
Scalable Graph-based Bug Search for Firmware Images

Qian Feng†, Rundong Zhou†, Chengcheng Xu†, Yao Cheng†, Brian Testa†♦, and Heng Yin†∗
†Department of EECS, Syracuse University, USA

♦Air Force Research Lab
∗University of California, Riverside

†{qifeng,rzhou02,cxu100,ycheng,heyin}@syr.edu ♦brian.testa.1@us.af.mil ∗heng@cs.ucr.edu

ABSTRACT
Because of rampant security breaches in IoT devices, searching
vulnerabilities in massive IoT ecosystems is more crucial than ever.
Recent studies have demonstrated that control-flow graph (CFG)
based bug search techniques can be effective and accurate in IoT
devices across different architectures. However, these CFG-based
bug search approaches are far from being scalable to handle an
enormous amount of IoT devices in the wild, due to their expen-
sive graph matching overhead. Inspired by rich experience in im-
age and video search, we propose a new bug search scheme which
addresses the scalability challenge in existing cross-platform bug
search techniques and further improves search accuracy. Unlike
existing techniques that directly conduct searches based upon raw
features (CFGs) from the binary code, we convert the CFGs into
high-level numeric feature vectors. Compared with the CFG fea-
ture, high-level numeric feature vectors are more robust to code
variation across different architectures, and can easily achieve real-
time search by using state-of-the-art hashing techniques.

We have implemented a bug search engine, Genius, and com-
pared it with state-of-art bug search approaches. Experimental re-
sults show that Genius outperforms baseline approaches for vari-
ous query loads in terms of speed and accuracy. We also evaluated
Genius on a real-world dataset of 33,045 devices which was col-
lected from public sources and our system. The experiment showed
that Genius can finish a search within 1 second on average when
performed over 8,126 firmware images of 420,558,702 functions.
By only looking at the top 50 candidates in the search result, we
found 38 potentially vulnerable firmware images across 5 vendors,
and confirmed 23 of them by our manual analysis. We also found
that it took only 0.1 seconds on average to finish searching for all
154 vulnerabilities in two latest commercial firmware images from
D-LINK. 103 of them are potentially vulnerable in these images,
and 16 of them were confirmed.

Keywords
Firmware Security; Machine Learning; Graph Encoding

ACM acknowledges that this contribution was authored or co-authored by an em-
ployee, or contractor of the national government. As such, the Government retains
a nonexclusive, royalty-free right to publish or reproduce this article, or to allow oth-
ers to do so, for Government purposes only. Permission to make digital or hard copies
for personal or classroom use is granted. Copies must bear this notice and the full ci-
tation on the first page. Copyrights for components of this work owned by others than
ACM must be honored. To copy otherwise, distribute, republish, or post, requires prior
specific permission and/or a fee. Request permissions from permissions@acm.org.

CCS’16, October 24-28, 2016, Vienna, Austria
c© 2016 ACM. ISBN 978-1-4503-4139-4/16/10. . . $15.00

DOI: http://dx.doi.org/10.1145/2976749.2978370

1. INTRODUCTION
Finding vulnerabilities in devices from the Internet of Things

(IoT) ecosystem is more crucial than ever. Unlike in PCs or mobile
phones, a security breach in one IoT device could cause unprece-
dented damage to our daily life, involving massive breakdowns
of public systems [4] or quality of life issues. Even worse, we
cannot rely on traditional protection mechanisms like commercial
AntiVirus software on PCs and mobile devices to prevent attacks,
since these traditional defenses are not feasible on IoT devices due
to their relatively low CPU and memory profiles [3]. Gartner, Inc.
forecasts that 6.4 billion connected things will be in use worldwide
in 2016, up 30 percent from 2015, and will reach 20.8 billion by
2020. The vast diffusion of devices will increase the potential for
the introduction of vulnerabilities to the IoT ecosystem. As a result,
the need for third-party evaluators (e.g. consumer product evalua-
tors, penetration testers) to quickly and accurately identify vulner-
abilities in IoT ecosystem devices on behalf of customers and the
need to support periodic security evaluations on existing devices is
increasing dramatically [1].

However, discovering vulnerabilities in an IoT ecosystem is like
finding a needle in a haystack, even when we are dealing with
known vulnerabilities. For many IoT products, security is an af-
terthought. Between copy-paste coding practices and outsourcing
of functionality to untrusted third-party libraries, the development
process of IoT devices is a fertile environment for bug generation
and persistence. As several integration vendors may rely upon the
same subcontractors, tools, or SDKs provided by third-party ven-
dors [19], bugs generated during the development process can be
spread across hundreds or even thousands of IoT devices with sim-
ilar firmware. Without detailed knowledge of the internal relation-
ships between these vendors, it is impossible to track the same vul-
nerability across the IoT ecosystem [19, 27]. It is even worse when
these devices are built on different architectures [45].

To address this critical problem, security researchers have been
actively developing techniques to automatically analyze and detect
vulnerabilities in IoT products [17,52,61]. Advancing our ability to
perform bug searches in a general, lightweight manner is becoming
increasingly important. Such a bug search technique would allow
security professionals to reduce the time and resources required to
locate a problem. Having done so, security professionals could
scan all IoT devices in the ecosystem for a new vulnerability, and
quickly generate a security evaluation. They would also be able
to scan a new device for all known vulnerabilities, thus allowing
us to learn from past mistakes before the possibly bug-infested IoT
devices are widely deployed.

Bug search at scale. Researchers have already made primitive at-
tempts at bug searching in the firmware images of IoT devices [19,

480

http://dx.doi.org/10.1145/2976749.2978370

23, 45]. One common approach is to scan the firmware images us-
ing superficial patterns such as constant numbers or specific strings
[19]. When a vulnerability is tied to a unique constant or string,
this approach can be very effective and can easily scale to a large
number of firmware images. However, this approach lacks the gen-
erality to deal with more complex vulnerabilities that lack these
distinct constant or string patterns.

To address cross-platform bug search in general, two recent ef-
forts [23, 45] proposed extraction of various robust features from
binary code and then performed searches against the extracted con-
trol flow graphs (CFGs). However, these approaches are far from
being scalable. The approach by Pewny et al. [45] can take up to
one CPU month to prepare and conduct a search in a stock Android
image with 1.4 million basic blocks [23]. Eschweiler et al. [23]
attempted to address this issue by leveraging a more lightweight
feature extraction and using a pre-filtering technique. However, the
efficacy of pre-filtering was only evaluated on a small number of
firmware images, for a small set of vulnerabilities. According to
our large-scale evaluation in Section 5.3, pre-filtering seems unre-
liable and can cause significant degradation in search accuracy.

Bug search as a search problem. Fundamentally, the bottleneck
for the CFG-based bug search techniques is not about the graph
matching algorithm, but rather the search scheme. These tech-
niques conduct pairwise graph matching for search, the complexity
of which makes them unusable in large-scale datasets.

A similar problem has been extensively studied in the computer
vision community where they are interested in efficiently search-
ing for similar images from large volume of image [30, 32, 60].
Instead of conducting pair-wise matching on raw images directly,
they learn higher-level numeric feature representations from raw
images. In this paper, we leverage the successful techniques from
the computer vision community and propose a novel search method
called Genius1 for bug search in IoT devices. Although images
appear to be quite different from binary functions, we found in
this paper that scalable image search methodologies can be applied
for graph-based bug search. As opposed to directly matching two
control-flow graphs, the proposed method learns higher-level nu-
meric feature representations from control-flow graphs, and then
conducts search based on the learned higher-level features.

Compared with existing bug search methods, Genius has the
following two benefits: First, the learned features tend to be more
invariant to cross-architecture changes than the raw CFG features.
This is because Genius learns a feature representation using rep-
resentative CFGs, which tends to be more invariant than the pair-
wise match. This invariance property has been verified in a number
of image retrieval system [53,59] such as the Google image search.
The experimental results in Section 5 substantiate this hypothesis in
the bug search problem. Second, Genius significantly improves
the state-of-the-art bug search efficiency. The graph is a complex
structure, and thus directly indexing or hashing graphs at scale is
still a challenging problem [36]. However, the proposed method
circumvents the difficulty by transforming a graph as a higher-level
feature representation, which can be indexed by Locality Sensitive
Hashing [54]. This transformation enables a bug search method
that could be orders of magnitude faster than existing methods.

Our interdisciplinary study focuses on leveraging existing im-
age retrieval techniques to address the scalability issue in the ex-
isting graph-based bug search methods. Furthermore, our empir-
ical studies provide compelling insights how to find appropriate
settings for the bug search problem. Our empirical observations

1Genius stands for Graph Encoding for Bug Search.

may benefit not only the bug search methods but also other related
approaches [24, 62, 63].

We have implemented a proof-of-concept Genius, and com-
pared it with existing state-of-the-art bug search approaches; our
experiments demonstrate that Genius outperforms existing meth-
ods over various query loads in terms of accuracy and efficiency
and scalability. We further demonstrate the efficacy of IoT bug
search on 8,126 firmware images of 420,558,702 functions. The
performance testing on 10,000 queries showed that Genius can
finish a query in less than 1 second on average.
Contributions. In summary, our contributions are as follows:

• New insights. We leverage techniques widely used in the
computer vision community and develop a control flow graph
based method to address the scalability issue in existing bug
search techniques. We systematically study different schemes
in the existing image search techniques, and discover an ap-
propriate scheme for the bug search in IoT ecosystem.

• Significant scalability improvement. We demonstrate the
efficacy of Genius on firmware images from 8,126 devices
across three architectures and 26 vendors. The performance
testing on 10,000 queries shows that Genius can process
a query in less than 1 seconds on average. We also demon-
strate that Genius can achieve comparable or even better
accuracy and efficiency than the baseline techniques.

• New Discoveries. We demonstrate two use scenarios for
Genius. The results show that Genius takes less than 3
seconds on average to finish a vulnerability search across
8,126 devices. As a result of the efficient method, by only
looking at top 50 candidates in the search result, we found
38 potentially vulnerable firmware images across 5 vendors,
and confirmed 23 of them via manual analysis. We also
found that Genius takes only 0.1 second on average for
all 154 vulnerabilities in two latest commercial firmware im-
ages from D-LINK. 103 potential vulnerabilities were found
in these images, and 16 of them were confirmed.

2. APPROACH OVERVIEW
Inspired by image retrieval techniques, the proposed method in-

cludes the following main steps, as shown in Figure 1: 1) raw fea-
ture extraction, 2) codebook generation, 3) feature encoding, and
4) online search. The first step aims at extracting the attributed
control flow graph, which is referred to as the raw feature, from a
binary function (Section 3). Codebook generation utilizes unsuper-
vised learning methods to learn higher-level categorizations from
raw attributed control flow graphs (Section 4.1). Feature encoding
encodes the attributed control flow graph by learned categorizations
into higher-level feature vector residing in the high-dimensional
space (Section 4.2). Finally, given a function, online search aims
at efficiently finding its most similar functions by Locality Sensi-
tive Hashing (LSH) [9]. Since each function is transformed into
a higher-level numeric feature in the feature encoding step, we can
directly apply LSH to conduct efficient searches in terms of the ap-
proximated cosine and Euclidean distance between the higher-level
features (Section 4.3). The details of each step will be discussed in
the following sections.

Generally, there are two stages in the proposed method: offline
indexing and online search. Offline indexing, which includes raw
feature extraction, codebook generation and feature encoding, is
applied to existing functions before we can perform searches. Sim-
ilar to text and image search methods, this step is a one-time effort
and can be trivially paralleled across multiple CPU cores. The on-
line search phase, which includes feature encoding and search, is

481

Figure 1: The approach overview

applied against a few unseen functions. Due to the limited number
of online operations, online search is typically sufficiently fast for
large-scale search engines. We elaborate on the two stages and the
main steps in the following two use scenarios.

CVE-2014-0160

CVE-2014-3566

FuzzySearch

CVE-xxxx-xxxx
Vulnerability DB

Firmware DB

Firmware
image

CVE-2014-0160 0.02 [sub_0x1, sub 0x2]
CVE-2014-3566 0.8 [sub_0x5, sub_0x3]
...

Results:

Results:output
ddwrt_xxx.libxx.sub_0x123: 0.001
DAP-_xxx.libxx.sub_0x123: 0.001
Ă

������

Figure 2: The deployment of Genius.

Deployment: Figure 2 shows two use scenarios for Genius. 1)
Scenario I: Given a device repository, Genius will index func-
tions in the firmware images of all devices in the repository based
upon their CFGs. When a new vulnerability is released, a secu-
rity professional can use Genius to search for this vulnerability in
their device repositories . Genius will generate the query for the
vulnerability and query in the indexed repository. The outputs will
be a set of metadata about all potentially infected devices with their
brand names, library names and the potentially vulnerable func-
tions. All outputs will be ranked by their similarity scores for quick
screening of the results. 2) Scenario II: Security professionals may
upload unseen firmware images that do not exist in the repository
for a comprehensive vulnerability scan. In this case, Genius will
index these firmware images for the security professionals. As a
result, they can simply query any vulnerabilities in our vulnerabil-
ity database. Genius will retrieve the most similar vulnerabilities
in the existing indexed firmware images and output metadata of
all potentially vulnerable functions including their names, library
names holding these functions and firmware device types where
these functions are used. Again, all outputs will be ranked by their
similarity scores to facilitate quick screening of the results.

3. RAW FEATURE EXTRACTION
The CFG (Control Flow Graph) is the common feature used in

bug search. More recently, different attributes on the basic blocks,
such as I/O pairs and statistic features [23, 45], are explored to
increase the matching accuracy. Following the idea, this paper
utilizes the control flow graph with different basic-block level at-
tributes called ACFG (Attributed Control Flow Graph) as the raw
features to model the function in our problem.

Definition 1. (Attributed Control Flow Graph) The attributed con-
trol flow graph, or ACFG in short, is a directed graphG = 〈V,E, φ〉,
where V is a set of basic blocks;E ⊆ V ×V is a set of edges repre-
senting the connections between these basic blocks, and φ : V →
Σ is the labeling function which maps a basic block in V to a set of
attributes in Σ.

The attribute set Σ in Definition 1 can be tailored depending
upon the level of detail required to accurately characterize a ba-
sic block. For efficiency, instead of using expensive semantic fea-
tures like I/O pairs [45], we focus on two types of features in this
paper: statistical and structural. The statistical features describe lo-
cal statistics within a basic block, whereas the structural features
capture the position characteristics of a basic block within a CFG.
Inspired by [23], in Σ we extract six types of statistical features
and two types of structural features, listed in Table 1.

Inspired by the work on complex network analysis, we propose
two types of structural features: no. of offspring and betweenness
centrality. The no. of offspring is the number of children nodes in
the control flow graph. This information helps locate the layer of
a node in the graph. The betweenness centrality measures a node’s
centrality in a graph [42]. Nodes in the same layer in the CFG
could have different betweenness centrality. The results in Sec-
tion 5.4 demonstrate the efficacy of the proposed structural features.
In summary, the proposed features consider not only the statistical
similarity but also the structural similarity between two ACFGs.

To generate the attributed graph for a binary function, we first
extract its control flow graph, along with attributes in Σ for each
basic block in the graph, and store them as the features associated
with the basic block. We utilize IDA Pro [28], a commercial disas-
sembler tool, for attributed graph construction.

Table 1: Basic-block level features used in Genius.

Type Feature Name Weight (α)

Statistical Features

String Constants 10.82
Numeric Constants 14.47
No. of Transfer Instructions 6.54
No. of Calls 66.22
No. of Instructions 41.37
No. of Arithmetic Instructions 55.65

Structural Features No. of offspring 198.67
Betweeness 30.66

4. METHODOLOGY
Section 3 introduced the notion of Attributed Control Flow Graph

(ACFG), which will be used as the raw feature set for Genius.
This section discusses how we utilize these ACFGs and transform

482

them into high-level feature vectors that are suitable for scalable,
accurate bug search.

4.1 Codebook Generation
The first step in the proposed method is codebook generation,

which aims at learning a set of categorizations, that is codewords,
from raw features. Formally, a codebook C is a finite and discrete
set: C = {c1, c2, . . . , ck}, where ci is the i-th codeword, or “cen-
troid”, and i is the integer index associated with that centroid. The
codebook is generated from a training set of raw features by an
unsupervised learning algorithm. In our case, the raw features are
the control flow graphs. The codebook generation consists of two
phases: similarity metric computation and clustering.

4.1.1 Raw Feature Similarity
We consider the raw feature similarity computation as a labeled

graph matching problem. By definition, ACFGs are matched not
only by their structures but also by their labels (attributes) on the
structures. Theoretically, graph matching is an NP-complete prob-
lem, but many techniques have been proposed to optimize the pro-
cess for an approximate matching result [14,49]. For efficiency, we
utilize bipartite graph matching to quantify ACFG similarity. Al-
though other approaches such as MCS (Maximum Common Sub-
graph) matching [14] may also be applied to this problem, effi-
ciency is still a major concern. The primary limitation of bipartite
graph matching is that it is agnostic to the graph structure, and the
accumulation of errors could result in less accurate results. To ad-
dress the issue, we have appended structural features, described in
Section 3, to allow bipartite graph matching to incorporate some
graph structural information. Experiments in Section 5.4 show
that these structural features boost the accuracy of bipartite graph
matching in our problem.

Essentially, bipartite graph matching utilizes the match cost of
two graphs to compute the similarity. It quantifies the match cost
of two graphs by modeling it as an optimization process. Given two
ACFGs,G1 andG2, the bipartite graph matching will combine two
ACFGs as a bipartite graph Gbp = (V̂ , Ê), where V̂ = V (G1) ∪
V (G2), Ê = {êk = (vi, vj)|vi ∈ V (G1) ∧ vj ∈ V (G2)}, and
edge êk = (vi, vj) indicates a match from v1 to v2. Each match is
associated with a cost. The minimum cost of two graphs is the sum
of all edges cost on the mapping. Bipartite graph matching can go
over all mappings efficiently, and select the one-to-one mapping on
nodes from G1 to G2 of the minimum cost.

In our problem, a node in the bipartite graph is a basic block on
the ACFG. The edge cost is calculated by the distance between the
two basic blocks on that edge. Each basic block on the ACFG has
a feature vector discussed in Section 3. Therefore, we calculate the
distance between two basic blocks by cost(v, v̂) =

∑
i αi|ai−âi|∑

i αi max(ai,âi)
.

It is the same distance metric used in the paper [23] to quantify the
distance of two basic blocks. ai and âi are the i-th feature in fea-
ture vectors of two basic block v and v̂ respectively. If the feature
is a constant, |ai − âi| is their difference. If the feature is a set, we
use Jaccard to calculate the set difference. αi is the corresponding
weight of the feature which will be discussed below.

The output of bipartite graph matching is the minimum cost of
two graphs. Normally the match cost of two graphs is greater
than one, and positively correlated to the size of compared ACFGs.
Therefore, we normalize the cost to compute the similarity score.
For cost normalization, we create an empty ACFG Φ for each com-
pared ACFG. Each node in the empty graph has an empty feature
vector, and the size of the empty graph is set to that of the corre-
sponding compared graph. By comparing with this empty ACFG,
we can obtain the maximum matching cost the compared graph can

produce. We compute the matching cost with the empty graph for
the two graphs, and select the maximum matching cost as the de-
nominator, and use it to normalize the matching cost of two graphs.
Suppose cost(gi, gj) represents the cost of the best bipartite match-
ing between two graphs g1, g2, the ACFG similarity between two
graphs can be formally represented as following:

κ(g1, g2) = 1− cost(g1, g2)

max(cost(g1, Φ), cost(Φ, g2))
, (1)

We found that the features in Table 1 have different importance
in computing graph similarity. We learn weights of the raw features
to capture the latent similarity between two ACFGs. Basically, the
learning objective is to find weight parameters that can maximize
the distance of different ACFGs while simultaneously minimizing
the distance of equivalent ACFGs. To approach this optimization
problem, we adopt the approach used in Eschweile et al [23]. More
specifically, we use a genetic algorithm using GALib [56]. We
also execute an arithmetic crossover using a Gaussian mutator 100
times. The learned weights for each feature are listed in Table 1.

4.1.2 Clustering
After defining the similarity metric for the ACFG, the next step

is to generate a codebook using the unsupervised learning method.
This process can be regarded as a clustering process over a col-
lection of raw features: ACFGs, where each cluster comprises a
number of similar ACFGs.

In this paper, we use spectral clustering [43] as the unsupervised
learning algorithm to generate the codebook. Formally, the spectral
clustering algorithm partitions the training set of ACFGs into n sets
S = {S1, S2, . . . , Sn} so as to minimize the sum of the distance
of every ACFG to its cluster center. ci ∈ C is the centroid for the
subset Si. We define the centroid node as the ACFG that has the
minimum distance to all the other ACFGs in Si, and the collection
of all centroid nodes constitutes a code book.

Unlike traditional clustering algorithms, in which the inputs are
numerical vectors, in this paper we propose to use a kernelized
spectral clustering where the input is a kernel matrix. The similar-
ity computed in Section 3 can be used to generate the kernel matrix
for the spectral clustering. Suppose the kernel matrix is M, and
each entry in M is a similarity score of two corresponding ACFGs.
The kernelized clustering works on M and outputs the optimal par-
titions (clusters) of ACFGs in the training data.

The codebook size n would affect the bug search accuracy. To
this end, we systematically study a suitable n in the bug search in
Section 5 and demonstrate that n = 16 seems to be a reasonable
codebook size trading off efficiency and accuracy.

In order to reduce computational cost in constructing the code-
book, a common strategy is to randomly sample a training set from
the entire dataset. We observed that there is a significant variance in
ACFG size. To reduce the sampling bias, we first collect a dataset
which covers ACFGs of different functions from various architec-
tures. See Section 5.2. Then split ACFGs into separate “strata”
with different size ranges. Each stratum is then sampled as an
independent sub-population, out of which individual ACFGs are
randomly selected. This is a commonly used approach known as
stratified sampling [50].

The codebook generation is expensive. However, since the code-
book generation is an offline and one-time effort, it will not detri-
mentally impact the runtime for the online searches. Besides, some
approaches can be used to expedite this process, such as the par-

483

allelled clustering approximate clustering [12] or the hierarchical
clustering algorithm [40].

4.2 Feature Encoding
Given a learned codebook, feature encoding is to map raw fea-

tures of a function into a higher-level numeric vector, each dimen-
sion of which is the similarity distance to a categorization in the
codebook. This step is known as feature encoding [16].

There are two notable benefits for feature encoding. First, the
higher-level feature can better tolerate the variation of a function
across different architectures, as each of its dimensions is the sim-
ilarity relationship to a categorization which is less sensitive to the
variation of a binary function than the ACFG itself. This property
has been demonstrated by many practices in the image search to re-
duce the noises from the scale, viewpoint and lighting. We further
demonstrate it in the bug search scenario in Section 5.3. Second,
the ACFG raw features after encoding becomes a point in the high
dimensional space which can be conveniently indexed and searched
by existing hashing methods. Therefore, the encoding enables a
faster real-time bug-search system. See Section 5.5.

Formally, the feature encoding is to learn a quantizer q : G →
Rn over the codebook C = {c1, ..., cn}, where G is the set of
all ACFG graphs following Definition 1, and Rn represents the n-
dimensional real space. In this paper, we discuss two approaches
to derive q. For a given graph gi, let NN(gi) represent the nearest
centroid neighbors in the codebook:

NN(gi) = arg max
cj∈C

κ(gi, cj) (2)

where κ is defined in Eq. (3). A common practice in image re-
trieval is to consider not only the nearest neighbor but a few nearest
neighbors, e.g. 10 nearest neighbors [31, 59].

Bag-of-feature encoding. The bag-of-feature encoding, which
maps a graph to some centroids in the codebook, represents each
function as a bag of features. The bag-of-feature quantizer can be
defined as:

q(gi) =
∑

gi:NN(gi)=cj

[1(1 = j), . . . ,1(n = j)]T , (3)

where 1(·) is an indicator function which equals 1 when · is true
and 0 otherwise. Eq. (3) indicates that the output encoded feature
will add 1 to the corresponding dimension of the nearest centroid.
This representation is inspired by the bag-of-words model used in
text retrieval [38], where each document is represented by a collec-
tion of terms in the English vocabulary. In analogy, in our problem,
each function is represented by a collection of representative graphs
in the learned codebook. After encoding each function becomes a
point in the high dimensional vector space.

VLAD encoding. The drawback of the bag-of-word model is
that the distance between a given graph and a centroid is completely
ignored as long as the centroid is the graph’s nearest neighbors. The
VALD [10] encoding was proposed to incorporate the first-order
differences and assigns a graph to a single mixture component.

q(gi) =
∑

gi:NN(gi)=cj

[1(1 = j)κ(gi, c1), ...,1(n = j)κ(gi, cn)]T ,

(4)
Compared to Eq. (3), Eq. (4) adds the similarity information to
the centroids in the encoded features. Note as our raw features
are graphs, in Eq. (4) we use the kernelized similarity function in
the VALD encoding which is different from the traditional VALD
defined for image retrieval. In VALD encoding, a dimension repre-
sents the similarity to a corresponding ACFG centroid in the code-

book. As a result, the vector is of latent semantic meaning that
reflects a similarity distribution across all centroids in the learned
codebook. Empirically we found that VLAD encoding performs
better than the bag-of-feature encoding for bug search.

ϭ

Ϯ ϯ

ϱϰ ϲ

ϳ

ϭ

Ϯ ϯ

ϴ ϲ

ϳ

&ϭͺǆϴϲ &ϭͺŵŝƉƐ &ϮͺŵŝƉƐ

ϴ ϯ

ϭ

ϵ

ϳ

ϲ

Codebook

ϭ

Ϯ ϯ

ϲϳ

ϭ
ϴ

ϳϵ

ϭ

ϴ ϯ

ϵ ϳ

MCS(F1_x86, F1_mips) = 0.71 (5/7)

MCS(F1_mips, F2_mips) = 0.83 (5/6)

Function

F1_x86 (2/7, 5/7, 1/7)

F1_mips (2/6, 5/6, 1/6)

 (5/6, 4/6, 4/6)F2_mips

Cosine Encoding Vector

с�ϭ͘Ϭ

с�Ϭ͘ϴϮ

Euclidean

с�Ϭ͘ϴϳϬ

с�Ϭ͘Ϯϳϯ

c. MCS match result

d. Fabulous match result

a. Raw ACFGs

b. Codebook for Genius

Figure 3: A toy example on VALD feature encoding. Features
on each basic block of ACFG are simplified into a single constant
value. The match cost of two basic blocks with the same value is
zero, otherwise 1.

We will walk the encoding algorithm in a toy example in Fig. 3.
Given ACFGs for three functions F1_x86, F1_mips and F2_mips,
where the first two are the same function compiled from different
architectures, and the last one is a completely different function.
The compiler used for F1_mips merges the basic block 4 and 5 into
the single node 8, so the ACFG of function F1 in MIPS is different
from that in x86, due to the instruction reordering. F2_mips shares
partial code with function F1_mips. For example, they both check
some environment conditions and directly return if it fails.

For clarity, the similarity metric between ACFGs used in Fig. 3
adopts maximum common subgraph matching. For example, the
similarity score between F1_x86 and F1_mips is 5/7 where 5 means
the maximum common subgraph, and 7 means the maximum size
between two graphs.

The pair-wise match will match two functions directly by their
ACFGs, whereas Genius will match them by their encoded vec-
tors. VLAD encoding generates the encoded vector by compar-
ing a ACFG to its top 3 closest centroid nodes in the codebook
in Fig. 3b). Different from BOF model, it will store the similarity
score to each centroid node into the corresponding dimension in the
vector. The resulting feature vector is shown in Fig. 3d) (bottom-
right corner). Fig. 3d) also lists match results for both pair-wise
match and Genius. The distance metrics used by Genius will
be discussed in Section 4.3. We can see that the pair-wise graph
match fails to match F1_x86 to F1_mips, since it matches two func-
tions locally. On the contrary, Genius can still match these two
functions with high similarity score, as the encoded feature vector
is more invariant to local changes on an ACFG. Note, this toy exam-
ple is only for illustration and we will substantiate our hypothesis
by extensive experiments on real-world datasets in Section 5.3.

4.3 Online Search
The encoded features generated in Section 4.2 may be directly

used in search. However, this straightforward solution may not be
scalable for millions of functions in real-world applications. This
section introduces a scalable solution by LSH (Locality-sensitive
hashing) to scale the search. In this paper, we utilize LSH as op-
posed to other indexing methods such as k-d tree, as the k-d tree
may not be suitable for our problem due to its inefficiency in high-
dimensional spaces especially when the codebook is large [57].

Given a query function, we first derive its encoded feature by
Eq. (3) and (4), then we are interested in finding the function in

484

a large dataset that are closest to the query with a high probabil-
ity. LSH achieves this goal by learning a projection so that if two
points are closer together in the feature encoding space, they should
remain close after the projection in the hashing space. Follow-
ing [54], given the encoded feature q(g), we employ the projection
functions hi defined as:

hi(q(g)) = b(v · q(g) + b)/wc, (5)
where w is the number of quantized bin, v is a randomly selected
vector from a Gaussian distribution, and b is a random variable
sampled from a uniform distribution between 0 and w. In addi-
tion, b·c is he floor operator. Essentially, a hashing function defines
a hyper-plane to project the input encoded features. For any func-
tions q(gi), q(gj) ∈ Rn that are close to each other in the encoding
space, there is a high probability P [h(q(gi)) = h(q(gj))] = p1
that they fall into the same bucket. Likewise, for any functions that
are far apart, there is a low probability p2(p2 < p1) that they fall
into the same bucket.

The locality sensitive hash of an encoded feature q(g) as lsh(g) =
[h1(q(g)), .., hw(q(g))] where w is the number of hash functions.
After LSH, a function is projected as a point in the hashing space.
We experiment on two classical distance metrics defined in the
hashing space: Euclidean distance and the cosine distance [47] in
our bug search problem.

5. EXPERIMENTAL EVALUATION
In this section, we empirically evaluate Genius with respect

to accuracy, efficiency, and scalability. First, we briefly describe
the experiment setup and the data sets used in our evaluation (Sec-
tions 5.1 and 5.2). Second, we conduct a systematic baseline com-
parison against the existing bug search methods in terms of the ac-
curacy and efficiency in the cross-platform setting (Section 5.3).
Third, we evaluate Genius on 33,045 firmware images and demon-
strate its scalability (Section 5.5). Finally, we present two case
studies that demonstrate how we would expect a user to employ
Genius under realistic conditions (Section 5.6).

5.1 Experiment Setup
We wrote the plugin to the disassembler tool IDA Pro [28] for

ACFG extraction. We implemented codebook generation, feature
encoding in python, and adopted Nearpy [6] for LSH hashing and
search. We utilized MongoDB [5] to store the firmware images
and encoded features. Our experiments were conducted on a server
with 65 GB memory, 24 cores at 2.8 GHz and 2 TB hard drives.
All the evaluations were conducted based on four types of datasets:
1) baseline evaluation dataset; 2) two public firmware images; 3)
33,045 firmware images and 4) the vulnerability dataset.

5.2 Data preparation
Dataset I – Baseline evaluation. This dataset was used for base-
line comparison, and all functions in this dataset has known ground
truth for metric validation. We prepared this dataset using BusyBox
(v1.21 and v1.20), OpenSSL (v1.0.1f and v1.0.1a) and coreutils
(v6.5 and v6.7). All programs were compiled for three different
architectures (x86, ARM, MIPS; all 32 bit) using three compiler
versions (gcc v4.6.2/v4.8.1 and clang v3.0). We also enabled four
optimization levels (O0-O3) for each version of a compiler. These
settings have been used in existing studies as well [45]. We kept
the symbol names during compilation which allowed us to main-
tain ground truth for evaluations.

These different compilation combinations resulted in a dataset of
over 568,134 functions. As several of the existing techniques could
not scale to a dataset of this size, we randomly sampled 10,000

functions from this dataset as the baseline dataset, and used that
for baseline evaluation. Each function in the baseline dataset has at
least two instances: one for query and another for search. The re-
maining functions in Dataset I were used for codebook generation.
Dataset II – Public dataset. Recent work such as Pewny et al [45]
and Eschweiler et al [23] used the same public dataset based upon
two publicly-available firmware images for baseline comparison [7,
8]. We also evaluated Genius using this dataset to provide for fair
comparison with the state-of-the-art systems.
Dataset III – Firmware image dataset. This dataset of 33,045
firmware images was collected from the wild. We used it to eval-
uate the scalability of Genius. The images in this dataset were
collected from three sources: 9,000 firmware images from [17], the
entire dataset from [19] and 500 randomly selected images from
our own crawl of the DDWRT ftp site [2]. Of the total 33,045
firmware images collected, we successfully unpacked 8,126 images
from 26 different vendors. The vendors include such as ATT, Ver-
izon, Linksys, D-Link, Seiki, Polycom, TRENDnet. The product
types from each vendor include IP cameras, routers, access points
and third-party or open-source firmware.
Dataset IV–The vulnerability dataset. This dataset is a mapping
between CVE numbers and the corresponding functions that actu-
ally introduced the vulnerabilities. To construct a query which can
be used by Genius for bug search, we need to find binary code for
these vulnerable functions. While other works have already inves-
tigated construction of vulnerability databases [44], none of them
fit our purposes; they cannot extract the binary code for vulnerable
functions required by Genius. As a result, we created a freely
available vulnerability database for this effort and for the broader
research community.

To build this database, we mined official software websites to
collect lists of vulnerabilities with the corresponding CVE num-
bers. We were also able to retrieve information about the software
commits to fix the vulnerabilities, which provided us the vulnerable
function names and symbols. We then downloaded the source code
for the vulnerable versions of the software, compiled the source
and extracted the vulnerable functions from the binary code using
the symbol names. We then used Genius to generate higher-level
features for each vulnerable function. In the end, we utilized Mon-
goDB [5] to build the database which stored the vulnerable func-
tions and their corresponding feature vectors for later use. In our
evaluation, we were only interested in vulnerabilities related to li-
braries widely used in firmware devices. We selected OpenSSL for
demonstration, since it is widely used in IoT devices. The resulting
vulnerability database includes 154 vulnerable functions.

5.3 Cross-Platform Baseline Comparison
We first evaluated Genius with baseline methods under the

cross-platform setting. All evaluations in this subsection were con-
ducted under the baseline dataset in Dataset I and Dataset II. Since
each function name has multiple instances in Dataset I, we col-
lected the query set Q by randomly selecting one instance for each
function name, and considered the rest of the baseline dataset as a
codebase. The codebook of Genius in this part is also trained on
Dataset I, and its size is 16 for all baseline evaluations.
Evaluation Metrics. We used two metrics to evaluate the accuracy
of the proposed and baseline methods: the recall rate (A.K.A true
positive rate) and false positive rate. In the code search scenario,
the search results are a ranked list. For each query q, there are m
matching functions out of a total of L functions. If we consider
the top-K retrieved instances as positives, the total number of cor-
rectly matched functions, µ, are true positives, and the remaining

485

0 50 100 150 200
7RS�.

0

0.2

0.4

0.6

0.8

1

7
KH
�S
RV
LWL
YH
O�U
DW
H

a) Recall rates across different threshold K

0 0.2 0.4 0.6 0.8 1
)DOVH�SRVLWLYH�UDWH

0

0.2

0.4

0.6

0.8

1

7
UX
H�
SR
VL
WLY
H�
UD
WH

b) ROC curves for different approaches

DiscovRe
(no filtering)
Genius
DiscovRe
Centroid

Figure 4: Baseline comparison for accuracy on Dataset I. K means that we consider retrieved candidates on top K as positives Two
figures share the same legends.

number of functions in the topK, that isK−µ, are false positives.
Based on the definitions of recall and false positive rate, the recall
rate is calculated as recall(q) = µ

m
and the false positive rate is

FPR(q) = (K−µ)
L−m .

Preparation of Baseline Systems. We prepared three represen-
tative, state-of-the-art, cross-architecture bug search techniques to
establish our evaluation baseline: discovRe [23], Multi-MH and
Multi-k-MH [45] and a centroid based search [18]. Our first task
was to prepare versions of these solutions for this evaluation.

• discovRe [23]: Due to unavailability of the source code, we
reimplemented discovRe2 and set the iteration limitation to
be the same (i.e., 16*max(|G1|, |G2|)) as the one used in
their work work. We evaluated Genius against two ver-
sions of discovRe: the original version with pre-filtering and
the version without pre-filtering. For the pre-filtering ver-
sion, we set the threshold to 128 as specified in [23]. The
version without pre-filtering uses only their graph matching
metric for search.
• Multi-MH and Multi-k-MH [45]: Their source code is not

available. Due to the complexity, it was less possible for us
to reimplement their approach within a reasonable amount
of time. Fortunately, discovRe has already conducted a thor-
ough baseline comparison against these two approaches and
published the results. The binaries used for the evaluation
are also available online. Hence, we evaluated Genius on
the same setting for this baseline comparison, and compared
the published numbers on the benchmark.
• Centroid [18]: The centroid-based approach is known for

its efficiency with respect to the Android malware clone and
repackage problem [18]. We implemented a centroid-based
bug search system for IOT devices. Note that while the cen-
troid method is not directly designed for cross-platform code
matching, it is still meaningful to compare it with Genius
in terms of efficiency and accuracy.

A. Accuracy comparison.
To evaluate the efficacy of Genius, we first conducted thorough

comparisons with DiscovRe and Centroid on Dataset I, since we
2We contacted the author of discovRe for comparison by providing
their search results, but they have not provided us results yet.

have reimplemented these two approaches. We compared with the
published results of Multi-MH and Multi-k-MH on Dataset II.

The first round of evaluations worked on the baseline dataset in
Dataset I. We randomly selected 1000 functions as queries to feed
into the target approach, and evaluated search results in terms of
two metrics. Fig. 4a) lists the average recall rates for 1,000 queries
across different thresholds of K, where the the y-axis indicates the
recall for the corresponding K values. We can see that Genius
significantly outperforms the baseline methods for every value of
K. For example, Genius ranks 27% functions at top 1, whereas
discovRe only ranks 0.5%. We also found that the performance of
discovRe is worse than the version without pre-filtering. Fig. 4b)
shows the ROC curves for each approach. This was the macro-
average result across 1,000 queries. We can see that the ROC curve
of Genius is better than those of the baseline approaches, espe-
cially when the false positive rate is small. The results in Fig. 4 (a)
and (b) substantiate that Genius can achieve even better accuracy
than the state-of-the-art methods.

We inspected the search results and found that the superior per-
formance of Genius is mainly because of the salient and robust
feature representation learned on top of the ACFGs. As an example,
ssl3_get_message was ranked at top 1 by Genius but ranked
below 40th by baseline methods because its CFG extracted from
the function of X86 and MIPS was changed. Our method managed
to capture the change and thus showed better results. We also an-
alyzed the cases where Genius yield worse results than baseline
methods. We hypothesize the reason is about the quality of the
learned codebook. We will discuss it in Section 5.4.

B. Efficiency comparison.
We conducted efficiency comparison in terms of online search

and offline preparation. For online search, we evaluated on both
Dataset I and II. For offline preparation efficiency, we evaluated
Dataset II as a demonstration.

Offline Preparation Efficiency. The preparation includes ACFG ex-
traction and feature encoding. Table 3 shows the aggregation of
preparation time for the phases of Genius on Dataset II. We can
see that Genius outperforms Multi-MH and Multi-k-MH. Dis-
covRe only considers the control flow graph extraction time, whereas
Genius needs extra time to encode these graphs. Even if Genius
is slower than DiscovRe at the preparation stage, as the preparation

486

Table 2: Comparison with Multi-MH and Multi-k-MH, discovRE, Centroid with the propose method for OpenSSL. Each cell contains the
rank, separated by the colon, for both vulnerable functions: heartbeat for TLS and DTLS.

Multi-MHTLS [45] Multi-k-MH [45] discovRE [23] Genius Centroid [18]
From ->To TLS DTLS TLS DTLS TLS DTLS TLS DTLS TLS DTLS
MIPS→ DD-WRT 1:2 2:4 1:2 1:2 1:2 1:2 1:2 1:2 46:100 87:99
MIPS→ ReadyNAS 1:2 6:16 1:2 1:4 1:2 1:2 1:2 1:2 88:190 678:988
x86→ DD-WRT 70:78 1:2 5:33 1:2 1:2 1:2 1:2 1:2 97:255 102:89
x86→ ReadyNAS 1:2 1:2 1:2 1:2 1:2 1:2 1:2 1:2 145:238 333:127
Query Normalized Avg. Time 0.3s 1 s 4.1× 10−4 s 1.8× 10−6 s 1.4× 10−6 s

Table 3: Baseline comparison on preparation time.

Preparation Time in Minutes
Firmware Image Binaries Basic Blocks Multi-MH Multi-k-MH discovRE Genius Centroid
DD-WRT r21676 (MIPS) 143 (142) 329,220 616 9,419 2.1 4.9 3.2
ReadyNAS v6.1.6 (ARM) 1,510 (1,463) 2,927,857 5,475 83,766 54.1 89.7 69.6

10-4 10-2 100 102 104

Search time in seconds

0

0.2

0.4

0.6

0.8

1

Pe
rc

en
ta

ge
 o

f #
 fu

nc
tio

ns

DiscovRe without prefiltering DiscovRe Centroid GHQLXV

Figure 5: The CDFs of search time on Dataset I.

is an offline stage and only an one-time effort, it is reasonable to
sacrifice some preparation time for the online search efficiency.

Online Search Efficiency. Similar to the accuracy comparison dis-
cussed above, we evaluated the online search efficiency on Dataset
I and II, respectively. We first conducted the search on Dataset I,
searched all of the functions in the dataset and recorded their search
times for each target approach. Fig. 5 lists the Cumulative distri-
bution function (CDFs) of search time for the four approaches on
Dataset I, where the x-axis plots the search time in seconds. We
can see that Genius and the centroid-based approach have least
search time. DiscovRe, on the other hand, has the longest search
time because it requires expensive online graph matching. In the
best case, discovRe takes 10 ms for a query, whereas Genius only
requires 0.1 ms to return more accurate results. Unsurprisingly, we
also found that the version of discovRe without pre-filtering has
even worse performance. It required nearly 2 hours for a single
query in the worst case, and was still less accurate than Genius.
Although the centroid approach had comparable efficiency with
Genius, as previously mentioned, centroid significantly under-
performs Genius in terms of the accuracy.

We also conducted a second round evaluation on Dataset II for all
baseline approaches. We utilized the search time for the Heartbleed
vulnerability as the metric. Table 2 lists the search results. It shows
that Genius is orders of magnitude faster than Multi-MH, Multi-
k-MH and discovRE. This demonstrates that Genius outperforms
most of the existing methods in terms of efficiency.

5.4 Parameter Studies
We systematically studied the parameter’s impact on the accu-

racy of Genius under different settings. The parameters for evalu-
ation included the structural features used in bipartite graph match-

ing, the codebook size, the size of training data for codebook gen-
eration, and the feature encoding methods. All evaluation settings
were conducted on Dataset I.
A. Distance metrics and structural features. To verify the contri-
bution of the proposed structural features, we conducted bipartite
graph matching experiments with and without structural features.
As shown in Fig. 6a), the matching with structural features out-
performs the matching without it. Besides, we also evaluated two
distance metrics used in the LSH. Results show that the cosine dis-
tance performs better than the Euclidean distance.
B. Codebook sizes. We created codebooks of different sizes and
studies their search accuracy. We evaluated the accuracy in terms
of the recall rate at two representative false positive rates. Fig. 6b)
illustrates the results for the codebooks of 16, 32, 64, and 128 cen-
troids. We can see that the codebook size seems not having a signif-
icant influence on the accuracy of Genius. This result provides an
insight that allow us to reduce codebook preparation time by using
a smaller codebook n = 16.
C. Training data sizes. Another important parameter is the size
of training set used to generate codebook. We selected training
data samples of different sizes to generate the codebook for search.
Fig. 6c) shows their search results. We can see that the more sam-
ples used for training, the better Genius performed, but the in-
crease in accuracy becomes saturated when the training data is suf-
ficiently large, in our case up to 100 thousand functions. This is
consistent with observations from image retrieval methods.
D. Feature encoding methods. We discussed two feature encod-
ing methods in Section 4.2: bag-of-feature and VLAD encoding.
We compared their impacts on the search accuracy while fixing
other parameters. Fig. 6d) illustrates the ROC curves using two
encoding methods. As we can see, VALD performs better than
Bag-of-Feature encoding. This observation suggests considering
the first-order statistics is beneficial for bug search problem. As the
computational cost is similar between VALD and bag-of-features,
we recommend using VALD feature encoding in practice.

5.5 Bug Search at Scale
We evaluated the scalability of Genius on Dataset III, which

consists of 8,126 firmware images containing 420,336,846 func-
tions, in terms of the preparation phase and search phase. We in-
vestigated the time consumption for each stage to demonstrate that
Genius is capable of handling firmware images at a large scale.

We encoded 1 million functions randomly selected from Dataset
III and collected the preparation time for each of them. The prepa-
ration time included the control flow graph extraction and graph

487

� ��� ��� ��� ��� �
False postive rate

�

���

���

���

���

�

Tr
ue

 po
sit

iv
e r

ate
*HQLXV�(XFOLGHDn�
*HQLXV�CRVLQH�
%*0�Z�R�6WUXFW)
%*0�Z���6WUXFW)�

(a) Distance metrics and structural features

16 32 64 128
0.65

0.7

0.75

0.8

0.85

0.9

Codebook Size

R
e
ca

ll

Recall@FPR(0.075)
Recall@FPR(0.110)

(b) Codebook sizes

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

Flase Positive Rate

T
ru

e
 P

o
si

tiv
e
 R

a
te

Training Set 4K
Training Set 20K
Training Set 100K

(c) Training set size

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

False Positive Rate

T
ru

e
 P

o
si

tiv
e

 R
a

te

VALD Encoding
Bag−of−Feature Encoding

(d) Feature encoding

Figure 6: Accuracy comparison with different parameter settings. a), c) and d) are ROC curves

encoding time. Fig. 10a) demonstrates the Cumulative Distribution
Function (CDF) of time consumption for randomly selected 1 mil-
lion query functions. We can see that nearly 90% of the functions
were encoded in less than 0.1 seconds. Additionally, less than 10%
of the functions needed more than 4 seconds to encode. This is be-
cause these functions have more than 1000 basic blocks, and thus
take longer to encode. The prepartion time across different sizes of
ACGFs is illustrated in Fig. 10b).

We further evaluated the search time for Genius in the large
scale codebase. We partitioned Dataset III into six codebases of
different scales from s = 103 to s = 108, where s is the total
number of functions in the codebase. Genius was tested against 1
to 10,000 sequentially submitted queries. Fig. 10c) shows the log-
log plot of the time consumption for Genius at the online search
phase. As we can see, the search time grows sublinearly according
to the increase of the codebase size, and the average search time
over observed was less than 1 second for a firmware codebase of
about 100 million functions.

5.6 Case Studies
We also evaluated the efficacy of Genius in real bug search

scenarios. Case studies were conducted on Genius for the two
use scenarios discussed in Section 2. With the aid of case studies,
we demonstrated how Genius would work in the real world to
facilitate the vulnerability identification process.

Scenario I. In this scenario, we conducted a vulnerability search on
Dataset III of 8,126 images using vulnerability queries extracted
from Dataset IV. We performed a comprehensive search for two
vulnerabilities (CVE-2015-1791 and CVE-2014-3508), which took
less than 3 seconds. We then manually verified the vulnerability
authenticity for the returned candidate functions. We disassembled
the binary code for each candidate, and looked into their seman-

tics to check whether they were patched or not. Due to the work-
load of manual analysis, we only verified the top 50 candidates for
the two selected vulnerabilities. We found 38 potentially vulnera-
ble firmware devices across 5 vendors, and confirmed that 23 were
actually vulnerable. We also contacted these product vendors for
further confirmation. The following gives the detailed discussion
about search results.

CVE-2015-1791. This vulnerability allows remote attackers to
cause a denial of service (double free and application crash) on
the device. In the top 50 candidates, we found that there were 14
firmware images potentially affected by this vulnerability. We were
able to confirm that 10 of these images were actually vulnerable.
These images were from two vendors: D-LINK and Belkin.

CVE-2014-3508. This vulnerability allows context-dependent
attackers to obtain sensitive information from process stack mem-
ory by reading the output of sensitive functions. We found that
there were 24 firmware images which could have this vulnerability,
and we were able to confirm that the vulnerabilities existed in 13
images from three vendors. These vendors included CenturyLink,
D-Link and Actiontec.

This clearly demonstrated that a security evaluator, after only 3
seconds, could get a list of candidate functions to prioritize their
search for vulnerable device firmware.

Scenario II. We chose the two latest commercial firmware images
from D-Link DIR-810 model as our evaluation targets. We built
the LSH indexes for these two firmware images and then searched
those two images for all 185 vulnerabilities from Dataset IV (dis-
cussed in Section 5.2). It took less than 0.1 second on average
to finish searching for all 154 vulnerabilities. We conducted man-
ual verification at the top 100 candidates for each vulnerability and
found 103 potential vulnerabilities in total for two images, 16 of

488

0 4 8 12 16 18 22
0

20%

40%

60%

80%

100%

Time in seconds

Pe
rc

en
ta

ge
 o

f f
un

ct
io

ns

Figure 7: The CDF of preparation
time over#1 million functions

0 0.5 1 1.5 2
x 104

0

30

60

90

120

150

of Basic Blocks

Ti
m

e
in

 s
ec

on
d

Figure 8: The preparation time cross
different size of CFG

10^3 10^4 10^5 10^6 10^7 10^8

10^−8

10^−6

10^−4

10^−2

1

10^2

The scale of codebase (# of functions)

Se
ar

ch
 ti

m
e

in
 s

ec
on

ds

Figure 9: The search time crossscales of
fimware codebases(# of funcitons

Figure 10: The breakdown of the performance for Genius.

Table 4: Case study results for Scenario II

DIR-810L_REVB_FIRMWARE_2.03B02 DIR-810L_REVB_FIRMWARE_2.02.B01
CVE Patched Vulnerability Type CVE Patched Vulnerability Type
CVE-2016-0703 No Allows man-in-the-middle attack CVE-2015-0206 No Memory consumption
CVE-2015-1790 No NULL pointer dereference CVE-2014-0160 Yes Heartbleed
CVE-2015-1791 Yes Double free CVE-2015-0289 No NULL pointer dereference
CVE-2015-0289 No NULL pointer dereference CVE-2016-0797 No Heap memory corruption
CVE-2014-8275 No Missing sanitation check CVE-2016-0798 No Memory consumption
CVE-2015-0209 No Use-after-free CVE-2014-3513 No Memory consumption
CVE-2015-3195 No Mishandles errors CVE-2014-3508 No Information leakage
CVE-2015-0206 No Memory consumption
CVE-2014-8275 No Missing sanitation check

which were confirmed (see Table 4). We contacted the product
vendor for further confirmation.

Overall, these two case studies substantiate that Genius is an
effective tool to facilitate IoT firmware bug searching process for
security evaluators.

6. DISCUSSION
While we have demonstrated the efficacy of Genius for accu-

rate, scalable bug search in IoT devices, there are several relevant
technical limitations. Our method utilizes static analysis to extract
syntactical features, and thus cannot handle obfuscated code which
is used to avoid similarity detection (e.g., malware).

Additionally, the accuracy of Genius heavily relies on the qual-
ity of CFG extraction. Although IDA pro [28] provides us rea-
sonable accuracy in our evaluation, we can rely on more advanced
techniques to further improve its accuracy such as [51].

Furthermore, the accuracy of Genius could be impacted by
function inlining, since it may change the CFG structures. Since
our main focus in this paper is to improve the scalability of existing
in-depth bug search, we will leave the evaluation of Genius for
this case as future work.

Like other CFG-based code search approaches, the accuracy of
Genius is also affected by the size of the CFG. The smaller the
size of CFG is, the more likely it is to have collisions. To be aligned
with other work [23], we also considered functions with at least
five basic blocks. We believe that this is a reasonable assumption
since small functions have significantly lower chance to contain
vulnerabilities in a real-world scenario [37].

7. RELATED WORK
We have discussed closely related work throughout the paper. In

this section, we briefly survey additional related work. We focus on
approaches using code similarity to search for known bugs. There
are many other approaches that aim at finding unknown bugs, such
as fuzzing or symbolic execution [11, 15, 17, 48, 52, 55] etc. Since
they are orthogonal to our approach, we will not discuss these ap-
proaches in this section.

Source-Level Bug Search. Many works focused on finding code
clones at the source code level. For example, [58] generates a code
property graph from the source code and conducts a graph query
to search for code clones with the same pattern. Similarly, token-
based approaches such as CCFinder [33] and CP-Miner [35] utilize
token sequence and scan for duplicate token sequences in other
source code. DECKARD [18] generates numerical vectors based
upon abstract syntax trees and conducts code similarity matching
for code clone detection. ReDeBug [29] provides an efficient and
scalable search to find unpatched code clones in OS-distribution
bases. All of these approaches require source code, and cannot find
bugs in firmware images unless the source code is available.

Binary-Level Bug Search. Since we do not always have access
to firmware source code, bug search techniques that work on bi-
nary code are very important. One common issue with the current
approaches is that they only support a single architecture. It is com-
mon that bugs from firmware images in x86 can appear in images
of another architecture such as MIPS or ARM, so finding bugs in
firmware images demands the capability to handle binary code in a
cross-architecture setting.

For example, the tracelet-based approach [20] captures execution

489

sequences as features for code similarity checking, which can de-
feat the CFG changes. However, the opcode and register names are
different across architectures, so it is not suitable for finding bugs
in firmware images cross architectures. Myles et al. [41] uses k-
grams on opcodes as a software birthmark technique. TEDEM [46]
captures semantics using the expression tree of a basic block. The
opcode difference on different architectures will easily defeat these
two approaches. Rendezvous [34] first explored the code search
in binary code. However, it has two limitations. It relies on n-
gram features to improve the search accuracy. Secondly, it decom-
poses the whole CFG of a function into subgraphs. Our evaluation
demonstrates that two CFGs as a whole by graph matching is much
more accurate than comparing their subgraphs since one edge addi-
tion will introduce great difference on the number of subgraphs for
two equal CFGs. Therefore, subgraph decomposition will reduce
the search accuracy. Finally, as with the other approaches described
thus far, it is designed for a single architecture.

Control flow graph (CFG)-based bug searching is a prevalent ap-
proach for finding bugs in firmware images. However, most exist-
ing works focus on how to improve the matching accuracy by se-
lecting different features or matching algorithms. Flake et al. [25]
proposed to match CFGs of a function to defeat some compiler op-
timizations such as instruction reordering and changes in register
allocation. However, the approach relies upon exact graph match-
ing which is too expensive to be applied for large scale bug search.
Pewny et al. [45] use I/O pairs to capture semantics at the basic-
block level for code similarity computation. It is still expensive for
feature extraction and graph matching. DiscovRe [23] utilizes the
pre-filtering to facilitate CFG based matching, but our evaluation
demonstrates that the pre-filtering is unreliable and outputs tremen-
dous false negatives. Zynamics BinDiff [21] and BinSlayer [13]
use a similarity metric based on the isomorphism between control
flow graphs to check similarity of two binaries. They are not de-
signed for bug search, especially for finding bug doublets across
different binaries where the CFGs of two binaries are totally dif-
ferent. Besides, BinHunt [26] and iBinHunt [39] utilize symbolic
execution and a theorem prover to check semantic equivalence be-
tween basic blocks. These two approaches are expensive and can-
not be applied for large scale firmware bug search since they need
to conduct binary analysis to extract the equations and conduct the
equivalence checking.

The field of automatic large-scale firmware analysis has also
made a breakthrough. Costin et al. [19] carried out an analysis
of over 30,000 firmware samples, but it does not perform in-depth
analysis. Instead, it extracts each firmware sample and investigates
it for artifacts such as private encryption keys. Therefore, this ap-
proach is not suitable for finding more general vulnerabilities with-
out these obvious artifacts.

Dynamic analysis based bug search in firmware images. Blanket-
execution [22] uses the dynamic run-time environment of the pro-
gram as features to conduct the code search. This approach can
defeat the CFG changes, but it is only evaluated in a single archi-
tecture. Besides, dynamic analysis to support firmware images is at
the initial stage [17, 61], and still has not been demonstrated its ef-
fectiveness with respect to the run-time environments of programs
for large scale firmware images.

8. CONCLUSIONS
In this paper, inspired by the image retrieval approaches, we

proposed a numeric-feature based search technique to address the
scalability issues in existing in-depth IoT bug search approaches.
We proposed methods to learn higher-level features from the raw
features (control flow graphs), and performed search based upon

the learned feature vector rather than directly performing pair-wise
matching. We have implemented a bug search system (Genius),
and compared Genius with the state-of-the-art bug search ap-
proaches. The extensive experimental results show that Genius
can achieve even better accuracy than the state-of-the-art methods,
and is orders of magnitude faster than most of the existing meth-
ods. To further demonstrate the scalability, Genius was evaluated
on 8,126 devices of 420 million functions across three architectures
and 26 vendors. The experiments show that Genius can finish a
query less than 1 second on average.

Acknowledgment
We would like to thank anonymous reviewers for their feedback.
This research was supported in part by National Science Founda-
tion Grant #1054605, Air Force Research Lab Grant #FA8750-15-
2-0106, and DARPA CGC Grant #FA8750-14-C-0118. Any opin-
ions, findings, and conclusions in this paper are those of the authors
and do not necessarily reflect the views of the funding agencies.

9. REFERENCES
[1] Cybersecurity and the Internet of Things.

http://www.ey.com/Publication/vwLUAssets/
EY-cybersecurity-and-the-internet-of-things.pdf.

[2] DDWRT ftp. http://download1.dd-wrt.com/dd-wrtv2/
downloads/others/eko/BrainSlayer-V24-preSP2/.

[3] Industrial Utilities and Devices Where the Cyber Threat
Lurks. http://www.cyactive.com/
industrial-utilities-devices-cyber-threat-lurks/.

[4] Iot when cyberattacks have physical effects. http:
//www.federaltimes.com/story/government/solutions-ideas/
2016/04/08/internet-things-when-cyberattacks-have\
discretionary{-}{}{}physical-effects/82787430/.

[5] mongodb. https://www.mongodb.com.
[6] Nearpy. https://pypi.python.org/pypi/NearPy.
[7] DD-WRT Firmware Image r21676.

ftp://ftp.dd-wrt.com/others/eko/BrainSlayer-V24-preSP2/
2013/05-27-2013-r21676/senao-eoc5610/linux.bin, 2013.

[8] ReadyNAS Firmware Image v6.1.6.
http://www.downloads.netgear.com/files/GDC/
READYNAS-100/ReadyNASOS-6.1.6-arm.zip, 2013.

[9] A. Andoni and P. Indyk. Near-optimal hashing algorithms for
approximate nearest neighbor in high dimensions.
Communications of the ACM Commun., 51, 2008.

[10] R. Arandjelovic and A. Zisserman. All about vlad. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 1578–1585, 2013.

[11] T. Avgerinos, S. K. Cha, A. Rebert, E. J. Schwartz, M. Woo,
and D. Brumley. Automatic exploit generation.
Communications of the ACM, 57(2):74–84, 2014.

[12] M.-F. Balcan, A. Blum, and A. Gupta. Approximate
clustering without the approximation. In Proceedings of the
twentieth Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 1068–1077, 2009.

[13] M. Bourquin, A. King, and E. Robbins. Binslayer: accurate
comparison of binary executables. In Proceedings of the 2nd
ACM SIGPLAN Program Protection and Reverse
Engineering Workshop, 2013.

[14] H. Bunke and K. Shearer. A graph distance metric based on
the maximal common subgraph. Pattern recognition letters,
19(3):255–259, 1998.

[15] S. K. Cha, M. Woo, and D. Brumley. Program-adaptive
mutational fuzzing. In Oakland, 2015.

[16] K. Chatfield, V. S. Lempitsky, A. Vedaldi, and A. Zisserman.
The devil is in the details: an evaluation of recent feature
encoding methods. In BMVC, volume 2, page 8, 2011.

[17] D. D. Chen, M. Egele, M. Woo, and D. Brumley. Towards
automated dynamic analysis for linux-based embedded
firmware. In NDSS, 2016.

490

http://www.ey.com/Publication/vwLUAssets/EY-cybersecurity-and-the-internet-of-things.pdf
http://www.ey.com/Publication/vwLUAssets/EY-cybersecurity-and-the-internet-of-things.pdf
http://download1.dd-wrt.com/dd-wrtv2/downloads/others/eko/BrainSlayer-V24-preSP2/
http://download1.dd-wrt.com/dd-wrtv2/downloads/others/eko/BrainSlayer-V24-preSP2/
http://www.cyactive.com/industrial-utilities-devices-cyber-threat-lurks/
http://www.cyactive.com/industrial-utilities-devices-cyber-threat-lurks/
http://www.federaltimes.com/story/government/solutions-ideas/2016/04/08/internet-things-when-cyberattacks-have\discretionary {-}{}{}physical-effects/82787430/
http://www.federaltimes.com/story/government/solutions-ideas/2016/04/08/internet-things-when-cyberattacks-have\discretionary {-}{}{}physical-effects/82787430/
http://www.federaltimes.com/story/government/solutions-ideas/2016/04/08/internet-things-when-cyberattacks-have\discretionary {-}{}{}physical-effects/82787430/
http://www.federaltimes.com/story/government/solutions-ideas/2016/04/08/internet-things-when-cyberattacks-have\discretionary {-}{}{}physical-effects/82787430/
https://www.mongodb.com
https://pypi.python.org/pypi/NearPy
ftp://ftp.dd-wrt.com/others/eko/BrainSlayer-V24-preSP2/2013/05-27-2013-r21676/senao-eoc5610/linux.bin
ftp://ftp.dd-wrt.com/others/eko/BrainSlayer-V24-preSP2/2013/05-27-2013-r21676/senao-eoc5610/linux.bin
http://www.downloads.netgear.com/files/GDC/READYNAS-100/ReadyNASOS-6.1.6-arm.zip
http://www.downloads.netgear.com/files/GDC/READYNAS-100/ReadyNASOS-6.1.6-arm.zip

[18] K. Chen, P. Wang, Y. Lee, X. Wang, N. Zhang, H. Huang,
W. Zou, and P. Liu. Finding unknown malice in 10 seconds:
Mass vetting for new threats at the google-play scale. In
USENIX Security, 2015.

[19] A. Costin, J. Zaddach, A. Francillon, and D. Balzarotti. A
large-scale analysis of the security of embedded firmwares.
In USENIX Security, 2014.

[20] Y. David and E. Yahav. Tracelet-based code search in
executables. In Proceedings of the 35th ACM SIGPLAN
Conference on Programming Language Design and
Implementation, 2014.

[21] T. Dullien and R. Rolles. Graph-based comparison of
executable objects (english version). SSTIC, 5:1–3, 2005.

[22] M. Egele, M. Woo, P. Chapman, and D. Brumley. Blanket
execution: Dynamic similarity testing for program binaries
and components. In USENIX Security, 2014.

[23] S. Eschweiler, K. Yakdan, and E. Gerhards-Padilla. discovre:
Efficient cross-architecture identification of bugs in binary
code. In NDSS, 2016.

[24] Q. Feng, A. Prakash, M. Wang, C. Carmony, and H. Yin.
Origen: Automatic extraction of offset-revealing instructions
for cross-version memory analysis. In ASIACCS, 2016.

[25] H. Flake. Structural comparison of executable objects. In
DIMVA, volume 46, 2004.

[26] D. Gao, M. K. Reiter, and D. Song. Binhunt: Automatically
finding semantic differences in binary programs. In
Information and Communications Security. 2008.

[27] J. Holcombe. Soho network equipment (technical report).
https://securityevaluators.com/knowledge/case_studies/
routers/soho_techreport.pdf.

[28] The IDA Pro Disassembler and Debugger.
http://www.datarescue.com/idabase/.

[29] J. Jang, A. Agrawal, and D. Brumley. Redebug: finding
unpatched code clones in entire os distributions. In Oakland,
2012.

[30] L. Jiang, T. Mitamura, S.-I. Yu, and A. G. Hauptmann.
Zero-example event search using multimodal pseudo
relevance feedback. In ICMR, 2014.

[31] L. Jiang, W. Tong, and A. G. Meng, Deyu andHauptmann.
Towards efficient learning of optimal spatial bag-of-words
representations. In ICMR, 2014.

[32] L. Jiang, S.-I. Yu, D. Meng, T. Mitamura, and A. G.
Hauptmann. Bridging the ultimate semantic gap: A semantic
search engine for internet videos. In ICMR, 2015.

[33] T. Kamiya, S. Kusumoto, and K. Inoue. Ccfinder: a
multilinguistic token-based code clone detection system for
large scale source code. IEEE Transactions on Software
Engineering, 28(7):654–670, 2002.

[34] W. M. Khoo, A. Mycroft, and R. Anderson. Rendezvous: A
search engine for binary code. In Proceedings of the 10th
Working Conference on Mining Software Repositories, 2013.

[35] Z. Li, S. Lu, S. Myagmar, and Y. Zhou. Cp-miner: A tool for
finding copy-paste and related bugs in operating system
code. In OSDI, volume 4, pages 289–302, 2004.

[36] W. Liu, J. Wang, S. Kumar, and S.-F. Chang. Hashing with
graphs. In ICML, 2011.

[37] McCabe. More Complex = Less Secure. Miss a Test Path and
You Could Get Hacked.
http://www.mccabe.com/sqe/books.htm, 2012.

[38] A. McCallum, K. Nigam, et al. A comparison of event
models for naive bayes text classification. In the workshop
on learning for text categorization, 1998.

[39] J. Ming, M. Pan, and D. Gao. ibinhunt: binary hunting with
inter-procedural control flow. In Information Security and
Cryptology, pages 92–109. Springer, 2012.

[40] F. Murtagh. A survey of recent advances in hierarchical
clustering algorithms. The Computer Journal,
26(4):354–359, 1983.

[41] G. Myles and C. Collberg. K-gram based software
birthmarks. In Proceedings of the 2005 ACM symposium on
Applied computing, 2005.

[42] M. Newman. Networks: an introduction. 2010.
[43] A. Y. Ng, M. I. Jordan, Y. Weiss, et al. On spectral

clustering: Analysis and an algorithm. Advances in neural
information processing systems, 2:849–856, 2002.

[44] H. Perl, S. Dechand, M. Smith, D. Arp, F. Yamaguchi,
K. Rieck, S. Fahl, and Y. Acar. Vccfinder: Finding potential
vulnerabilities in open-source projects to assist code audits.
In CCS, 2015.

[45] J. Pewny, B. Garmany, R. Gawlik, C. Rossow, and T. Holz.
Cross-architecture bug search in binary executables. In
Oakland, 2015.

[46] J. Pewny, F. Schuster, L. Bernhard, T. Holz, and C. Rossow.
Leveraging semantic signatures for bug search in binary
programs. In ACSAC, 2014.

[47] G. Qian, S. Sural, Y. Gu, and S. Pramanik. Similarity
between euclidean and cosine angle distance for nearest
neighbor queries. In Proceedings of the symposium on
Applied computing, pages 1232–1237, 2004.

[48] A. Rebert, S. K. Cha, T. Avgerinos, J. Foote, D. Warren,
G. Grieco, and D. Brumley. Optimizing seed selection for
fuzzing. In USENIX Security, 2014.

[49] K. Riesen and H. Bunke. Approximate graph edit distance
computation by means of bipartite graph matching. Image
and vision computing, 27(7):950–959, 2009.

[50] M. Shahrokh Esfahani. Effect of separate sampling on
classification accuracy. Bioinformatics, 30:242–250, 2014.

[51] E. C. R. Shin, D. Song, and R. Moazzezi. Recognizing
functions in binaries with neural networks. In USENIX
Security, 2015.

[52] Y. Shoshitaishvili, R. Wang, C. Hauser, C. Kruegel, and
G. Vigna. Firmalice-automatic detection of authentication
bypass vulnerabilities in binary firmware. In NDSS, 2015.

[53] J. Sivic and A. Zisserman. Video google: A text retrieval
approach to object matching in videos. In IEEE International
Conference on Computer Vision, 2003.

[54] M. Slaney and M. Casey. Locality-sensitive hashing for
finding nearest neighbors. Signal Processing Magazine,
IEEE, 25(2):128–131, 2008.

[55] N. Stephens, J. Grosen, C. Salls, A. Dutcher, and R. Wang.
Driller: Augmenting fuzzing through selective symbolic
execution. In NDSS, 2016.

[56] M. Wall. Galib: A c++ library of genetic algorithm
components. Mechanical Engineering Department,
Massachusetts Institute of Technology, 87:54, 1996.

[57] R. Weber, H.-J. Schek, and S. Blott. A quantitative analysis
and performance study for similarity-search methods in
high-dimensional spaces. In VLDB, volume 98, pages
194–205, 1998.

[58] F. Yamaguchi, A. Maier, H. Gascon, and K. Rieck.
Automatic inference of search patterns for taint-style
vulnerabilities. In Oakland, 2015.

[59] J. Yang, Y.-G. Jiang, A. G. Hauptmann, and C.-W. Ngo.
Evaluating bag-of-visual-words representations in scene
classification. In International workshop on Workshop on
multimedia information retrieval, 2007.

[60] S.-I. Yu, L. Jiang, Z. Xu, Y. Yang, and A. G. Hauptmann.
Content-based video search over 1 million videos with 1 core
in 1 second. In ICMR, 2015.

[61] J. Zaddach, L. Bruno, A. Francillon, and D. Balzarotti.
Avatar: A framework to support dynamic security analysis of
embedded systems’ firmwares. In NDSS, 2014.

[62] M. Zhang, Y. Duan, Q. Feng, and H. Yin. Towards automatic
generation of security-centric descriptions for android apps.
In CCS, 2015.

[63] M. Zhang, Y. Duan, H. Yin, and Z. Zhao. Semantics-Aware
Android Malware Classification Using Weighted Contextual
API Dependency Graphs. In CCS, 2014.

491

https://securityevaluators.com/knowledge/case_studies/routers/soho_techreport.pdf
https://securityevaluators.com/knowledge/case_studies/routers/soho_techreport.pdf
http://www.datarescue.com/idabase/
http://www.mccabe.com/sqe/books.htm

	Introduction
	Approach Overview
	Raw Feature Extraction
	Methodology
	Codebook Generation
	Raw Feature Similarity
	Clustering

	Feature Encoding
	Online Search

	Experimental Evaluation
	Experiment Setup
	Data preparation
	Cross-Platform Baseline Comparison
	Parameter Studies
	Bug Search at Scale
	Case Studies

	Discussion
	Related Work
	Conclusions
	References

