect of the warnings generated by SUTURE is
the 𝑜𝑟𝑑𝑒𝑟 (Def 6 in §3.2), denoting the count of required entry
function invocations to trigger the vulnerability. Though SUTURE
by design is capable of discovering vulnerabilities of arbitrary

order, so far, most of our confirmed true positive warnings in the
evaluation are second-order, SUTURE generates one valid
third-order warning, however, the same vulnerability can also be
reproduced by a simplified second-order taint flow. That being
said, we create some artificial benchmark programs that contain
vulnerabilities triggerable by higher-order taint flows only (up to
ninth-order) and confirm that SUTURE can successfully pinpoint
them. Based on these results, we envision that SUTURE can
discover higher-order vulnerabilities with an extended scope (e.g.,
more kernel modules and user-space programs).

6.7 Study of Discovered Vulnerabilities
In this section we discuss the vendor-confirmed high-order
vulnerabilities discovered by SUTURE so far. By root cause, the 19
confirmed warning groups can be further categorized into 6 major
issues (e.g., under the same root cause there can be different
warnings for different calling contexts or instructions). We have 1
issue rated as high severity and 3 as medium by the vendors,
which can cause arbitrary memory read/write or privilege
escalation. For the remaining 2, the developers confirmed that they
can cause out-of-bound memory access, but with unclear security
impact (e.g., the over-read data may not contain sensitive
information), thus need further investigation. We are still in the
process of reporting and waiting for confirmation of other
discovered issues. By nature, the high-order taint vulnerabilities
have security impacts as severe as the well-known first-order ones,
however, they are more stealthy (and thus dangerous) due to the
complicated control and data flows, making SUTURE a valuable
tool. We will discuss SUTURE’s potential in discovering more
security vulnerabilities in §7. To better illustrate the discovered
high-order issues, in the remaining section we study two
representative cases in detail.
Case 1. To trigger the vulnerability in Fig. 9 we need two steps
(i.e., a second-order vulnerability). First, a user needs to invoke the
entry function snd_ctl_ioctl(), which eventually reaches
msm_pcm_put_out_chs() that propagates a user input (in red) to
a global variable channel_mixer[fe_id].output_channel (in
blue) at line 3. Then, after snd_ctl_ioctl() returns, another
entry function snd_pcm_ioctl() needs to be invoked. Following
its callchain, channel_mixer+fe_id, which is equivalent to
&channel_mixer[fe_id], is passed as an argument to a callee
adm_programable_channel_mixer() at line 9, the corresponding
formal argument, ch_mixer, is then used in the overflow inducing
operation at line 17, to access ch_mixer->output_channel that
aliases to channel_mixer[fe_id].output_channel, which is the
global variable controllable by the user in the first step (line 3).
Consequently, the user can overflow param_size at line 17 or sz
at line 22, since the latter is used as an allocation size (line 23), the
allocated buffer can be much smaller than expected due to the
overflow, causing out-of-bound access later.

It is worth noting that, besides the high-order nature, this
vulnerability also involves indirect calls (snd_ctl_elem_write()
-> msm_pcm_put_out_chs() in step 1), pointer arithmetic (line 10),
and nested structure (line 3), making it difficult to be statically
discovered. We also want to mention that SUTURE will group
warnings for the potential overflows at line 17 and 22 together as

STEP 1:
CALLCHAIN: snd_ctl_ioctl -> snd_ctl_elem_write_user ->
snd_ctl_elem_write -> msm_pcm_put_out_chs

00 static int msm_pcm_put_out_chs(struct snd_kcontrol *kcontrol,
01 struct snd_ctl_elem_value *ucontrol) {
02 ...
03 channel_mixer[fe_id].output_channel =
04 (unsigned int)(ucontrol->value.integer.value[0]);
05 return 1;
06 }

STEP 2:
CALLCHAIN: snd_pcm_ioctl -> ... -> msm_pcm_routing_channel_mixer ->
adm_programable_channel_mixer

07 static int msm_pcm_routing_channel_mixer(int fe_id, …) {
08 ...
09 ret = adm_programable_channel_mixer(…, …, …, …,
10 channel_mixer + fe_id, ...);
11 ...
12 }
13
14 int adm_programable_channel_mixer(…, …, …, …,
15 struct msm_pcm_channel_mixer *ch_mixer, …) {
16 ...
17 param_size = 2 * (4 + ch_mixer->output_channel +
18 ch_mixer->input_channels[channel_index] +
19 ch_mixer->input_channels[channel_index] *
20 ch_mixer->output_channel); //potential overflow
21 ...
22 sz = ... + param_size; //potential overflow
23 adm_params = kzalloc(sz, GFP_KERNEL);
24 ...
25 }

Figure 9: Case Study 1: A High-Order Vulnerability Discov-
ered by SUTURE

described in §4, leading to a more natural and easier review
process for the auditors.
Case 2. As shown in Fig. 10, we again need two entry function
invocations to trigger the vulnerability. First, snd_ctl_ioctl() is
invoked with proper arguments so that iaxxx_put_pdm_bclk()
can be subsequently called, within which the user can set the value
of a global variable iaxxx->pdm_bclk (line 5). Then, unlike the
first case study, we invoke the same entry function
snd_ctl_ioctl() again but with different arguments, so that this
time we follow a different call chain to eventually reach
iaxxx_pdm_port_setup(), which uses the same global variable
iaxxx->pdm_bclk unchecked to index a fixed-length array
pdm_cfg, causing out-of-bound accesses (line 13-15). This issue
has been rated as high severity by Google.

This case has some notable characteristics. First, even if there is
only one entry function (e.g., snd_ctl_ioctl()), high-order taint
analysis is still necessary as some callees are mutually exclusive
within one entry invocation (e.g., iaxxx_put_pdm_bclk() and
iaxxx_pdm_port_setup()). Second, it is actually not so
straightforward as it appears to match the global structure iaxxx
used at line 5 and 12, because both iaxxx are local instead of
explicitly defined global variables (see line 4 and 10). In this
situation, SUTURE must rely on its implicit global memory
matching (covered in §3.3.2) to decide the identity of the two
occurrences (e.g., both iaxxx can be reached from a shared
kcontrol object following a same access path).

STEP 1:
CALLCHAIN: snd_ctl_ioctl -> snd_ctl_elem_write_user ->
snd_ctl_elem_write -> iaxxx_put_pdm_bclk

00 static int iaxxx_put_pdm_bclk(struct snd_kcontrol *kcontrol,
01 struct snd_ctl_elem_value *ucontrol)
02 {
03 struct snd_soc_codec *codec = snd_soc_kcontrol_codec(kcontrol);
04 struct iaxxx_codec_priv *iaxxx = dev_get_drvdata(codec->dev);
05 iaxxx->pdm_bclk = ucontrol->value.enumerated.item[0];
06 return 0;
07 }

STEP 2:
CALLCHAIN: snd_ctl_ioctl -> snd_ctl_elem_write_user ->
snd_ctl_elem_write -> iaxxx_pdm_portb_put -> iaxxx_pdm_port_setup

08 static int iaxxx_pdm_port_setup(…) {
09 struct snd_soc_codec *codec = snd_soc_kcontrol_codec(kcontrol);
10 struct iaxxx_codec_priv *iaxxx = dev_get_drvdata(codec->dev);
11 …
12 pdm_bclk = iaxxx->pdm_bclk;
13 port_sample_rate = pdm_cfg[pdm_bclk].sample_rate; //OOB
14 words_per_frm = pdm_cfg[pdm_bclk].words_per_frame; //OOB
15 word_len = pdm_cfg[pdm_bclk].word_length; //OOB
16 …
17 }

Figure 10: Case Study 2: A High-Order Vulnerability Discov-
ered by SUTURE

7 LIMITATIONS AND DISCUSSIONS
In this section we summarize SUTURE’s limitations and discuss
potential improvements in the future.
Soundness. As mentioned in §6.4, SUTURE’s static analysis is not
sound (e.g., no fixed-point loop analysis, limited call stack depth).
Although we intentionally sacrifice the soundness for a better per-
formance and accuracy similar as in Dr. Checker [26], it can lead
to false negatives regarding vulnerability discovery. One possible
way to improve soundness is to adopt the bottom-up style static
analysis [9, 10, 40] (i.e., callees are analyzed and summarized be-
fore callers) when constructing the taint summary for each entry
function, which alleviates the limitations on call stack depth due to
the improved efficiency (e.g., a same callee will not be repeatedly
analyzed). We leave this as a future work.
Recursive Data Structure Handling. SUTURE does not
differentiate the elements in recursive data structures (e.g., linked
lists) to (1) be conservative, and (2) simplify the access path to ease
the global object matching (§3.3.2) involving recursive structures
(e.g., there can be numerous access paths from one linked list
element to another). However, this design choice also contributes
significantly to false alarms as mentioned in §6.3. To better handle
the recursive data structures and suppress the false positives, we
envision a more fine-grained static analysis which can differentiate
the accessed elements (e.g., by considering the conditions used to
select a specific element, such as comparing the element id against
a desired value), or the integration of a dynamic analysis which
can help verify whether two element access are the same utilizing
the runtime information.
Path Constraints Reasoning. Besides the simple path
constraints considered in opportunistic path-sensitivity (§3.4) to
filter out infeasible paths, SUTURE does not reason about the path

constrains associated with feasible taint flows, resulting in the
major body of false alarms as mentioned in §6.3. There are existing
solutions for this problem in previous works, Sys [8] and
UBITECT [40] employ limited-scale symbolic execution to validate
the discovered vulnerabilities without introducing high
performance penalties, KINT [36] carefully reasons about the
constraints specifically for integer overflow vulnerabilities.
Though not the focus of this paper, we believe these approaches
can be naturally combined with SUTURE to further reduce false
alarms, which we leave as a future work.
Vulnerability Scope. To demonstrate the efficacy of SUTURE’s
high-order analysis capability, in this paper we choose to reuse
several of Dr. Checker’s detectors for discovering high-order taint
vulnerabilities in the kernel (§4). However, the techniques packed
in SUTURE can also be applied to discover a wider range of
vulnerabilities in a broader set of software, for example, many
use-after-free vulnerabilities (e.g., [1, 2]) have a cross-entry nature
(e.g., the “free” happens in one entry invocation while the “use”
happens in another), where SUTURE’s cross-entry data flow
analysis can be useful. Moreover, SUTURE can also scan general C
programs other than the kernel.

8 RELATEDWORK
Statically Discovering Taint Vulnerabilities. There is a large
amount of work trying to statically discover taint style
vulnerabilities, for different software written in different
programming languages and at different layers. We discuss some
significant categories as following.
For Android Applications. FlowDroid [5] is a widely used precise
static taint analysis designed for Android applications, similarly,
many works utilize static taint analysis to detect information
leakage in Android apps [17, 21].
For Web Applications. Many works focus on discovering taint style
vulnerabilities in the web applications [6, 14, 23, 24, 33, 35, 37],
which is very different from the main target of SUTURE (i.e., the
kernel written in C). However, it is worth noting that Dahse et
al. [14] proposes to detect the second-order vulnerability in the
web applications, where the taint flows through some persistent
data stores (e.g., databases and files) on the server. Compared to it,
SUTURE targets the more complex kernel and the general global
states as taint relays, supporting taint flows of arbitrary order.
For Binaries. iDEA [7] utilizes taint tracking to find vulnerabilities
in Apple kernel driver binaries. Cova et al. [13], DTaint [10] and
Saluki [18] perform binary level static taint analysis based on
symbolic execution to find vulnerabilities in the executable.
SUTURE assumes the source code availability, which can benefit
the accuracy (e.g., the exact structure layout). Besides, symbolic
execution may not scale well for the large code base like the
kernel, especially when hunting the high-order vulnerabilities.
For Open-Source C Programs. This is the most relevant category to
SUTURE due to the same target. Chen et al. [9] uses static taint
analysis to discover the implicit information leak in the kernel
network stack, Zhang et al. [41] and Unisan [25] try to discover
uninitialized memory allocations, KINT [36] can detect the integer
errors in kernel and user programs. Dr. Checker [26] proposes a
static analysis framework to discover different taint-style

vulnerabilities. Johnson et al. [22] and UBITECT [40] adopt type
inference based methods to detect specific taint vulnerabilities.
Compared to these works, SUTURE has multiple enhancements
(§3) on the static taint analysis to make it more precise, and more
importantly, supports the high-order taint analysis. Yamaguchi et
al. [39] and Shastry et al. [29] try to automatically infer the taint
vulnerability patterns from known instances, and use them to
search similar vulnerabilities. SUTURE on the other hand
discovers new taint vulnerabilities from the ground.
Improvements on Static Analysis. Many works focus on
improving the static analysis precision and/or efficiency, we
discuss some of them as following.
Taint Analysis. TAINTINDUCE [12] automatically infers the taint
propagation rules from dynamic analysis to avoid the inaccuracies
of the human defined rules, for the same sake, Neutaint [30]
employs neural network to conduct the dynamic taint analysis.
ConDySTA [43] uses dynamic analysis results to improve static
taint analysis accuracy. P/Taint [19] tries to unify the taint and
points-to analysis to ease the implementation.
Path-Sensitivity. ESP [15] improves the scalability of the
path-sensitive analysis by merging branches leading to same
program states of interest, for the same goal, Fusion [32] makes
the SMT solver work directly on the program dependence graph,
together with the static analysis. Dillig et al. [16] improve
path-sensitivity by considering the variable observability and the
necessary and sufficient conditions of original path constraints.
SUTURE’s opportunistic path-sensitivity is more lightweight and
mainly designed for trimming infeasible paths efficiently.
Other Improvements. Pearce et al. [27] extends the set-constraints
language to support an efficient field-sensitive pointer analysis for
C, Saturn [38] builds its static bug detection on boolean satisfiabil-
ity (SAT) for a better precision and scalability. Heo et al. [20] uses
machine learning to guide the switch between sound and unsound
static analysis, taking the best of both worlds. Pinpoint [31] defers
the inter-procedure flow construction to the bug detection phase
(on-demand) for a better efficiency, analogously, SUTURE also con-
structs the cross-entry flows in an demand-driven way (§4).

In general, we consider these works complementary to SUTURE,
as they can potentially help improve the precision and efficiency of
SUTURE’s static analysis.

9 CONCLUSION
In this work, we develop SUTURE, a precise static analysis tool that
can be used to discover complex high-order taint vulnerabilities in
large code bases like the Linux kernel, a goal that was previously not
attempted via static analysis. SUTURE successfully discovers new
severe high-order vulnerabilities in the kernel, with a reasonable
accuracy as perceived by the warning reviewers and an acceptable
performance.

ACKNOWLEDGMENTS
We thank our shepherd Deian Stefan and anonymous reviewers for
their helpful comments. We also thank Lingtong Shen for the useful
discussion on high-order vulnerabilities. This work is partially
supported by NSF grant #1652954.

REFERENCES
[1] 2021. CVE-2020-7053. https://nvd.nist.gov/vuln/detail/CVE-2020-7053.
[2] 2021. CVE-2020-8648. https://nvd.nist.gov/vuln/detail/CVE-2020-8648.
[3] 2021. Syzkaller. https://opensource.google/projects/syzkaller.
[4] 2021. The patch for a high-order taint vulnerability in Qualcomm

driver. https://review.lineageos.org/c/LineageOS/android_kernel_motorola_
msm8953/+/169169.

[5] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel,
Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. 2014.
Flowdroid: Precise context, flow, field, object-sensitive and lifecycle-aware taint
analysis for android apps. Acm Sigplan Notices 49, 6, 259–269.

[6] Michael Backes, Konrad Rieck, Malte Skoruppa, Ben Stock, and Fabian Yamaguchi.
2017. Efficient and flexible discovery of php application vulnerabilities. In 2017
IEEE european symposium on security and privacy (EuroS&P). IEEE, 334–349.

[7] Xiaolong Bai, Luyi Xing, Min Zheng, and Fuping Qu. 2020. idea: Static analysis
on the security of apple kernel drivers. In Proceedings of the 2020 ACM SIGSAC
Conference on Computer and Communications Security. 1185–1202.

[8] Fraser Brown, Deian Stefan, and Dawson Engler. 2020. Sys: a static/symbolic
tool for finding good bugs in good (browser) code. In 29th {USENIX} Security
Symposium ({USENIX} Security 20). 199–216.

[9] Qi Alfred Chen, Zhiyun Qian, Yunhan Jack Jia, Yuru Shao, and Zhuoqing Morley
Mao. 2015. Static detection of packet injection vulnerabilities: A case for
identifying attacker-controlled implicit information leaks. In Proceedings of the
22nd ACM SIGSAC Conference on Computer and Communications Security. 388–
400.

[10] Kai Cheng, Qiang Li, Lei Wang, Qian Chen, Yaowen Zheng, Limin Sun, and
Zhenkai Liang. 2018. DTaint: detecting the taint-style vulnerability in embedded
device firmware. In 2018 48th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN). IEEE, 430–441.

[11] Fred Chow, Sun Chan, Shin-Ming Liu, Raymond Lo, and Mark Streich. 1996.
Effective representation of aliases and indirect memory operations in SSA form.
In International Conference on Compiler Construction. Springer, 253–267.

[12] Zheng Leong Chua, Yanhao Wang, Teodora Baluta, Prateek Saxena, Zhenkai
Liang, and Purui Su. 2019. One Engine To Serve’em All: Inferring Taint Rules
Without Architectural Semantics.. In NDSS.

[13] Marco Cova, Viktoria Felmetsger, Greg Banks, and Giovanni Vigna. 2006. Static
detection of vulnerabilities in x86 executables. In 2006 22nd Annual Computer
Security Applications Conference (ACSAC’06). IEEE, 269–278.

[14] Johannes Dahse and Thorsten Holz. 2014. Static detection of second-order
vulnerabilities in web applications. In 23rd {USENIX} Security Symposium
({USENIX} Security 14). 989–1003.

[15] Manuvir Das, Sorin Lerner, and Mark Seigle. 2002. ESP: Path-sensitive program
verification in polynomial time. In Proceedings of the ACM SIGPLAN 2002
Conference on Programming Language Design and Implementation. 57–68.

[16] Isil Dillig, Thomas Dillig, and Alex Aiken. 2008. Sound, complete and scalable
path-sensitive analysis. In Proceedings of the 29th ACM SIGPLAN Conference on
Programming Language Design and Implementation. 270–280.

[17] Yu Feng, Saswat Anand, Isil Dillig, and Alex Aiken. 2014. Apposcopy: Semantics-
based detection of android malware through static analysis. In Proceedings of
the 22nd ACM SIGSOFT international symposium on foundations of software
engineering. 576–587.

[18] Ivan Gotovchits, Rijnard Van Tonder, and David Brumley. 2018. Saluki: finding
taint-style vulnerabilities with static property checking. In Proceedings of the
NDSS Workshop on Binary Analysis Research, Vol. 2018.

[19] Neville Grech and Yannis Smaragdakis. 2017. P/Taint: unified points-to and taint
analysis. Proceedings of the ACM on Programming Languages 1, OOPSLA (2017),
1–28.

[20] Kihong Heo, Hakjoo Oh, and Kwangkeun Yi. 2017. Machine-learning-guided
selectively unsound static analysis. In 2017 IEEE/ACM 39th International
Conference on Software Engineering (ICSE). IEEE, 519–529.

[21] Wei Huang, Yao Dong, AnaMilanova, and Julian Dolby. 2015. Scalable and precise
taint analysis for android. In Proceedings of the 2015 International Symposium on
Software Testing and Analysis. 106–117.

[22] Rob Johnson and David Wagner. 2004. Finding user/kernel pointer bugs with
type inference.. In USENIX Security Symposium, Vol. 2. 0.

[23] Nenad Jovanovic, Christopher Kruegel, and Engin Kirda. 2006. Pixy: A
static analysis tool for detecting web application vulnerabilities. In 2006 IEEE
Symposium on Security and Privacy (S&P’06). IEEE, 6–pp.

[24] Nenad Jovanovic, Christopher Kruegel, and Engin Kirda. 2006. Precise alias
analysis for static detection of web application vulnerabilities. In Proceedings of
the 2006 workshop on Programming languages and analysis for security. 27–36.

[25] Kangjie Lu, Chengyu Song, Taesoo Kim, and Wenke Lee. 2016. Unisan: Proactive
kernel memory initialization to eliminate data leakages. In Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security. 920–932.

[26] Aravind Machiry, Chad Spensky, Jake Corina, Nick Stephens, Christopher
Kruegel, and Giovanni Vigna. 2017. {DR}.{CHECKER}: A soundy analysis for
linux kernel drivers. In 26th {USENIX} Security Symposium ({USENIX} Security

17). 1007–1024.
[27] David J Pearce, Paul HJ Kelly, and Chris Hankin. 2007. Efficient field-sensitive

pointer analysis of C. ACM Transactions on Programming Languages and Systems
(TOPLAS) 30, 1 (2007), 4–es.

[28] Barry K Rosen, Mark N Wegman, and F Kenneth Zadeck. 1988. Global value
numbers and redundant computations. In Proceedings of the 15th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages. 12–27.

[29] Bhargava Shastry, Federico Maggi, Fabian Yamaguchi, Konrad Rieck, and Jean-
Pierre Seifert. 2017. Static Exploration of Taint-Style Vulnerabilities Found by
Fuzzing.. In WOOT.

[30] Dongdong She, Yizheng Chen, Abhishek Shah, Baishakhi Ray, and Suman Jana.
2020. Neutaint: Efficient dynamic taint analysis with neural networks. In 2020
IEEE Symposium on Security and Privacy (SP). IEEE, 1527–1543.

[31] Qingkai Shi, Xiao Xiao, Rongxin Wu, Jinguo Zhou, Gang Fan, and Charles Zhang.
2018. Pinpoint: Fast and precise sparse value flow analysis for million lines
of code. In Proceedings of the 39th ACM SIGPLAN Conference on Programming
Language Design and Implementation. 693–706.

[32] Qingkai Shi, Peisen Yao, Rongxin Wu, and Charles Zhang. 2021. Path-sensitive
sparse analysis without path conditions. In Proceedings of the 42nd ACM SIGPLAN
International Conference on Programming Language Design and Implementation.
930–943.

[33] Manu Sridharan, Shay Artzi, Marco Pistoia, Salvatore Guarnieri, Omer Tripp,
and Ryan Berg. 2011. F4F: taint analysis of framework-based web applications.
In Proceedings of the 2011 ACM international conference on Object oriented
programming systems languages and applications. 1053–1068.

[34] Yulei Sui and Jingling Xue. 2016. SVF: interprocedural static value-flow analysis in
LLVM. In Proceedings of the 25th international conference on compiler construction.
ACM, 265–266.

[35] Omer Tripp, Marco Pistoia, Stephen J Fink, Manu Sridharan, and Omri Weisman.
2009. TAJ: effective taint analysis of web applications. ACM Sigplan Notices 44, 6
(2009), 87–97.

[36] Xi Wang, Haogang Chen, Zhihao Jia, Nickolai Zeldovich, and M Frans Kaashoek.
2012. Improving integer security for systems with {KINT}. In 10th {USENIX}
Symposium on Operating Systems Design and Implementation ({OSDI} 12). 163–
177.

[37] Gary Wassermann and Zhendong Su. 2008. Static detection of cross-site scripting
vulnerabilities. In 2008 ACM/IEEE 30th International Conference on Software
Engineering. IEEE, 171–180.

[38] Yichen Xie andAlex Aiken. 2007. Saturn: A scalable framework for error detection
using boolean satisfiability. ACM Transactions on Programming Languages and
Systems (TOPLAS) 29, 3 (2007), 16–es.

[39] Fabian Yamaguchi, Alwin Maier, Hugo Gascon, and Konrad Rieck. 2015.
Automatic inference of search patterns for taint-style vulnerabilities. In 2015 IEEE
Symposium on Security and Privacy. IEEE, 797–812.

[40] Yizhuo Zhai, Yu Hao, Hang Zhang, Daimeng Wang, Chengyu Song, Zhiyun Qian,
Mohsen Lesani, Srikanth V Krishnamurthy, and Paul Yu. 2020. UBITect: a precise
and scalable method to detect use-before-initialization bugs in Linux kernel. In
Proceedings of the 28th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering. 221–232.

[41] Hang Zhang, Dongdong She, and Zhiyun Qian. 2016. Android ion hazard: The
curse of customizable memory management system. In Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security. 1663–1674.

[42] Tong Zhang, Wenbo Shen, Dongyoon Lee, Changhee Jung, Ahmed M Azab, and
Ruowen Wang. 2019. Pex: A permission check analysis framework for linux
kernel. In 28th {USENIX} Security Symposium ({USENIX} Security 19). 1205–
1220.

[43] Xueling Zhang, Xiaoyin Wang, Rocky Slavin, and Jianwei Niu. 2021. ConDySTA:
Context-Aware Dynamic Supplement to Static Taint Analysis. In 2021 IEEE
Symposium on Security and Privacy (SP). IEEE, 796–812.

https://nvd.nist.gov/vuln/detail/CVE-2020-7053
https://nvd.nist.gov/vuln/detail/CVE-2020-8648
https://opensource.google/projects/syzkaller
https://review.lineageos.org/c/LineageOS/android_kernel_motorola_msm8953/+/169169
https://review.lineageos.org/c/LineageOS/android_kernel_motorola_msm8953/+/169169

	Abstract
	1 Introduction
	2 Overview
	2.1 The Motivating Example
	2.2 Workflow

	3 Static Analysis Design
	3.1 Positioning
	3.2 Definitions
	3.3 Summary-Based High-Order Taint Flow Construction
	3.4 Opportunistic Path Sensitivity
	3.5 Multi-Source Multi-Sink Pairing
	3.6 Other Improvements in SUTURE

	4 Vulnerability Discovery and Warning Grouping
	5 Implementation
	6 Evaluation
	6.1 Experiment Setup and Procedure
	6.2 Efficacy of SUTURE's Static Analysis Improvements
	6.3 Vulnerability Discovery Accuracy
	6.4 Known High-Order Taint Vulnerabilities
	6.5 Efficiency
	6.6 Discussion of Order
	6.7 Study of Discovered Vulnerabilities

	7 Limitations and Discussions
	8 Related Work
	9 Conclusion
	Acknowledgments
	References

