Towards More Accurate Static Analysis for
Taint-Style Bug Detection in Linux Kernel

Haonan Li*, Hang Zhang', Kexin Pei*, Zhiyun Qian*
*University of California, Riverside, TIndiana University Bloomington, *The University of Chicago
*hli333@ucr.edu, zhiyung@ucr.edu, Thz64 @iu.edu, *kpei@cs.uchicago.edu

Abstract—Static analysis plays a crucial role in software
vulnerability detection, yet faces a persistent precision-scalability
trade-off. In large codebases like the Linux kernel, traditional
static analysis tools often generate excessive false positives due to
simplified vulnerability modeling and over-approximation of path
and data constraints. While Large Language Models (LLMs)
demonstrate promising code understanding capabilities, their
direct application to program analysis remains unreliable due
to inherent reasoning limitations.

We introduce BUGLENS, a post-refinement framework that
significantly enhances static analysis precision for bug detection.
BUGLENS guides LLMs through structured reasoning steps
to assess security impact and validate constraints from the
source code. When evaluated on Linux Kkernel’s taint-style bugs
detected by static analysis tools, BUGLENS improves precision
approximately 7-fold (from 0.10 to 0.72), substantially reducing
false positives while uncovering four previously unreported vul-
nerabilities. Our results demonstrate that a well-structured, fully-
automated LLM-based workflow can effectively complement and
enhance traditional static analysis techniques.

I. INTRODUCTION

Static analysis has long served as a cornerstone technique
for identifying software vulnerabilities. These techniques aim
to detect various security weaknesses, such as buffer over-
flows and information leaks. However, static analysis tools
often struggle to balance the trade-off between precision and
scalability [1], [2].

More precise analysis, e.g., symbolic execution [3], can be
computationally expensive and often infeasible for large code-
bases such as the Linux kernel [4]. Conversely, more scalable
techniques sacrifice the precision for scalability, leading to a
high number of false positives. For example, Suture [5], an
advanced taint bug detection in the Linux kernel, shows a 90%
raw false positive rate, incurring substantial manual effort to
inspect its results.

Specifically, the imprecision of existing static analysis ap-
proaches stems from the following two key issues:

o Simplified Vulnerability Modeling. Static analyzers often
rely on simplified heuristics for vulnerability detection.
For example, a static analyzer may flag every arithmetic
operation as potentially overflowing. While this simplifica-
tion might ensure no genuine vulnerabilities are missed, it
inflates the number of false positives.

e Over-Approximation of Path and Data Constraints. To
avoid exponential path exploration, static analyzers often
make coarse assumptions about whether a path is feasible
or how data flows through the program. While such an

over-approximation ensures the analysis is completed in a

reasonable time, it also flags numerous infeasible paths as

potentially vulnerable, resulting in excessive false positives.
Recent advances in Large Language Models (LLMs) offer a
promising avenue for overcoming these issues. Trained on vast
amounts of code and natural language, LLMs exhibit remark-
able capabilities in understanding code semantics, API usage
patterns, and common vulnerability types [0]-[8]. With these
broader insights, the LLM-based approach can potentially: (1)
enhance vulnerability modeling by providing a more nuanced
understanding of code semantics, and (2) refine path and
data constraints by selective analysis of semantically plausible
paths and data flows.

However, LLMs are not a silver bullet for program analysis.
Despite their approximate semantic understanding capabilities,
LLMs are not inherently equipped for the rigorous demands
of program analysis [9], [10]. Their reasoning proves brittle,
particularly when confronted with the complex program de-
pendencies crucial for security analysis [11]-[13]. Our initial
experiments also confirm that naively applying LLMs to
program analysis, for instance, by simply asking “Does this
static analyzer report an actual bug?”, yields highly unreliable
results, frequently misclassifying vulnerabilities and failing
to identify critical flaws. This is often because LLMs tend
to fixate on surface-level code features, missing the critical
dependencies that dictate program behavior and security prop-
erties, especially within intricate control and data flows.

In this work, we introduce BUGLENS, an innovative frame-
work that post-refines the results of static analysis using
LLMs. Rather than blindly applying LLMs to analyze pro-
grams, BUGLENS is carefully orchestrated to teach LLMs
key concepts of program analysis and guide them toward
reasonable analytical procedures. By analyzing the output
of static analysis, BUGLENS complements the limitations of
existing tools, especially in terms of precision, and yields more
accurate and actionable vulnerability detection for practical
codebases.

Our key approach is to introduce a structured framework
to guide LLM’s reasoning on the code. It decomposes the
reasoning processes into a series of guidelines following the
traditional program analysis workflow. By constraining the
LLM reasoning space within this established methodology, the
model is grounded with a more rigorous reasoning scaffold
than it would follow by default, thus mitigating the inherent
limitations of LLMs in code reasoning.

We demonstrate that this combined approach significantly
improves the precision of taint-style bug detection in the Linux
kernel, reducing the need for manual inspection of false pos-
itives and even uncovering previously ignored vulnerabilities.
We summarize our contributions as follows:

o Post-Refinement Framework. We introduce BUGLENS, an
LLM-based framework that complements static analysis to
boost its precision, overcoming various practical weaknesses
identified from real-world complex Linux Kernel codebases.

e Structured Analysis Guidance (SAG). We design a struc-
tured reasoning workflow that decomposes the LLMs’ rea-
soning into a series of rigorous steps for reliable predictions.

o Empirical Results. BUGLENS improves the precision of
state-of-the-art static analysis tool on the Linux kernel from
0.1 to 0.72. Significantly, BUGLENS also corrects four false
negatives that prior manual analysis incorrectly filtered.

e Open Source. We open-source our implementation to facil-
itate future research on LLM-augmented program analysis.
The code and data are available at https://github.com/secla
b-ucr/Buglens.

II. BACKGROUND
A. Taint-Style Bugs in the Linux Kernel

Taint-style bugs involve insecure data propagation, where
unsanitized data (taint source) reaches a sensitive program lo-
cation (taint sink), causing flaws like out-of-bound access. For
instance, an unchecked input integer (source) might become an
array index (sink). Proper sanitization (e.g., range checks) is
typically missing or insufficient. Such bugs can lead to severe
vulnerabilities like buffer overflows or denial-of-service.

In the kernel, these bugs often occur when untrusted user
input (e.g., syscall arguments) propagates to sensitive kernel
operations (e.g., arithmetic calculations) without adequate san-
itization [5], [14]. Detecting these bugs is challenging due to:
e Diverse and General Sinks. Unlike user-space applica-

tions with often well-defined sink APIs (e.g., exec()),

the kernel’s high privilege means almost any operation

(even a single arithmetic calculation) could be a sink if

affected by unsanitized user data. This broad scope increases

false positives. Additionally, low-level coding optimizations
common in the kernel (e.g., intentional integer overflows)
can complicate accurate detection.

o Scattered and Intricate Sanitization. Sanitization checks
can be distant from sinks, often crossing function boundaries
within the large and complex kernel codebase. These checks
are frequently intertwined with domain-specific kernel logic
(e.g., privilege systems, configurations), posing significant
hurdles for taint analysis tools.

B. Static Analysis Tools for Taint-Style Bugs in Kernel

Suture [5] is the state-of-the-art work from academia aiming
at kernel taint-style bug detection, which extends the previous
work, Dr. Checker [14], by adding cross-entry taint tracking
capability and improving analysis precision. CodeQL [15] is
one of the most powerful and widely used industry code

analysis engines, capable of taint analysis [16] and query-
based bug detection based on customizable rules. CodeQL
has a large community that develops and maintains many
different bug detection rules, including those for kernel taint-
style bugs (e.g., [17]). Despite their effectiveness, all these
tools exhibit high false alarm rate (e.g., ~90%), underscoring
the inherent difficulties in accurately identifying kernel taint-
style vulnerabilities. We elaborate on these difficulties and
challenges in §III.

III. CHALLENGES AND DESIGN RATIONALE
A. Challenge 1 (Cl1): Simplified Vulnerability Modeling

The first source of imprecision is the reliance on simplified
vulnerability detection modeling. To maintain scalability and
avoid missing potential bugs, static analyzers often employ
overly simplified detection rules, especially in taint-style bug
detectors.

For instance, a static analyzer typically flags specific code
patterns as potential bugs. A Tainted Arithmetic Detector
(TAD) would identify any arithmetic operation involving
tainted variables (e.g., var += size, where var is
tainted) as a potential integer overflow vulnerability. However,
in Linux kernel practice, these patterns frequently do not
translate to exploitable vulnerabilities for two key reasons:

e The Behavior Itself is Benign. The kernel’s reliance on
low-level C idioms, pointer manipulation, and intentional
‘unsafe’ design patterns often confounds traditional analyz-
ers, leading to inaccuracies, e.g., our evaluation shows that
61.2% of the flagged ‘bugs’ were actually benign (§VI-C2).
For example, in Linux drivers, there are cases where integer
overflow is expected and benign, such as with jiffies:

unsigned long start = jiffies;
// do something time-sensitive...

if (time_after(jiffies, start + timeout)) {

}

For these cases, even when integer overflow is possible
due to the tainted variable timeout, it is not a security
vulnerability, as time_after is defined as #define
time_after(a, b) (b - a) > 0). Such false pos-
itives commonly arise from intentional design patterns in
the Linux kernel, including struct hacks (deliberate out-
of-bounds access), type casting, unions, and data structure
operations (e.g., ptr—>next, container_of).

e The Tainted Data is Properly Validated before reaching
the sink. For example, the Taint in the Loop Bound (TLB)
pattern is common in the Linux kernel, but many include
proper validation. Consider this simple array traversal:

assert (nums < sizeof (arr) / sizeof (int));

for (i = 0; 1 < nums ; i++) { run(arr([il); }
Without the assert check, this loop could lead to an out-
of-bounds access. However, the assert ensures that the
loop index never exceeds the array bounds, making it safe.
Static analyzers that does not account for such checks (e.g.,
path-insensitive ones) will misclassify this as a vulnerability,
leading to false positives.

https://github.com/seclab-ucr/BugLens
https://github.com/seclab-ucr/BugLens

B. Challenge 2 (C2): Over-Approximation of Path & Data
Constraints

As mentioned above, the tainted data is often checked before
the sink, and with a safe range. However, static analysis tools
often over-approximate the path and data constraints to ensure
scalability, as the kernel’s immense scale and continuous
evolution make precise static analysis impractical, and the
logic of the sanitization could often be distant or complex.
Alternatively, a common heuristic in practice [18] is to directly
prune paths with checks, regardless of their actual effects.
However, the existence of checks is not always effective in
preventing the bug from happening, e.g., we discovered some
unreported bugs due to a plausible but ineffective check (see
§VI-B). A simplified example is shown in the following, which
is designed to sanitize the tainted variable num :

int clamp_num(int config , int num) {
if (config && num > ARR_SIZE)
num = ARR_SIZE;
return num ;
}

The function clamp_num only sanitizes the tainted vari-
able num effectively when config is set.

Even though this example is relatively simple, many others
involve complicated data relationships and path constraints in
the Linux kernel. They often appear together with more com-
plex constructs, including loops and advanced data structures
(see §VI-E). This combination makes precise analysis (both
precise value range (num > ARR_SIZE) and path-sensitive
(only effectively when config)) difficult.

C. Challenge 3 (C3): Reasoning Hurdles for LLMs

LLMs have shown great promise in solving C1 and C2 [19]—
[22]. Trained extensively on vast amounts of Linux kernel
code, LLMs can recognize C idioms and intentional kernel
design and can thus identify benign patterns that static ana-
lyzers often misclassify as bugs (for C1). Besides, LLMs are
often aware or able to identify the infent of the Kernel function
based on the hints from other modalities, e.g., a sanitization
check often named with check_ or validate_ prefix is
a typical natural language hint, in addition to the comments
inserted by the Kernel developers. As a result, the LLM-based
analysis can often quickly narrow down to a small amount
of code to facilitate a more nuanced analysis with semantic
understanding (for C2).

Recent works [19], [23] also show that LLLMs can be used
to refine static analysis results (C1 & C2) in a straightforward
manner, i.e., to directly ask LLM with “Is this case from static
analysis report vulnerable?” followed by the code snippet.
However, our experiments (detailed in §VI-C) demonstrate
that such a simple prompting strategy leads to high false
negatives — cases where the LLM incorrectly classifies actual
vulnerabilities as safe code, especially against the presence of
complex control flow and data constraints.

We observe that the false negatives stem from the fundamen-
tal limitation of existing LLMs when tasked with sophisticated,
structured, and symbolic reasoning. Specifically, with simple

prompting, LLMs often rely on surface-level spurious features
[24] to reason about the vulnerability. For example, the pres-
ence of a sanity check often correlates statistically with safe
code (many practical static analyzers use such heuristics to
prune paths). We observe the model classifies code containing
such a check as safe without performing the deeper reasoning
required to determine if the check is actually effective under
the current execution paths. Real-world vulnerabilities often
exploit exactly these scenarios: checks that are bypassable,
incomplete, or rendered ineffective by intricate control and
data flows. The model’s tendency to rely on spurious patterns
without performing the actual reasoning has been shown
ineffective in tracking critical dependencies and results in
unreliable predictions in many different domains [25].

D. Design Rationale

To address challenges C1 through C3, we introduce
BUGLENS, a fully automated, multi-stage LLM-based frame-
work designed specifically as a post-refinement layer for static
analyzers. The key design philosophy of BUGLENS is to scale
the test-time compute of LLMs by allocating more tokens for
precise reasoning of the intended program behaviors based
on the model’s understanding of program semantics [20].
Specifically, BUGLENS consists of the following specific key
components, each targeting a specific challenge:

e Security Impact Assessor (SeclA): Addressing Simplified
Vulnerability Models (C1). Instead of relying solely on pre-
defined patterns, BUGLENS leverages LLMs to analyze the
potential security impact if tainted data identified by static
analysis were completely controlled by an attacker. It then
evaluates whether the tainted value could potentially lead
to security vulnerabilities (e.g., memory corruption, denial
of service (DoS)), as detailed in §IV-B. By focusing on
semantic consequences rather than simplified vulnerability
modeling, SecIA provides a more precise assessment of
security impact.

e Constraint Assessor (ConA): Addressing Over-
Approximation of Path & Data Constraints (C2). ConA
uses LLMs to analyze whether data constraints in the code
are sufficient to prevent potential vulnerabilities from being
triggered. By tracing how tainted data is processed and
constrained, ConA performs heuristic reasoning (e.g., to
find sanitizations with names check_x) to evaluate the
effectiveness of these safeguards. This approach is designed
to handle the complexity and scalability challenges of
systems like the Linux kernel, where traditional formal
methods may lack precision or scalability.

e Structured Analysis Guidance (SAG): Addressing Rea-
soning Hurdles for LLMs (C3). As described in §III-C,
simply prompting LLMs for analysis often leads to spurious
reasoning. To this end, SAG grounds LLMs’ reasoning in
ConA with the scaffold that describes the typical program
analysis workflow. At a high level, SAG employs specific
prompts to describe key analysis principles and include
in-context examples to demonstrate how to systematically
dissect code, trace dependencies, and evaluate conditions,

@ SeclA ®ConA

® SAG

Hypothesize Arbitrary Control

| M & Cop Reachability Analysis |

|%S Stepwise Vulnerability Analysis |

) “What if the the tainted data is arbitrary?...”

| @ & Constraint Collection

|Il?@Path & Data Constraint Analysis |

| "

Security Impact Analysis

| @& Constraint Effect Analysis|

G®PKA <

AFget_func_def |2 °

?@) Trace dataflow

L. Identify all critical operations (Cor)

| @ Final Vulnerability Eval

~—0

S get_var_def

— @‘ “... if you feel
| uncertain, you could

~—-0

ask..” Codebase

Figure 1: Overview of BUGLENS, showing (A) Security Impact Assessor (SecIA) first assesses the security impact of the potential bugs identified by static
analysis, and (B) Constraint Assessor (ConA) assesses data constraints and evaluates if the bug is feasible. ConA is guided by (C) Structured Analysis Guidance
(SAG) to reason about code more effectively, and can interact with (D) Project Knowledge Agent (PKA) to get information about the codebase on demand.

especially in complex scenarios. This guidance constrains
the LLM towards a more rigorous and reliable analysis
process. §IV-D elaborates on the design of SAG.

IV. DESIGN

BUGLENS first takes the static analysis report as input,
which identifies the context of the potential bugs and the
tainted data flow, and then performs the following steps to
evaluate the potential bugs, as shown in Figure 1:

e Security Impact Assessor (SecIA): This component eval-
uates the security impact of the potential bugs identified
by static analysis. It identifies the Critical Operations (Cop)
that are influenced by the tainted data and classifies them
as either Normal Code or Requires Constraint Analysis.

e Constraint Assessor (ConA): This component performs a
multi-step analysis to evaluate the feasibility of the potential
bugs. It collects the path conditions and data constraints,
summarizes them, and evaluates whether they are effective
in preventing the vulnerability.

e Structured Analysis Guidance (SAG): This component
provides the scaffold to constrain the LLM through pre-
defined code reasoning procedures to help it understand the
code and analyze the constraints effectively.

e Project Knowledge Agent (PKA): This component allows
the LLM to access the codebase on-demand, enabling it to
retrieve global codebase information.

Additionally, BUGLENS also adopts the common prompt-
ing techniques to scale the test-time compute, such as (1)
Majority-vote querying, where we query the model multiple
times and take the most common answer; (2) Chain-of-
Thought (CoT) prompting [27]; and (3) Schema-constrained
summarization, where a follow-up prompt requests the model’s
own output in a predefined XML format, making LLM’s
response easy to parse.

A. Premises

In BUGLENS, we design a framework that leverages LLMs
to refine the results of static analysis for bug detection. We
focus on the case of taint-style bugs, where a vulnerability
arises from the flow of untrusted or tainted data.

As input, we assume that a static analysis tool has already
performed taint propagation and produced a set of candidate

warnings. In particular, the tool flags certain program locations
as sinks, which are critical operations that may cause vulnera-
bilities if they involve tainted values (e.g., pointer dereference).
These candidate sinks (referred as Cop in the following
sections), together with the context provided by static analysis
(e.g., taint traces), are the primary input to our system.

The expected output of our framework is a refined classi-
fication of these candidate bug reports. Specifically, the LLM
is used to filter out false positives and to provide a more
semantically grounded explanation of whether a flagged sink
represents a real bug. We emphasize that BUGLENS does not
aim to replace static analysis. Instead, it operates on static
analysis results, refining them to improve precision.

B. Security Impact Assessor (SeclA)

The core insight behind Sec/A is based on the fundamental
evaluative question: What are the consequences if tainted data
assumes arbitrary values?

1) Core Assumption and Rationale: SeclA operates on a
fundamental assumption regarding attacker capability at the
point of initial impact assessment: Aribitary Control Hypoth-
esis (AC-Hypo). For a given program location K where static
analysis reported an operation Cop(v) involving tainted data
v (the sink), (1) we hypothesize that an attacker can control v
to take any value v, (Within the constraints of its data type),
and (2) we provisionally ignore any effects of checks or path
conditions (even explicit checks) encountered on analysis. In
other words, we assume that the attacker can take any value
to anywhere (successors of the sink node in the control flow
graph).

This hypothesis enables SeclA to streamline analysis. SeclA
focuses solely on potential security impact. This permits
early filtering of findings based purely on the consequence,
(safely) reducing subsequent analysis load. Critically, this
approach defers the complex analysis of actual program con-
straints—including path feasibility, value ranges, and impor-
tantly, whether those protective checks or sanitizers really
work. This deferral mitigates false negatives (FNs) by pre-
venting premature dismissal of vulnerabilities due to reliance
on potentially bypassable checks or inaccurate LLM constraint
reasoning about their effectiveness. The effectiveness is shown
in §VI-C2.

@ & Cop Reachability Analysis @ @ Constraint Collection @ <& Constraint Effect Analysis
Reach(Cop): x < 100 A OC # SKIP Constraint(Cop): {check_x(..)} e
1 void caller(..., int x){ 10 void check_x(..., int x){ g L oc = SKIP 3G (Ehrca) g
2 check_x(config, other_config, x); ! 1 if (other_config == SKIP) *T2 0C#SKIPac=1 =@t
, T ; S0 - 2 return: »7t3 OC#SKIPAC=2 x € (0, + o)
4 goto invalid_label; 13 if (config == 1) » Ty OC#SKIPACE(1.2] x & (00, +00)
5 if (other_config != SKIP) 14 assert(x > 0 & x < 100);
. op(x); 15 else if (config =="7) l
7 invalid_label: 16 assert(x > 0); -
. return; Ty return; 5 Final Vulnerability Eval
9 18

Figure 2: The workflow of Constraint Assessor (ConA) with an example, where the x is tainted and op (x) is the critical operation (Cop). The sanitization

function check_x (. .

2) Security Impact Analysis: SeclA performs a forward
influence analysis to identify the influenced critical operations
(Cop) that are potentially affected by the tainted data v from
the sink location K. It then filters out the benign operations
that are not security-sensitive based on whether this operation
could (potentially) result in memory bugs (e.g., out-of-bound
access, arbitrary memory access) or DoS. For instance, the
jiffies case in §III-A will be attributed as “not a bug”.

C. Constraint Assessor (ConA)

The Constraint Assessor (ConA) aims to identify whether
the bug of Cpp can be triggered by analyzing the data
constraints. As shown in Figure 2, the Constraint Assessor
involves a four-step workflow:

e Step 1: Critical Operation Reachability Analysis. The
process begins by determining the conditions under which
program execution can reach the specific Critical Operation
(Cop) location. This establishes the base requirements for
the vulnerability to be possible.

e Step 2: Constraint Collection. Next, the analysis traces
the tainted data flow path(s) backward from the Cpp to-
wards the data’s source. Along this path, it identifies code
segments—such as conditional statements, assertions, or
calls to validation functions—that appear intended to act
as constraints on the tainted data’s value or range before it
is used at the Cgp.

e Step 3: Constraint Effect Analysis. Each potential con-
straint identified in Step 2 is then analyzed in detail. This
step aims to understand the constraint’s specific effect:
Under what conditions (precondition) does the constraint
need to satisfy, and what impact does it have on the tainted
variable’s possible numerical range (postcondition)?

e Step 4: Final Vulnerability Evaluation. Finally, it per-
forms an evaluation to determine if the potential vulnera-
bility can still be triggered. If yes, the case is classified as a
“Potential Vulnerability.” Otherwise, if the LLM determines
that the constraints effectively prevent the vulnerability from
being triggered, the case is classified as “Eliminated.”

This workflow leverages LLMs to interpret code (mimicking

a formal reasoning process), identify relevant patterns and

constraints, and perform the reasoning required for each step.

., x) is affected by the config (noted as c) and other_config (noted as oc).

We employ this LLM-based approach acknowledging the
trade-offs of soundness and precision. ConA aims to overcome
the potential precision limitations of conservative abstractions
and achieve broader applicability in the complex Linux kernel.
In §VI-B and §VI-D, we thoroughly examine how our design
in relaxing the strict over-approximation introduces only a
reasonably small number of false negatives. In the following
sections (§1V-C1 through §IV-C4), we elaborate on the spe-
cific design, rationale, heuristic considerations, and soundness
implications inherent in each stage of this analysis process.

1) Step 1: Critical Operation Reachability Analysis: The

analysis begins by determining the conditions required for
program execution to reach the specific Critical Operation
(Cop) location previously identified by SecIA as potentially
vulnerability. These reachability conditions form the base
constraints that must be satisfied for the vulnerability to be
triggerable via this Cop.
Condition Representation: When analyzing path conditions,
we allow the LLM to generate natural language summaries
that capture the semantic meaning of complex reachability
conditions. For instance, where traditional analysis might
struggle, an LLM might identify a condition like: “The op-
eration is only executed if init_subsystem/() returned
zero (success), AND the device state in dev—>status equals
STATUS_READY.”

The LLM is later asked (in Step 4) to evaluate these
semantic constraints to assess the potential impact. The nat-
ural language representation allows the LLM to leverage its
understanding of the code’s intent and context but introduces
a higher degree of uncertainty in the final evaluation, which
we must acknowledge.

2) Step 2: Backward Constraint Collection: Once the Crit-

ical Operation (Cpp) and its local reachability conditions are
identified, the next step is to gather potential constraints
imposed on the tainted data before it reaches the Cpp. This
involves tracing the data flow path(s) for the tainted variable
backward from the Cop toward its source(s).
Example: In Figure 2, tracing back from critical_op (x)
in caller (), the LLM identifies the call check_x(...)
to be a potential constraint on x. It would query the PKA for
the function definition and analyze its effect, as detailed in
Step 3.

3) Step 3: Constraint Effect Analysis: After collect-
ing potential constraining code segments (like the function
check_x ()) in Step 2, this step analyzes the effect of these
segments on the tainted variable. The goal is to understand
how different execution paths within these segments modify
the possible range of the tainted variable and under which
conditions (preconditions) those paths are taken.

This step prompts the LLM to first identify all major
execution paths through the provided code segment (e.g.,
check_x()), and then considers the preconditions and post-
conditions (data constraints of the tainted data) of each path.
Example: In Figure 2, we ask the LLM to analyze the function
check_x () to summarize its effects on the tainted variable
x. Particularly, the path m; and 74 are bypass paths, and
check_x () will not effectively limit the range of x with
these preconditions.

4) Step 4: Final Vulnerability Evaluation: This final step

synthesizes the precondition and postcondition from the pre-
vious analyses to determine if the identified constraints effec-
tively neutralize the potential vulnerability associated with the
Critical Operation (Cpp). And then it classifies the reported
vulnerability as either “Eliminated” (constraints effectively
prevent the vulnerability happening) or “Potential Vulnerabil-
ity” (no effective constraints).
Example: In Figure 2, Step 1 of the reachability analysis
shows that oc # SKIP, and therefore the path 7; can be
eliminated, as its precondition is oc = SKIP. Since c and
oc are unknown, the function check_x () does not impose
additional range constraints (we can only assume path m4 to
be valid with conservative analysis). The range analysis for
x yields (100, INT_MAX), and the final evaluation requires
an understanding of op () itself. If the range is sufficient to
prevent the bug, the issue is considered eliminated.

D. Structured Analysis Guidance (SAG)

To support the fine-grained code reasoning steps in ConA,
we employ Structured Analysis Guidance (SAG) to scale the
test-time compute of LLMs with structured reasoning tem-
plates and few-shot examples. At a high level, SAG grounds
the reasoning procedures of LLMs with typical program anal-
ysis steps by eliciting more reasoning tokens during inference.
Specifically, SAG assists Constraint Assessor (ConA) with
the following two types of analysis: (i) Guided Stepwise
Vulnerability Analysis with step-by-step instructions that de-
compose the analysis of precondition and postcondition (as
described in §1V-C), and (ii) Guided Path Condition and Data
Constraint Analysis to demonstrate how to analyze challenging
data constraints and path conditions from code.

1) Guided Path Condition Analysis: In the analysis of
the path condition in Step 1 and Step 3 of ConA (§1V-Cl
and §IV-C3), we guide the LLM using prompts designed to
extract path conditions from the source code surrounding the
operation of interest. For example, consider the path leading
to the Cop(op (x)) within the caller function:

void caller (int config, int other_config, int x) {
check_x (config, other_config, x);

if (x > 100)
goto invalid_label; // skip the Cop 1if true
if (other_config != SKIP)
op(x); // reach the Cop
invalid_label:
return;

}

SAG asks the LLM to identify and categorize:

e Bypass Conditions: Identify conditional statements where
taking a specific branch avoids the operation. The LLM is
instructed to extract the condition and negate it to find the
requirement for not bypassing the operation.

Example: The condition x > 100 leads to invalid,

bypassing critical_op (x). The negated condition

required to proceed towards the OP is x < 100.

e Direct Conditions: Identify conditional statements where
taking a specific branch is necessary to reach the operation
along the current path. The LLM extracts the condition
directly.

Example: Reaching sink (x) requires entering the if
block, so the condition is other_config # SKIP.
The LLM then combines these conditions using logical AND
to form the path-specific reachability constraint set for the
operation. For this path in the example, the derived reachability

condition is: x < 100 A other_config != SKIP.

2) Guided Data Constraint Analysis: In the analysis of data
constraints in Step 2 and Step 3 of ConA (§1V-C2 and §1V-C3),
particularly, we prompt LLMs to focus on the following data
constraints:

o Type constraints. The variable’s static type already restricts
its range (e.g., uint8 is always in the range of [0, 255]).

e Validation (transferable to source). The program fests the
value and aborts or reports an error if the test fails, without
modifying the value. Because the check refers to the current
value, the knowledge gained from this check (e.g., “the
value must be > 0 on the success branch”) also applies
to all source variables that influenced this value in the data
Sflow.

e Sanitization (not transferable to source). The program
writes a new, corrected value back to the variable (e.g.,
clamping it to a range). This operation serves the connection
to the original value, so any property we learn afterward
applies only to the sanitized copy, not to the original source
variables in the data flow.

The key difference is that validation can travel backward
along the data-flow graph, while sanitization overwrites the
data and stops the transfer. Considering the folllowing exam-
ple, suppose v is tainted:

int uw = v +1; // u 1is also tainted by v
if (u < 0) // (1) validation
return -EINVAL; // succeeds only if u >= 0,
// therefore v >= -1
u = clamp(u, 0, 100); // (2) sanitization
// now u is guaranteed 0..100,
// but not affect v
return use(u, Vv);

Step (1) is a validation: it reads u and branches, so the
fact “u > 0’ (hence v > —1) becomes part of the path

condition and is transferable to other variables in earlier nodes
(u=v +1). Step (2) is a sanitization: it writes a new value
into u ; the constraint “0 < u < 100” holds only after
this assignment. It is worth noting that the sanitization to u
does not pose any constraints to v . However, if we replace
the clamp () with an assert (u < 100), we would get a
constraint of v as well, v < 99.

Formal program analysis naturally distinguishes between
validation and sanitization; however, LLMs often confuse
these concepts (e.g., missing transferred validation, treating
sanitization as validation). SAG emphasizes these differences
with few-shot examples, and therefore improves the LLMs’
reasoning on data constraints.

E. Project Knowledge Agent (PKA)

BUGLENS leverages Project Knowledge Agent (PKA), a
simple LLM code agent equipped with custom tools to au-
tomatically navigate the codebase and retrieve the related
code context during the analysis. It starts the analysis with
the context of the sink and explicitly requests more context
(e.g., function definitions get_func_def, global variable
definition get_var_def, struct layouts) if needed. PKA
then retrieves the relevant code snippets iteratively until the
model self-decides that it has sufficient context to complete
the analysis.

We provide a set of request types, enabling the LLM to
gather broader codebase information at any point. This design
is both flexible and extensible: new request types can be
supported by adding corresponding backend callbacks. PKA
searches the relevant code snippets based on CodeQuery [28].
We implement PKA in 500 lines of Python code, and it is
agnostic to the underlying LLM model.

V. IMPLEMENTATION

BUGLENS is implemented with ~7k tokens in prompts. The
prompts are multi-turn dialogues, where it starts with a system
message and the output of static analysis, followed by several
interactions and tools (e.g., PKA) to guide the LLM to perform
the tasks step by step, as we describe in §IV. The detailed
prompts can be found in our artifact.'

Below we describe several key implementation principles
for each component of BUGLENS.

A. SeclA

The key idea is to let the LLM act as a semantic filter
over the raw reports produced by the static analysis tool. We
design a detailed prompt with examples that asks the LLM
to classify each candidate report as either a Potential Bug or
Normal Code, based on its understanding of the code snippet
and the nature of the tainted variable.

e Input: Each prompt takes the flagged code snippet, the
suspected tainted variable, and the bug category reported
by the static analysis tool.

Uhttps://github.com/seclab-ucr/BugLens-Code/blob/main/prompts/request.
yaml

e Qutput: The model classifies each case as either Potential
Bug or Normal Code, with an explanation that can be
inspected by further analysis.

B. ConA

While the initial prompt design identifies potential bugs, it
does not consider whether sanitization or other constraints may
eliminate the risk. To address this, we introduce ConA, which
refines the analysis by reasoning about the conditions under
which a flagged sink can actually lead to an exploitable bug.
e Input: ConA takes as input the candidate bug reports

from static analysis (and our previous stage) together with

contextual information such as the tainted variable, its
propagation chain, and surrounding code.

e Output: ConA provides a more accurate range analysis and
classification: not only flagging dangerous uses of tainted
data, but also distinguishing cases where existing checks
already ensure safety.

C. Schema-constrained Summarization

At the end of each stage, we use a schema-constrained sum-
marization prompt to convert the LLM’s free-form text output
into a structured XML format. This makes it easy to parse and
use in subsequent stages of the pipeline. For example, at the
end of SeclA, we prompt the LLM to summarize its findings
in the following XML schema:

<tainted_var>tainted_var</tainted_ var>

<vuln>
<type>out_of_bound_access</type>
<desc> an out-of-bound access at code
< Tarr[tainted_var] </desc>

</vuln>

VI. EVALUATION

Our evaluation aims to address the following research
questions.

e RQ1: (Effectiveness) How effective is BUGLENS in iden-
tifying vulnerabilities?

e RQ2: (Component Contribution) How does the the
prompt design affect the performance of BUGLENS? es-
pecially for the SecIA and SAG component?

e RQ3: (Model Versatility) How does the performance of
BUGLENS vary across different LLMs?

A. Experimental Setup

We primarily evaluate BUGLENS using OpenAl’s 03-mini
model (03-mini-2025-01-31). This model was chosen as
our primary focus because, as demonstrated in our evaluation
for RQ3 (Section VI-D), it achieved the best overall perfor-
mance on our bug analysis task compared to several other
recent leading models.

To address RQ3
BUGLENS, we also

regarding the generalizability of

tested its performance with a
range of prominent alternative models, encompassing
both closed-source and open-source options. These
include: OpenAl's ol (01-2024-12-17), GPT-4.1
(gpt-4.1-2025-04-14), Google’s Gemini 2.5 Pro
(gemini-2.5-pro-preview-03-25), Anthropic’s

https://github.com/seclab-ucr/BugLens-Code/blob/main/prompts/request.yaml
https://github.com/seclab-ucr/BugLens-Code/blob/main/prompts/request.yaml

Claude 3.7 Sonnet (claude-3-7-sonnet-20250219),
and the open-source DeepSeek R1 (671B) model. This
selection allows us to assess how BUGLENS performs across
different model architectures, sizes, and providers. (Note: All
experiments were conducted in Apr 2025, using the latest
versions of these models available at that time.)

1) Cost and Performance: In our current prototype using
the OpenAl 03-mini LLM backend, the analysis of 120 cases
took approximately 4 hours and cost $8.62 in total (or about
$0.07 per case on average). This corresponds to:

o ~40.9K input tokens and ~9.6K output tokens per case
(=~50.5K total tokens),

e ~2 minutes of processing time per case (without paral-
lelization).

This model (03-mini) was chosen as our primary focus
because, as demonstrated in our evaluation for RQ3 (Sec-
tion VI-D), it achieved the best overall performance on our
bug analysis task compared to several other recent leading
models.

2) Evaluation Dataset: Linux Kernel Driver Analysis with
static analyzers: Our study utilizes the Android kernel (Linux
version 4.14.150, Google Pixel 4XL), which served as the
testbed in the original Suture study [5]. For our initial analysis,
potentially informing RQ1 regarding baseline performance and
the challenges of automated bug detection in this complex
environment, we applied prior static analysis tools, Suture and
CodeQL-OOB, to the Linux kernel device drivers. The key
findings from this analysis provide important context:

e Suture: When applied to the Linux device drivers, Suture
initially generated 251 potential bug reports. This raw output
translates to a high False Positive (FP) rate of approxi-
mately 90%. Suture employed a subsequent semi-automated
refinement process, reporting a reviewer-perceived FP rate
of 51.23%. However, this figure relies on Suture’s broader
definition of a bug, which classified all integer overflows
as true positives. Furthermore, during our investigation, we
identified 4 additional instances, initially dismissed as FPs
by Suture authors’ verification, that were indeed real bugs
(by either their standard or ours). This finding highlights
potential inconsistencies in large-scale manual verification
efforts.

o CodeQL-OOB: We leverage CodeQL [29] as a comple-
mentary static analysis tool beyond Suture. Based on Back-
house et al’s approach [17], we implemented a simple
inter-procedural taint tracking analysis (CodeQL-OOB) that
traces data flows from ioctl entry points to pointer
dereference and copy_from_user (two typical cases of
OOB bugs) to detect potential stack overflows. Running
CodeQL-OOB on the Linux device drivers, it yields 24
potential bug reports. Our manual analysis confirmed 1 of
these as a true positive (consistent with the known stack
overflow bug reported in [17]). This corresponds to an FP
rate of 95.8%.

3) Cost: On average, the cost of running BUGLENS is
about $0.1 per case, under the latest version of OpenAl 03-
mini. Each case takes about a few minutes to complete.

B. RQI: Effectiveness

Table 1. Performance of BUGLENS on top of Suture and CodeQL-OOB.

Method TP TN FP FN Prec Rec F
Suture 24 0 227 0 0.10 - -
Suturerp 20 202 25 4 044 083 0.58
SuturegygLens 24 218 9 0 072 100 0.84
CodeQL-OOB 1 0 23 0 004 - -
CodeQL-OOBgyGLENs 1 22 2 0 033 1.00 0.5

1) Precision and Recall: Table 1 shows the performance
for the evaluated two static analyzers and our post-refinement
method, BUGLENS. The results show BUGLENS significantly
enhances precision of both Suture (0.10) and CodeQL-OOB
(0.04). For CodeQL-OOB, BUGLENS increases precision sub-
stantially to 0.33 while not missing any real bugs detected
before. For Suture, the precision is increased to 0.72 due to
a drastic reduction in false positives (from 227 to 9). This
refinement does not miss any exisiting bugs.

Moreover, noting that the semi-automated method in Suture,
noted as Suturegp, actually shows a lower recall (0.83) than the
BUGLENS refinement (1.0). This is because after examining
the positive results of Suturegysrens, We found 4 cases of real
bugs that were incorrectly classified as false positives during
the manual inspection process in Suturegp.

2) New Bugs: As mentioned earlier, we found 4 more cases
that are real bugs, which previously classified as false positive
by human inspection in Suture. Two bugs are from the sound
subsystem, reported to the maintainers, while waiting for their
feedback. One of them involves a data constraint that appears
to sanitize a tainted value but can be bypassed due to subtle
control-flow logic.

The other two bugs are from the i2c subsystem. They
involve a condition where two tainted values must simulta-
neously satisfy specific constraints—a case that standard taint
analyses typically miss due to their focus on single-source
propagation.

We have reported all cases following responsible disclosure.
Full technical details will be made available after the issues
are resolved.

3) Analysis of FPs: Despite the general effectiveness of
BUGLENS, it shows 10 FPs. Upon careful examination of
these cases, we attribute the inaccuracies to several distinct
factors:

e Static Analysis Fundamental Limitations (5 cases): False
positives arising from inherent limitations in the underlying
static analyzers that BUGLENS is not designed to address.
These include imprecisions in taint tracking through com-
plex data structures, incorrect indirect call resolution, efc.
BUGLENS intentionally operates on the dataflow provided
by the static analyzers rather than attempting to verify the
accuracy of this information itself.

o Environment and Language Understanding (4 cases): Im-
precision resulting from the LLM’s incomplete grasp of C
language semantics, hardware-level interactions, and kernel-
specific programming patterns.

o [nternal Modeling Errors (1 case): Inaccuracy originating
from a faulty prediction by LLM.

4) Analysis of FNs: Despite the number of FN shown in
the table I is 0O, BUGLENS still produced several FNs but
gets mitigated by majority voting. Specifically, we observed
that the FNs were concentrated in the Constraint Assessor
(ConA) component, and the SecIA component typically does
not generate FNs due to the arbitrary control hypothesis (AC-
Hypo), which will be discussed in §VI-C2.

We identified two primary reasons for these FNs:

e Overlooked Complex Conditions: The LLM sometimes
failed to recognize complex conditions of the program and
therefore summarize the pre-/postcondition incorrectly.

e Misinterpreting Validation vs. Sanitization: LLMs oc-
casionally misclassified sanitization as validations, thereby
missing vulnerabilities.

These specific failure patterns observed within ConA were

the direct motivation for designing the Structured Analysis

Guidance (SAG). The SAG mechanism enhances the prompts

used specifically within the ConA stage, providing targeted

instructions aimed at guiding the LLM to avoid these identified
pitfalls (e.g., explicitly probing for bypass logic, carefully
differentiating data constraint types).

The positive impact of SAG in mitigating these FNs is em-
pirically demonstrated in RQ2 (§VI-C). As shown in Table II,
the Full Design configuration (using ConA with SAG prompts)
consistently yields fewer FNs.

Nevertheless, the impact of SAG is not absolute. The ability
of a language model to follow such complex instructions can
vary significantly, particularly across different models. Our
results in RQ2/RQ3 (Table II) indicate that some models could
still cause some residual FNs even with the SAG.

Takeaway 1. BUGLENS can effectively post-refine the
results of exisiting static analyzers, hugely improving the
precision, and can even find missed bugs.

Table II. Bug Analysis Performance Comparison Across LLMs and Design
Approaches (Total Cases=120, Real Bugs=22)

Model | Full Design | w/o SAG | Simple Prompt

| N FP F |FN FP F |EFEN FP F
OpenAlo3-mini @ | 0 3 094] 10 1 067] 18 7 024
OpenAl ol 3 6 8 6 067 | 18 6 0.25
OpenAl GPT-4.1 1 9 7 7 0.68 3 23 0.59
Gemini 2.5 Pro 12 3 0.57 14 4 0.47 6 24 052
Claude 3.7 Sonnet 13 2 0.54 17 2 0.34 1 51 0.44
DeepSeek R1 4 7 10 6 0.60 5 42 042

C. RQ2: Component Contribution

To address RQ2, we conduct an incremental analysis. This
study evaluates the contribution of the Security Impact Asses-
sor (SeclA), the subsequent Constraint Assessor (ConA), and
the specialized Structured Analysis Guidance (SAG) design
used within ConA, by comparing performance across progres-
sively enhanced configurations of BUGLENS.

Table III. Performance of SecIA, with and without the Aribitary Control
Hypothesis (AC-Hypo).

Model \ w/o AC-Hypo \ w/ AC-Hypo

| FP FN Prec Rec | FP FN Prec Rec
OpenAl 03-mini ‘ 13 5 0.57 0.77 ‘ 38 0 0.37 1.0
OpenAl ol 8 4 0.69 082 | 39 0 0.36 1.0
OpenAl GPT-4.1 15 2 0.57 091 36 1 0.69 095
Gemini 2.5 Pro 60 3 024 086 | 73 0 0.23 1.0
Claude 3.7 Sonnet | 20 2 0.50 0091 31 0 0.42 1.0
DeepSeek R1 25 12 029 045 | 71 4 0.18 0.82

We assess the performance under the following configura-
tions:

e Baseline: This configuration employs the simple prompt
design, which is a straightforward prompting approach with-
out any of the specialized components (i.e., directly asking
“Is this case from static analysis report vulnerable?”). We
describe this design in §III-C. The baseline design shows
the performance of the task based solely on the LLM’s
inherent capabilities with minimal guidance, which provides
a starting point for comparison.

e + SeclA: Adds the SeclA component to the Baseline.
Purpose: Comparing this to the Baseline isolates the con-
tribution of the SecIA stage. Detailed metrics for SecIA’s
filtering rate and soundness are in Table III.

o + SecIA + ConA (w/o SAG): Adds the ConA component
to the "+ SeclA" configuration, utilizing a simpler prompt
design for constraint checking (i.e., without SAG). Compar-
ing this to “+ SecIA” isolates the contribution of adding the
constraint assesses step itself.

o Full Design (+ SecIA + ConA + SAG): This configuration
enhances the ConA component from the previous step by
incorporating the specialized SAG design. This represents
the complete BUGLENS system. Comparing this to previous
configurations emphasize the contribution of the SAG.

For this component analysis (RQ2) and the subsequent model

versatility analysis (RQ3), we focus our evaluation on a dataset

derived from Linux kernel analysis, specifically targeting the
sound module. This module was selected because the original

Suture study identified it as containing a high density of true

positive vulnerabilities (22 out of 24 known bugs), providing

a rich testbed for assessing bug detection capabilities. The

dataset consists of 120 cases, with 22 known bugs (positives)

and 98 non-bug cases (negatives).

We evaluate the performance of these components for di-
verse LLMs, including OpenAI’s 03-mini, ol, GPT-4.1, Gem-
ini 2.5 Pro, Claude 3.7 Sonnet, and DeepSeek R1. The overall
performance results for these configurations are summarized
in Table II, while Table III provides the detailed breakdown
specifically for the SeclA component’s effectiveness and fil-
tering metrics.

1) Baseline: Our experimental results clearly demonstrate
the significant contribution of our proposed multi-phase work-
flow and its components compared to a baseline approach.
As shown in Table II, despite some models like Claude
3.7 Sonnet (FN=1) and GPT-4.1 (FN=3) showed low False

Negatives, potentially reflecting their raw analytical power,
this came at the cost of high False Positives (FP=51 and
FP=23, respectively), rendering this simple design ineffective
for practical use. The F1 scores for the baseline were generally
low across models. This direct prompting approach demon-
strated worse performance when compared to other BUGLENS
configurations.

2) Security Impact Assessor (SeclA): As Table III shows,
our Arbitrary Control Hypothesis (AC-Hypo) enhances recall
across all models. Without AC-Hypo, the models exhibit
noticeable False Negatives, ranging from 2 to 12 FN cases
across tested models. After applying AC-Hypo, the FN rate
decreases to zero for all models except DeepSeek R1 and GPT-
4.1, which maintains a low FN rate (4 and 1, respectively),
achieving a high recall of 0.82 and 0.95.

Meanwhile, SecIA demonstrates strong effectiveness as a
security vulnerability filter. Taking OpenAl’s 03-mini as an
example, among a total of 98 negative cases, SecIA success-
fully filters out 60 cases (TN). This indicates that SecIA not
only has a high recall rate, but it is also effective, substantially
improving analysis efficiency.

3) Constraint Assessor (ConA) without Structured Analysis
Guidance (SAG): While this multi-phase workflow (i.e., SeclA
+ ConA) significantly reduces the high volume of FPs seen in
the Baseline; for instance, Claude 3.7 Sonnet’s FPs dropped
from 51 to 2, and Gemini 1.5 Pro’s from 24 to 4. It also leads to
a significant increase in False Negatives (FNs) for Gemini 2.5
Pro (FN=14), Claude 3.7 Sonnet and DeepSeek R1 (FN=17),
and OpenAl ol (FN=10) in the ‘w/o SAG’. This supports our
hypothesis (§1II-C) that providing constraints, while helpful
for pruning obvious non-bugs, can encourage LLMs to become
overly confident. Once patterns suggesting data validity are
identified, the LLM may default to classifying the issue as “not
a bug,” reflecting a potential statistical bias towards common
safe patterns rather than performing nuanced reasoning about
subtle flaws or bypass conditions.

4) Structured Analysis Guidance (SAG): Comparing the
Full Design (using SAG within ConA) to the w/o SAG
configuration in Table II demonstrates SAG’s effectiveness.
Introducing SAG leads to a substantial reduction in FNs across
all tested models. Consequently, the overall F; score sees a
marked improvement with SAG (e.g., improving from 0.67
to 0.94 for 03-mini and 0.34 to 0.54 for Claude). This indi-
cates that SAG successfully guides the LLM within ConA to
overcome the previously observed overconfidence, achieving
a better balance between FP reduction and FN mitigation.

Takeaway 2. The design components of BUGLENS enables
effective LLM bug analysis by significantly reducing both
FP and FN compared to baseline prompting.

D. RQ3: Model Versatility

The results shown in Table II affirm that BUGLENS is
a general LLM-based technique applicable across different
models, consistently improving upon baseline performance.
However, the degree of success highlights variations in how

1
2
3
4
5
6
7
8
9

10

different LLMs interact with complex instructions and struc-
tured reasoning processes.

As noted in RQ2, the baseline performance offers a glimpse
into the models’ raw capabilities, somewhat correlating with
general LLM benchmarks where Gemini 2.5 Pro and Claude
3.7 Sonnet are often considered leaders [30]. However, this raw
capability did not directly translate to superior performance
within our structured task without significant guidance.

When employing the ‘Full Design’ of BUGLENS, we ob-
served distinct differences in instruction-following adherence.
The OpenAl models, o1, GPT-4.1 (F1=0.81), and particularly
our core model o3-mini (F1=0.94), demonstrated excellent
alignment with the workflow’s intent.

Conversely, while the ‘Full Design’ significantly improved
the F1 scores for Gemini 2.5 Pro (0.57) and Claude 3.7 Sonnet
(0.54) compared to their baseline or ‘w/o sag’ results by
drastically cutting down FPs, they still struggled with relatively
high false negatives (FN=12 and FN=13, respectively). This
suggests that even with the SAG, these powerful models may
face challenges in precisely balancing the various analytical
steps or interpreting the nuanced instructions within our work-
flow, possibly still exhibiting a degree of the over-confidence
(for “sanity check”) that SAG could not fully overcome in
their case. DeepSeek R1 (F1=0.77) showed a strong, balanced
improvement, landing between the GPT models and the Gem-
ini/Claude in terms of final performance with the full design.
This demonstrates the generality of the BUGLENS to open-
sourced models.

In summary, while our approach is broadly applicable, its
optimal performance depends on the LLM’s ability to robustly
follow complex, multi-step instructions, with models like
OpenATI’s 03-mini currently showing the strongest capability
in this specific structured bug analysis task.

Takeaway 3. BUGLENS shows broad applicability and
yields promising results across diverse LLMs, including the
open-source DeepSeek RI. OpenAl’s 03-mini currently gets
the best result.

E. Case Study: Data Structure Traversal

Linux kernel code often uses pointers to traverse data
structures. For example, the following code walks through a
linked list 1ist using a marco 1list_for_each_entry:

struct snd_kcontrol +snd_ctl_find_id(... =*id) {

if (id->numid != 0)
return snd_ctl_find_numid(card, id->numid);

list_for_each_entry (kctl, o)

if (kctl->id.index > id->index)
continue;

if (kctl->id.index + kctl->count <=
continue;

id->index)

return kctl;

}
return NULL;

}
In this code, the loop goes through each element in the
list and checks if any of them match the input id, which

comes from the user. The user input (xid) only decides
which element gets picked, not how long the loop runs.
However, the static analyzer, Suture, misclassifies this case as a
potential tainted loop bound warning. Our method, BUGLENS,
avoids this false warning by using the LLM’s more nuanced
understanding of how data structures like linked lists work.

Tracking the returned kctl object at Line 11, we can
find the following range constraints for the tainted value
id->index (from Line 7 to 11):

/#* Range constraints for id->index #*/

id->index >= kctl->id.index

id->index < kctl->id.index + kctl->count

Where the kct 1 object is returned once the loop ends (i.e.,
kctl != NULL).

Notably, there’s a bypassable condition in this function.
Before the list iteration, there is a check if id—>numid is not
zero (Line 3 to 4). If it is not zero, the function will return the
result of snd_ctl_find_numid(card, id->numid),
and the loop will not run.

This means the checks inside the loop (Line 7 to 11)
for id->index might not happen at all. Therefore, the
id->index is only validated when id->numid is zero (and
the kct1 object is returned).

FE. Threats to Validity

Dependency on LLMs. The performance of BUGLENS
is influenced by the capabilities of the underlying LLMs
used for reasoning. While this dependency could poten-
tially impact external validity, our experiments demonstrate
BUGLENS’s robustness across different models. We have
evaluated BUGLENS with multiple LLMs, including both
closed-source and open-source models like Deepseek RI,
which achieves approximately 80% of the performance of top-
performing models. These results confirm that BUGLENS’s
approach generalizes well across different models, though
performance variations exist.

Limited Checkers and Bug Types. Our evaluation uses only
taint-style checkers—those inherited from and Suture (and
Dr.checker), plus one CodeQL port—focused on memory-
safety and DoS bugs in the Linux kernel. This narrow setup
threatens external validity, and the performance we report may
not carry over to other bugs (e.g., data races) or analysis
frameworks. Although the extra CodeQL checker suggests
BUGLENS can transfer across tooling, a broader study is
needed for general applicability.

VII. DISCUSSION

Towards More Sound Analysis. The soundness of current
implementation could be improved through two directions: (1)
Adding symbolic verification [31], [32] to validate the LLM’s
reasoning and refine outputs based on formal methods (2) Im-
plementing a hybrid architecture where the LLM performs ini-
tial code slicing while symbolic execution handles constraint

11

analysis, combining the LLM’s contextual understanding with
provably sound formal reasoning.

Integration with More Analyzers. It is a worthwhile goal
to explore how LLMs can complement state-of-the-art static
analysis tools for complex programs such as the Linux ker-
nel [33]-[39], which often make tradeoffs to sacrifice precision
for scalability. Similarly, CodeQL-based detectors (beyond
CodeQL-OOB) are low-precision in nature and can benefit
from solutions like ours. Compared to heavier static analysis
tools such as Suture, an imprecise static analysis could be
much easier to implement and maintain.

VIII. RELATED WORK

LLM for Program Analyses & Bug Detection LLMs have
been widely applied to program analysis tasks for bug de-
tection. IRIS [19] combines LLMs’ contextual understanding
with CodeQL queries to enhance taint analysis. LLM4SA [23]
leverages LLMs to refine static analysis results. Their approach
serves as a baseline for BUGLENS (referred as simple prompt).
LLMDFA and LLMSAN [20], [40] use LLMs to perform
data flow analysis and bug detection. LLift [21] focuses on
use-before-intialization bugs and prompts LLMs to identify
and summarize possible initializers. Focusing on real-world
problems, BUGLENS upgrades the scope to a general taint-
style bug detection cross multiple functions.

Reasoning for LLMs. Despite their success on many tasks,
the ability of LLMs to reason about code semantics and
behaviors remains an active area of research [41]-[44]. Recent
studies have shown that LLMs are still far from performing
reliable code reasoning, and their predictions are thus fragile
and susceptible to superficial changes in input [45]-[47].
This fragility is often attributed to the learned models taking
“shortcuts” based on superficial patterns in training data rather
than robust, generalizable reasoning strategies [24], [48]-[51].
BUGLENS mitigates this problem with boosting the LLMs’
reasoning by constraining their reasoning space with structural
and symbolic procedures [52]-[56].

IX. CONCLUSION

This paper introduces BUGLENS, an innovative post-
refinement framework that integrates Large Language Models
(LLMs) with static analysis. By employing Security Impact
Assessor (SeclA), Constraint Assessor (ConA), and Structured
Analysis Guidance (SAG) to guide LLMs through the reason-
ing process, BUGLENS significantly enhances the precision
of initial static analysis findings without sacrificing scalabil-
ity. Our evaluation demonstrates that BUGLENS dramatically
reduces false positives in Linux kernel Analysis, minimizes
manual inspection effort, and uncovers previously ignored
vulnerabilities, highlighting the promise of guided LLMs in
making automated bug detection more practical and effective.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their insightful
comments and valuable suggestions. This material is based
upon work supported by the United States Air Force and
DARPA under Agreement No. FA8750-24-2-0002.

[1]

[2]

[3]

[4]

[5]

[6]

[71

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(171

REFERENCES

A. Gosain and G. Sharma, “Static Analysis: A Survey of Techniques
and Tools,” in Intelligent Computing and Applications, ser. Advances
in Intelligent Systems and Computing, D. Mandal, R. Kar, S. Das, and
B. K. Panigrahi, Eds. New Delhi: Springer India, 2015, pp. 581-591.
J. Park, H. Lee, and S. Ryu, “A survey of parametric static analysis,”
ACM Comput. Surv., vol. 54, no. 7, pp. 149:1-149:37, 2022. [Online].
Available: https://doi.org/10.1145/3464457

G. Horvath, R. Kovacs, and Z. Porkolab, “Scaling Symbolic Execution
to Large Software Systems,” Aug. 2024, arXiv:2408.01909 [cs].
[Online]. Available: http://arxiv.org/abs/2408.01909

Y. Zhai, Y. Hao, H. Zhang, D. Wang, C. Song, Z. Qian, M. Lesani,
S. V. Krishnamurthy, and P. Yu, “Ubitect: A precise and scalable method
to detect use-before-initialization bugs in linux kernel,” in Proceedings
of the 28th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering,
ser. ESEC/FSE 2020, 2020.

H. Zhang, W. Chen, Y. Hao, G. Li, Y. Zhai, X. Zou, and Z. Qian,
“Statically Discovering High-Order Taint Style Vulnerabilities in OS
Kernels,” in Proceedings of the 2021 ACM SIGSAC Conference on
Computer and Communications Security. Virtual Event Republic
of Korea: ACM, Nov. 2021, pp. 811-824. [Online]. Available:
https://dl.acm.org/doi/10.1145/3460120.3484798

A. Khare, S. Dutta, Z. Li, A. Solko-Breslin, R. Alur, and M. Naik,
“Understanding the Effectiveness of Large Language Models in
Detecting Security Vulnerabilities,” Oct. 2024, arXiv:2311.16169 [cs].
[Online]. Available: http://arxiv.org/abs/2311.16169

B. A. Stoica, U. Sethi, Y. Su, C. Zhou, S. Lu, J. Mace, M. Musuvathi, and
S. Nath, “If At First You Don’t Succeed, Try, Try, Again...? Insights and
LLM-informed Tooling for Detecting Retry Bugs in Software Systems,”
in Proceedings of the ACM SIGOPS 30th Symposium on Operating
Systems Principles. Austin TX USA: ACM, Nov. 2024, pp. 63-78.
[Online]. Available: https://dl.acm.org/doi/10.1145/3694715.3695971

C. Fang, N. Miao, S. Srivastav, J. Liu, N. Nazari, and H. Homayoun,
“Large Language Models for Code Analysis: Do LLMs Really Do
Their Job?” in 33rd USENIX Security Symposium (USENIX Security
24). USENIX Association, Aug. 2024.

X. Qian, X. Zheng, Y. He, S. Yang, and L. Cavallaro, “LAMD:
Context-driven Android Malware Detection and Classification with
LLMSs,” arXiv preprint arXiv:2502.13055, 2025. [Online]. Available:
https://arxiv.org/abs/2502.13055

H. He, X. Lin, Z. Weng, R. Zhao, S. Gan, L. Chen, Y. Ji, J. Wang,
and Z. Xue, “Code is not Natural Language: Unlock the Power of
Semantics-Oriented Graph Representation for Binary Code Similarity
Detection,” in 33rd USENIX Security Symposium (USENIX Security 24).
Philadelphia, PA: USENIX Association, Aug. 2024, pp. 1759-1776.
[Online]. Available: https://www.usenix.org/conference/usenixsecurity
24/presentation/he-haojie

S. Kambhampati, “Can large language models reason and plan?”’ Annals
of the New York Academy of Sciences, vol. 1534, no. 1, pp. 15-18,
Mar. 2024. [Online]. Available: https://doi.org/10.1111/nyas.15125

J. Chen, Z. Pan, X. Hu, Z. Li, G. Li, and X. Xia, “Reasoning runtime
behavior of a program with llm: How far are we?” in Proceedings of
the IEEE/ACM 47th International Conference on Software Engineering,
2025.

P. J. Chapman, C. Rubio-Gonzélez, and A. V. Thakur, “Interleaving
static analysis and LLM prompting with applications to error
specification inference,” International Journal on Software Tools
for Technology Transfer, Feb. 2025. [Online]. Available: https:
//doi.org/10.1007/s10009-025-00780-7

A. Machiry, C. Spensky, J. Corina, N. Stephens, C. Kruegel, and
G. Vigna, “{DR}. {CHECKER}: A Soundy Analysis for Linux Kernel
Drivers,” in 26th USENIX Security Symposium (USENIX Security 17),
2017, pp. 1007-1024.

GitHub, “CodeQL: The libraries and queries that power security re-
searchers around the world,” https://codeql.github.com/, 2025, accessed:
2025-05-29.

Github (2025), “About data flow analysis — CodeQL,” 2025. [Online].
Available: https://codeql.github.com/docs/writing-codeql-queries/about
-data-flow-analysis/

K. Backhouse, “Stack buffer overflow in Qualcomm MSM 4.4 -
Finding bugs with CodeQL,” Jan. 2018. [Online]. Available: https://se
curitylab.github.com/research/stack-buffer-overflow-qualcomm-msm/

12

(18]

[19]

[20]

(21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]
(30]

[31]

[32]

[33]

[34]

(35]

(36]

C. Calcagno, D. Distefano, J. Dubreil, D. Gabi, M. Luca, P. O’Hearn,
I. Papakonstantinou, and D. Rodriguez, “Moving Fast with Software
Verification,” 2015. [Online]. Available: https://research.facebook.com/
publications/moving-fast-with-software-verification/

Z. Li, S. Dutta, and M. Naik, “IRIS: LLM-Assisted Static Analysis
for Detecting Security Vulnerabilities,” in The Thirteenth International
Conference on Learning Representations (ICLR 2025), 2025. [Online].
Available: http://arxiv.org/abs/2405.17238

C. Wang, W. Zhang, Z. Su, X. Xu, X. Xie, and X. Zhang, “LLMDFA:
analyzing dataflow in code with large language models,” in Advances
in Neural Information Processing Systems 38: Annual Conference on
Neural Information Processing Systems 2024, NeurIPS 2024, Vancouver,
BC, Canada, December 10 - 15, 2024, A. Globersons, L. Mackey,
D. Belgrave, A. Fan, U. Paquet, J. M. Tomczak, and C. Zhang, Eds.,
2024. [Online]. Available: http://papers.nips.cc/paper_files/paper/2024/
hash/ed9dcde1eb9c597f68c1d375bbect3fc- Abstract-Conference.html

H. Li, Y. Hao, Y. Zhai, and Z. Qian, “Enhancing static analysis for
practical bug detection: An llm-integrated approach,” Proceedings of
the ACM on Programming Languages (PACMPL), Volume 8, Issue
OOPSLAI, vol. 8, no. OOPSLA1, 2024.

M. Zheng, D. Xie, Q. Shi, C. Wang, and X. Zhang, “Validating
Network Protocol Parsers with Traceable RFC Document Interpretation,”
in Proceedings of the 2025 ACM SIGSOFT International Symposium on
Software Testing and Analysis, ser. ISSTA 2025, Trondheim, Norway,
2025.

C. Wen, Y. Cai, B. Zhang, J. Su, Z. Xu, D. Liu, S. Qin, Z. Ming, and
T. Cong, “Automatically Inspecting Thousands of Static Bug Warnings
with Large Language Model: How Far Are We?” ACM Trans. Knowl.
Discov. Data, vol. 18, no. 7, pp. 168:1-168:34, Jun. 2024. [Online].
Available: https://doi.org/10.1145/3653718

R. T. McCoy, S. Yao, D. Friedman, M. D. Hardy, and T. L. Griffiths,
“Embers of autoregression show how large language models are shaped
by the problem they are trained to solve,” Proceedings of the National
Academy of Sciences, vol. 121, no. 41, p. €2322420121, 2024. [Online].
Available: https://www.pnas.org/doi/abs/10.1073/pnas.2322420121

A. Prabhakar, T. L. Griffiths, and R. T. McCoy, “Deciphering the
Factors Influencing the Efficacy of Chain-of-Thought: Probability,
Memorization, and Noisy Reasoning,” Oct. 2024, arXiv:2407.01687
[cs]. [Online]. Available: http://arxiv.org/abs/2407.01687

C. Snell, J. Lee, K. Xu, and A. Kumar, “Scaling llm test-time compute
optimally can be more effective than scaling model parameters,” arXiv
preprint arXiv:2408.03314, 2024.

J. Wei, X. Wang, D. Schuurmans, M. Bosma, B. Ichter, F. Xia, E. Chi,
Q. Le, and D. Zhou, “Chain-of-Thought Prompting Elicits Reasoning in
Large Language Models,” Jan. 2023, arXiv:2201.11903 [cs]. [Online].
Available: http://arxiv.org/abs/2201.11903

R. Kopathy, “ruben2020/codequery,” Mar. 2025. [Online]. Available:
https://github.com/ruben2020/codequery

GitHub, “Codeql,” https://codeql.github.com, 2025.

V. Al, “LLM Leaderboard,” https://www.vellum.ai/llm-leaderboard,
2025, accessed: 2025-04-15.

S. Bhatia, J. Qiu, N. Hasabnis, S. A. Seshia, and A. Cheung, “Verified
Code Transpilation with LLMs,” 38th Conference on Neural Information
Processing Systems (NeurlPS 2024), 2024.

Y. Cai, Z. Hou, D. Sanan, X. Luan, Y. Lin, J. Sun, and J. S.
Dong, “Automated Program Refinement: Guide and Verify Code Large
Language Model with Refinement Calculus,” Proc. ACM Program.
Lang., vol. 9, no. POPL, pp. 69:2057-69:2089, Jan. 2025. [Online].
Available: https://dl.acm.org/doi/10.1145/3704905

G. Li, H. Zhang, J. Zhou, W. Shen, Y. Sui, and Z. Qian, “A hybrid
alias analysis and its application to global variable protection in the
linux kernel,” in 32nd USENIX Security Symposium (USENIX Security
23). Anaheim, CA: USENIX Association, Aug. 2023, pp. 4211-4228.
[Online]. Available: https://www.usenix.org/conference/usenixsecurity
23/presentation/li- guoren

G. Li, M. Sridharan, and Z. Qian, “Redefining indirect call analysis with
kallgraph,” in IEEE Security and Privacy, 2025.

H. Zhang, J. Kim, C. Yuan, Z. Qian, and T. Kim, “Statically discover
cross-entry use-after-free vulnerabilities in the linux kernel,” in 32nd
Annual Network and Distributed System Security Symposium, NDSS,
2025.

Y. Cai, P. Yao, C. Ye, and C. Zhang, “Place your locks well:
Understanding and detecting lock misuse bugs,” in 32nd USENIX
Security Symposium (USENIX Security 23). Anaheim, CA: USENIX

https://doi.org/10.1145/3464457
http://arxiv.org/abs/2408.01909
https://dl.acm.org/doi/10.1145/3460120.3484798
http://arxiv.org/abs/2311.16169
https://dl.acm.org/doi/10.1145/3694715.3695971
https://arxiv.org/abs/2502.13055
https://www.usenix.org/conference/usenixsecurity24/presentation/he-haojie
https://www.usenix.org/conference/usenixsecurity24/presentation/he-haojie
https://doi.org/10.1111/nyas.15125
https://doi.org/10.1007/s10009-025-00780-7
https://doi.org/10.1007/s10009-025-00780-7
https://codeql.github.com/
https://codeql.github.com/docs/writing-codeql-queries/about-data-flow-analysis/
https://codeql.github.com/docs/writing-codeql-queries/about-data-flow-analysis/
https://securitylab.github.com/research/stack-buffer-overflow-qualcomm-msm/
https://securitylab.github.com/research/stack-buffer-overflow-qualcomm-msm/
https://research.facebook.com/publications/moving-fast-with-software-verification/
https://research.facebook.com/publications/moving-fast-with-software-verification/
http://arxiv.org/abs/2405.17238
http://papers.nips.cc/paper_files/paper/2024/hash/ed9dcde1eb9c597f68c1d375bbecf3fc-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/ed9dcde1eb9c597f68c1d375bbecf3fc-Abstract-Conference.html
https://doi.org/10.1145/3653718
https://www.pnas.org/doi/abs/10.1073/pnas.2322420121
http://arxiv.org/abs/2407.01687
http://arxiv.org/abs/2201.11903
https://github.com/ruben2020/codequery
https://codeql.github.com
https://www.vellum.ai/llm-leaderboard
https://dl.acm.org/doi/10.1145/3704905
https://www.usenix.org/conference/usenixsecurity23/presentation/li-guoren
https://www.usenix.org/conference/usenixsecurity23/presentation/li-guoren

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

Association, Aug. 2023, pp. 3727-3744. [Online]. Available: https:
/lwww.usenix.org/conference/usenixsecurity23/presentation/cai- yuandao
D. Liu, S. Ji, K. Lu, and Q. He, “Improving indirect-call analysis in
Ilvm with type and data-flow co-analysis,” in 33rd USENIX Security
Symposium (USENIX Security 24), 2024.

J. Liu, L. Yi, W. Chen, C. Song, Z. Qian, and Q. Yi, “LinKRID:
Vetting imbalance reference counting in linux kernel with symbolic
execution,” in 31st USENIX Security Symposium (USENIX Security
22). Boston, MA: USENIX Association, Aug. 2022, pp. 125-142.
[Online]. Available: https://www.usenix.org/conference/usenixsecurity
22/presentation/liu-jian

Y. Zhai, Y. Hao, Z. Zhang, W. Chen, G. Li, Z. Qian, C. Song,
M. Sridharan, S. V. Krishnamurthy, T. Jaeger, and P. Yu, “Progressive
Scrutiny: Incremental Detection of UBI bugs in the Linux Kernel,” in
Proceedings of the 2020 ISOC Network and Distributed Systems Security
Symposium (NDSS), Feb. 2022.

C. Wang, W. Zhang, Z. Su, X. Xu, and X. Zhang, “Sanitizing large
language models in bug detection with data-flow,” in Findings of
the Association for Computational Linguistics: EMNLP 2024, Miami,
Florida, USA, November 12-16, 2024, Y. Al-Onaizan, M. Bansal, and
Y. Chen, Eds. Association for Computational Linguistics, 2024, pp.
3790-3805. [Online]. Available: https://aclanthology.org/2024.finding
s-emnlp.217

Y. Ding, J. Peng, M. J. Min, G. Kaiser, J. Yang, and B. Ray, “Semcoder:
Training code language models with comprehensive semantics,” arXiv
preprint arXiv:2406.01006, 2024.

E. Zelikman, Y. Wu, J. Mu, and N. Goodman, “Star: Bootstrapping
reasoning with reasoning,” Advances in Neural Information Processing
Systems, vol. 35, pp. 1547615488, 2022.

J. Li, D. Guo, D. Yang, R. Xu, Y. Wu, and J. He, “Codei/o: Condensing
reasoning patterns via code input-output prediction,” arXiv preprint
arXiv:2502.07316, 2025.

A. Ni, M. Allamanis, A. Cohan, Y. Deng, K. Shi, C. Sutton, and P. Yin,
“Next: Teaching large language models to reason about code execution,”
arXiv preprint arXiv:2404.14662, 2024.

K. Pei, W. Li, Q. Jin, S. Liu, S. Geng, L. Cavallaro, J. Yang, and S. Jana,
“Exploiting code symmetries for learning program semantics,” arXiv
preprint arXiv:2308.03312, 2023.

B. Steenhoek, M. M. Rahman, M. K. Roy, M. S. Alam, H. Tong,
S. Das, E. T. Barr, and W. Le, “To Err is Machine: Vulnerability
Detection Challenges LLM Reasoning,” Jan. 2025, arXiv:2403.17218
[cs]. [Online]. Available: http://arxiv.org/abs/2403.17218

A. Hochlehnert, H. Bhatnagar, V. Udandarao, S. Albanie, A. Prabhu,
and M. Bethge, “A sober look at progress in language model reasoning:
Pitfalls and paths to reproducibility,” arXiv preprint arXiv:2504.07086,
2025.

N. Yefet, U. Alon, and E. Yahav, “Adversarial examples for models of
code,” Proceedings of the ACM on Programming Languages, vol. 4, no.
OOPSLA, pp. 1-30, 2020.

F. Gao, Y. Wang, and K. Wang, “Discrete adversarial attack to models
of code,” Proceedings of the ACM on Programming Languages, vol. 7,
no. PLDIL, pp. 172-195, 2023.

Z. Yang, J. Shi, J. He, and D. Lo, “Natural attack for pre-trained
models of code,” in Proceedings of the 44th International Conference
on Software Engineering, 2022, pp. 1482-1493.

P. Bielik and M. Vecheyv, “Adversarial robustness for code,” in Interna-
tional Conference on Machine Learning. PMLR, 2020, pp. 896-907.
J. Li, G. Li, Y. Li, and Z. Jin, “Structured chain-of-thought prompting
for code generation,” ACM Transactions on Software Engineering and
Methodology, vol. 34, no. 2, pp. 1-23, 2025.

W. Chen, X. Ma, X. Wang, and W. W. Cohen, “Program of thoughts
prompting: Disentangling computation from reasoning for numerical
reasoning tasks,” arXiv preprint arXiv:2211.12588, 2022.

C. Li, J. Liang, A. Zeng, X. Chen, K. Hausman, D. Sadigh,
S. Levine, L. Fei-Fei, F. Xia, and B. Ichter, “Chain of code: Reason-
ing with a language model-augmented code emulator,” arXiv preprint
arXiv:2312.04474, 2023.

Y. Chen, H. Jhamtani, S. Sharma, C. Fan, and C. Wang, “Steering large
language models between code execution and textual reasoning,” arXiv
preprint arXiv:2410.03524, 2024.

S. Yao, D. Yu, J. Zhao, I. Shafran, T. Griffiths, Y. Cao, and
K. Narasimhan, “Tree of thoughts: Deliberate problem solving with large
language models,” Advances in neural information processing systems,
vol. 36, pp. 11809-11 822, 2023.

13

https://www.usenix.org/conference/usenixsecurity23/presentation/cai-yuandao
https://www.usenix.org/conference/usenixsecurity23/presentation/cai-yuandao
https://www.usenix.org/conference/usenixsecurity22/presentation/liu-jian
https://www.usenix.org/conference/usenixsecurity22/presentation/liu-jian
https://aclanthology.org/2024.findings-emnlp.217
https://aclanthology.org/2024.findings-emnlp.217
http://arxiv.org/abs/2403.17218

	I Introduction
	II Background
	II-A Taint-Style Bugs in the Linux Kernel
	II-B Static Analysis Tools for Taint-Style Bugs in Kernel

	III Challenges and Design Rationale
	III-A Challenge 1 (C1): Simplified Vulnerability Modeling
	III-B Challenge 2 (C2): Over-Approximation of Path & Data Constraints
	III-C Challenge 3 (C3): Reasoning Hurdles for LLMs
	III-D Design Rationale

	IV Design
	IV-A Premises
	IV-B Security Impact Assessor (SecIA)
	IV-B1 Core Assumption and Rationale
	IV-B2 Security Impact Analysis

	IV-C Constraint Assessor (ConA)
	IV-C1 Step 1: Critical Operation Reachability Analysis
	IV-C2 Step 2: Backward Constraint Collection
	IV-C3 Step 3: Constraint Effect Analysis
	IV-C4 Step 4: Final Vulnerability Evaluation

	IV-D Structured Analysis Guidance (SAG)
	IV-D1 Guided Path Condition Analysis
	IV-D2 Guided Data Constraint Analysis

	IV-E Project Knowledge Agent (PKA)

	V Implementation
	V-A SecIA
	V-B ConA
	V-C Schema-constrained Summarization

	VI Evaluation
	VI-A Experimental Setup
	VI-A1 Cost and Performance
	VI-A2 Evaluation Dataset: Linux Kernel Driver Analysis with static analyzers
	VI-A3 Cost

	VI-B RQ1: Effectiveness
	VI-B1 Precision and Recall
	VI-B2 New Bugs
	VI-B3 Analysis of FPs
	VI-B4 Analysis of FNs

	VI-C RQ2: Component Contribution
	VI-C1 Baseline
	VI-C2 Security Impact Assessor (SecIA)
	VI-C3 Constraint Assessor (ConA) without Structured Analysis Guidance (SAG)
	VI-C4 Structured Analysis Guidance (SAG)

	VI-D RQ3: Model Versatility
	VI-E Case Study: Data Structure Traversal
	VI-F Threats to Validity

	VII Discussion
	VIII Related work
	IX Conclusion
	References

