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Abstract— Time series motif discovery is an important 
primitive for time series analytics, and is used in domains as 
diverse as neuroscience, music and sports analytics. In recent 
years, algorithmic advances (coupled with hardware 
improvements) have greatly expanded the purview of motif 
discovery.  Nevertheless, we argue that there is an insatiable need 
for further scalability. This is because more than most types of 
analytics, motif discovery benefits from interactivity. The two 
state-of-the-art algorithms to find motifs are STOMP, which 
requires O(n2) time, and STAMP, which, despite being an O(logn) 
factor slower, is the preferred solution for most applications, as it 
is a fast converging anytime algorithm. In favorable scenarios 
STAMP needs only to be run to a small fraction of completion to 
provide a very accurate approximation of the top-k motifs. In this 
work we introduce SCRIMP++, an O(n2) time algorithm that is 
also an anytime algorithm, combining the best features of STOMP 
and STAMP. As we shall show, SCRIMP++ maintains all the 
desirable properties of the original algorithms, but converges 
much faster, in almost all scenarios producing the correct output 
after spending a tiny fraction of the full computation time. We 
argue that for many end-users, this allows motif discovery to be 
performed in interactive sessions. Moreover, this interactivity can 
be game changing in terms of the analytics that can be performed. 
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I. INTRODUCTION  

In domains as diverse as seismology [16], neuroscience 
[1][2] and entomology [9], time series motif discovery is 
emerging as one of the most important analytic primitives. The 
recently introduced Matrix Profile has been shown to be a 
flexible and generic data tool to solve a host of time series data 
mining problems, including motif discovery. There are two 
algorithms to compute the Matrix Profile, STOMP [16], which 
requires O(n2) time, and STAMP [15], which is an O(logn) 
factor slower. In spite of being slower, STAMP is actually the 
preferred solution for most applications, as it is a fast converging 
anytime algorithm, and in favorable scenarios it needs only to be 
run to about 5% of completion to provide a very accurate 
approximation of the top-k motifs  [15]. Note that at first blush, 
the O(n2logn) STAMP algorithm may not seem that scalable, 
even if run to only 5% of completion. However, both 
STAMP/STOMP have time and space complexities that are 
independent of the dimensionality, the length of the motifs, m. 
Because this length can be in the many thousands, in practice 
O(n2) is significantly faster than apparently faster algorithms 
that scale with m [15][16]. 

In this work we introduce SCRIMP++, an O(n2) time 
algorithm that is also an anytime algorithm, combining the best 
features of STOMP and STAMP. As we shall show, SCRIMP++ 
maintains all the desirable properties of the original algorithms, 

including invariance to the curse of dimensionality, a low 
memory footprint and the ability to trivially exploit High 
Performance Computing platforms such as GPUs. We will 
demonstrate that SCRIMP++ further expands the purview of the 
Matrix Profile and allows us to consider even larger datasets. 
More critically however, SCRIMP++ allows us to perform motif 
discovery interactively, rather than the typical offline batch 
processing that is the norm [2]. 

Fig. 1 outlines the relationship between all these algorithms. 
While it is a symbolic plot, we will show empirically in Section 
IV.A that these relationships are correct. Note that we have been 
deliberately vague about what the Y-axis represents. It could be 
1 minus the difference between the true Matrix Profile and the 
current estimate (as measured by the root-mean-squared error), 
or it could be the probability that the best motif has been 
discovered, or essentially any quality measure of the 
approximate Matrix Profile. 

Fig. 1 The convergence behaviors of algorithms for computing the Matrix 
Profile (cf. Fig. 14).  STOMP (not a true anytime algorithm) converges in O(n2) 
time. STAMP converges faster, but takes O(logn) more time to completely 
converge. SCRIMP++ has both O(n2) time complexity and diminishing returns 
convergence. Note that SCRIMP++ takes very slightly more time than STOMP 
to fully converge, but this difference is inconsequential. 

A. Motif Analytics: An Insatiable Need for Speed 

While all data mining algorithms benefit from improvements 
in speed, here we argue that for the particular case of motif 
discovery, improvements in speed are game-changing. Motif 
discovery benefits from interactivity more than most data 
mining processes. To see this, consider the following analytics 
session scenario, which while slightly fictionalized, is based on 
an ongoing project supporting data-intensive entomology [14]. 

An entomologist wants to examine a five-hour, 1,080,000-
point time series (as shown in Fig. 2) she recorded overnight. 
From her previous experience, she suspects that a motif length 
of 100, corresponding to one-second, is about the right scale for 
this insect’s behavior to be manifest. However, because she 
notices the motifs discovered are so well conserved at this scale, 
she decides to consider two-second long motifs. When she sees 
these new motifs, she realizes that they correspond to snippets 
from the setup time, when her assistant was adjusting the 
conductive glue on the insect’s back. She therefore crops off the 
first few minutes and runs motif discovery again. She then… 

STAMP converges here

SCRIMP++ converges here, a tiny 
fraction of time after STOMP

STOMP converges here 



Fig. 2. A five-hour sample of Electrical Penetration Graph (EPG) data hints at 
the difficulty of motif search. See also Fig. 17/Fig. 18. 

If the entomologist was to use STOMP [16], the state-of-the-
art exact motif discovery algorithm1, then on a modern desktop 
each run would take about 0.7 hours. This is an important data 
resource, and a diligent entomologist may find it worth the effort 
to visit her machine every hour or so, but clearly such long cycle 
time dashes any hope of interactively. As [11] notes “In 
interactive data analysis processes, the dialogue between the 
human and the computer is the enabling mechanism that can 
lead to actionable observations. It is of paramount importance 
that this dialogue is not interrupted by slow computation”.  

As we will show in this work, SCRIMP++ allows us to 
perform the above analytic workflow interactively; in the above 
scenario, we can reduce the cycle time to just a few seconds.  

Beyond the above anecdote that reflects our research 
interests, the literature is replete with examples that suggest the 
need for faster motif discovery. A recent paper considering 
several fundamental questions in neuroscience notes that some 
such questions reduce to determining if neural activity “repeats” 
happen more than expected by chance [2]. As Fig. 3 suggests, 
these repeats are simply time series motifs. 

 
Fig. 3. Adapted from [2]. “Repeats” in the neuroscience literature are simply 
time series motifs. 

To find such motifs in even a minute’s worth of data, the 
authors resorted to various approximations to “increase 
processing speed.” For example, they downsampled their data 
by 1 in 10, and rather than use a sliding window, they use a 
“jumping” window to reduce the number of comparisons. Even 
then, the authors noted that to obtain timely answers their 
“repeat-finding algorithm was parallelized and performed on a 
high-performance computing (HPC) cluster.” [2]. 

However, consider their 2-kHz data, and further assume that 
we search for their longest motif length of 2.7 seconds (5,400 
datapoints), and test all possible subsequences (not just 
“jumping” overlaps) in their largest dataset, which is 8,258,064 
data points corresponding to 68.8 minutes of wall clock time. 

With an off-the-shelf desktop we can run SCRIMP++ to 1%, 
in 27.4 minutes, and reproduce their quality of results (cf. [18]). 
Note that even here, with the original authors’ most challenging 
task, we can still process the data faster than they can collect it 
[2]. The authors go on to bemoan the fact that even with their 
approximations and use of HPC, that their findings “represent a 
lower limit on the duration and prevalence of motifs which might 
be observed if longer segments of intracellular dynamics could 
be analyzed”. The algorithm presented in this paper will trivially 
allow this possibility to be explored, not with batch processing 
on an HPC, but in real-time interactive sessions on a laptop. 

                                                           
1 We justify this claim in Section II.C. 

Before moving on, we note that the Matrix Profile has 
implication for other time series tasks, including discord 
discovery [15], chain discovery [17], semantic segmentation 
[15], etc. While SCRIMP++ can benefit these tasks, for 
simplicity and concreteness we only consider motif discovery in 
this work. 

We conclude this section with a statement of contributions: 

• Users of the Matrix Profile must currently choose between 
the batch O(n2) STOMP algorithm, or the anytime O(n2logn) 
STAMP algorithm. We introduce SCRIMP, the first “best of 
both worlds” algorithm for computing the Matrix Profile that 
is both anytime and O(n2). 

• We introduce PreSCRIMP, a novel ultrafast approximate 
algorithm to compute the Matrix Profile. The output of 
PreSCRIMP can be seamlessly passed to SCRIMP, which 
can take the approximate solution and refine it until it is 
exact. This combination, of PreSCRIMP and SCRIMP is 
called SCRIMP++, and it represents the state-of-art in motif 
discovery. 

• We show that SCRIMP++ is “game changing” by vastly 
increasing the space of problems that can be processed 
interactively. 

The rest of this paper is organized as follows. In Section II 
we introduce definitions and consider related work. In Section 
III we introduce SCRIMP++. Section IV sees an extensive 
empirical evaluation of the algorithms, including some case 
studies. Finally, in Section V we offer conclusions and 
directions for future work. 

II. RELATED WORK AND BACKGROUND 

In this section, we first introduce all necessary definitions 
before considering related work. 

A. Definitions 

We begin by defining the data type of interest, time series: 

Definition 1: A time series T is a sequence of real-valued 
numbers ti: T = t1, t2, ..., tn where n is the length of T: 

We are typically interested not in global, but local properties 
of a time series. A local region of a time series is called a 
subsequence: 

Definition 2: A subsequence Ti,m of a time series T is a 
continuous subset of the values from T of length m starting from 
position i. Formally, Ti,m = ti, ti+1,…, ti+m-1, where 1 ≤  i ≤  n-m+1. 

Given a query subsequence Ti,m and a time series T, we can 
compute the distance between Ti,m and all the subsequences in 
T. We call this a distance profile: 

Definition 3: A distance profile Di corresponding to query 
Ti,m and time series T is a vector of the Euclidean distances 
between a given query subsequence Ti,m and each subsequence in 
time series T. Formally, Di = [di,1, di,2,…, di,n-m+1], where di,j (1 ≤  
j ≤ n-m+1) is the distance between Ti,m and Tj,m. 



We assume that the distance is measured by Euclidean 
distance between z-normalized subsequences [12]. Once we 
obtain Di, we can extract the nearest neighbor of Ti,m in T. Note 
that if the query Ti,m is a subsequence of  T, the ith location of 
distance profile Di is zero (i.e., di,i = 0) and close to zero just to 
the left and right of i. This is called trivial match in the literature. 
We avoid such matches by ignoring an “exclusion” zone of 
length m/4 before and after i, the location of the query. In 
practice, we simply set di,j (i-m/4 ≤  j ≤ i+m/4) to infinity, and the 
nearest neighbor of Ti,m can thus be found by evaluating min(Di). 

We wish to find the nearest neighbor of every subsequence in 
T. The nearest neighbor information is stored in two meta time 
series, the matrix profile and the matrix profile index: 

Definition 4: A matrix profile P of time series T is a vector 
of the Euclidean distances between every subsequence of T and 
its nearest neighbor in T. Formally, P = [min(D1), min(D2),…, 
min(Dn-m+1)], where Di (1 ≤ i ≤  n-m+1) is the distance profile Di 
corresponding to query Ti,m and time series T. 

The ith element in the matrix profile P tells us the Euclidean 
distance from subsequence Ti,m to its nearest neighbor in time 
series T. However, it does not tell us the location of that nearest 
neighbor; this is stored in the companion matrix profile index: 

Definition 5: A matrix profile index I of time series T is a 
vector of integers: I=[I1, I2, … In-m+1], where Ii=j if di,j = min(Di). 

Fig. 4 illustrates the relationship between distance matrix, 
distance profile (Definition 3) and matrix profile (Definition 4). 
Each element of the distance matrix di,j is the distance between 
Ti,m and Tj,m (1 ≤ i, j ≤ n-m+1) of time series T. 

Fig. 4. The relationship between the distance matrix, distance profile and matrix 
profile. A distance profile is a column (also a row) of the distance matrix. The 
matrix profile stores the minimum (off diagonal) value of each column of the 
distance matrix; the location of the minimum value within each column is 
stored in the companion matrix profile index. 

Fig. 5 shows a visual example of a distance profile and a 
matrix profile created from the same time series T. 

Fig. 5. top) A distance profile Di created from Ti,m shows the distance between 
Ti,m and all the subsequences in T. The values in the dark zone are ignored to 
avoid trivial matches. bottom) The matrix profile P is the element-wise 
minimum of all the distance profiles (Di is one of them). Note that the two 
lowest values in P are at the location of the 1st motif in T [15][16]. 

Note that as we presented it, the matrix profile is a self-join 
[15]: for every subsequence in a time series T, it records 
information about its (non-trivial-match) nearest neighbor in the 
same time series T. However, we can trivially generalize it to be 
an AB-join [15]; for every subsequence in a time series A, record 
information about its nearest neighbor in time series B. Note that 
A and B can be of different lengths, and that in general, AB-join 
≠ BA-join. 

B. Related Work: Matrix Profile Based 

In a flurry of recent papers [15][16], it has been shown that 
one can trivially compute all top-k motifs (for any k), range 
motifs (for arbitrary ranges), and a host of other useful time 
series primitives [17], if one has access to the matrix profile. 
Thus, fast motif discovery simply reduces to fast computation of 
the matrix profile. 

To date there are two algorithms to compute the matrix 
profile, STAMP [15] and STOMP [16]. 

The STAMP algorithm [15] evaluates the distance profiles 
(Definition 3; the columns/rows in Fig. 4) in random order. Each 
distance profile Di is evaluated by the MASS algorithm [5], 
which exploits Fast Fourier Transform (FFT) to calculate the dot 
product between Ti,m and every subsequence in T. The evaluation 
of a distance profile thus takes O(nlogn) time where n is the 
length of time series T, and the overall process takes O(n2logn) 
time. 

In contrast to STAMP, the STOMP algorithm [16] evaluates 
the distance profiles in Fig. 4 in-order by exploiting the 
computation dependency between consecutive distance profiles. 
The algorithm only costs O(n2) time, an O(logn) factor faster 
than STAMP. STOMP algorithm was forcefully demonstrated 
as more efficient than the previous state-of-the-art motif 
discovery algorithms, the Quick-Motif algorithm [4] and the 
MK algorithm [6] in both time and space [16]. 

Both STAMP and STOMP maintain the element-wise 
minimum-so-far values of the evaluated distance profiles in a 
running matrix profile. Note that although STAMP is an O(logn) 
factor slower than STOMP, it shows better interactivity. As 
shown in Fig. 6, STAMP is able to locate the highlighted motifs 
in the time series T when it is only 10% completed, as the 
running matrix profile already contains two deep valleys at the 
vicinity of the motifs. In contrast, STOMP cannot locate the 
motifs even when it is 50% completed (no deep valleys show 
up), because the running matrix profile converges to the oracle 
from left to right in order. 

Fig. 6. STAMP is able to detect the motifs located towards the right side of a 
time series when it is only 10% completed due to its random computation order. 
In contrast, STOMP’s left-to-right sequential computation means it cannot 
detect them even when 50% completed. 
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However, when the time series is very long and motifs are 
rare, the probability of STAMP finding the top-k motifs within 
10% of its computation greatly decreases. Furthermore, as 
STOMP is a factor of O(logn) faster, by the time STAMP has 
completed 10% of its computation, STOMP may already 
converge to the exact solution. These conflicting strengths of the 
two algorithms require careful reasoning by the analyst, based 
on her goals and her tentative knowledge of the data. 
SCRIMP++ eliminates any dilemma, by combining the speed of 
STOMP with the anytime convergence property of STAMP. 

C. Related Work: General Motif Search 

It is important to make the distinction between approximate 
algorithms (of which there are many, see [10] for a survey) and 
anytime algorithms for motif discovery [15]. Suppose a user 
runs a fast, but approximate algorithm on a large dataset. It is 
possible that when the motifs are returned, she is satisfied. 
However, suppose that the motifs are not as well conserved as 
she expected, given her domain knowledge and her intuitions for 
the data. She is now in a quandary, are the expected motifs 
simply not there, or did the algorithm fail to find them? The 
problem is compounded by the fact that no approximate motif 
discovery algorithm we are aware of come with any kind of 
probabilistic guarantees, and all require at least three unintuitive 
parameters to be set [10]. What can our user do? If the 
approximate algorithm was stochastic, she can run it again, 
and/or change the parameters, but she may repeatedly face the 
same problem. Otherwise, she is condemned to run the fastest 
exact algorithm she has access to (which is STOMP [16]). 

If the approximate algorithms took a tiny fraction of the time 
of the best exact algorithm, this issue would require some careful 
reasoning about trade-offs. However, as we will show in Section 
IV, all approximate algorithms take a large fraction of the time 
needed by SCRIMP++, especially for longer motifs. 

For this reason, we argue that an anytime algorithm is 
necessary. In most cases, in a few seconds the user has 
acceptable results. If she has any doubts, she can simply let the 
algorithm run a little longer. There is no need to start the fastest 
exact algorithm, because it is already running! 

Finally, we need to qualify the claim that STOMP is the 
fastest exact algorithm for motif discovery. On “cooperative 
data” (relatively smooth data, motifs highly conserved relative 
to the rest of the data, short motif lengths etc.), other exact 
algorithms such as Quick-Motif [4], IMD [3], or MK [6] can be 
fast. But in less-than-cooperative data (e.g., seismology data 
[16]) these algorithms degenerate to O(n2m), with very high 
constant factors. The authors of [3] are to be commended for 
stating this explicitly “…in the worst case, the algorithm still 
has a time complexity of O(n2m)”. 

As we show in our case studies (see Fig. 17), m can be as 
large as 15,000 or greater for real-world problems. In contrast 
STOMP (and SCRIMP++) takes O(n2) time, completely 
independent of the data and the value of m. Thus, for realistic 
problems with high dimensionality, STOMP can be thousands 
of times faster than Quick-Motif [4], IMD [3], or MK [6]. 

III. ALGORITHMS 

The SCRIMP++ Algorithm consists of two parts: 
PreSCRIMP and SCRIMP (as shown in Fig. 7). In this section, 
we will first introduce the SCRIMP algorithm, which is an O(n2) 
anytime algorithm with better convergence characteristics than 
STOMP [16]. We will then further extend SCRIMP to 
SCRIMP++, a robust anytime algorithm which, thanks to the 
addition of an ultra-fast preprocessing algorithm PreSCRIMP, is 
capable of detecting essentially all the motifs within a time series 
at an early stage, even when the motifs are subtle and/or 
extremely rare. For simplicity we only consider self-join here; 
however, all the algorithms introduced can be easily extended to 
AB-join [15]. 

Fig. 7. The SCRIMP++ algorithm consists of an ultra-fast preprocessing 
algorithm, PreSCRIMP, and an O(n2) anytime algorithm, SCRIMP. 
PreSCRIMP provides a very accurate approximation of the matrix profile at an 
early stage; SCRIMP further refines the approximate matrix profile until it 
becomes the exact/final solution. The user can interupt the algorithm at any 
time (during either PreSCRIMP or SCRIMP) to inspect the current approximate 
solution. Thus overall, SCRIMP++ is also an anytime algorithm.  

A. Our Initial Solution: The SCRIMP Algorithm 

Before we introduce the SCRIMP algorithm, let us first 
review the basics of the STOMP algorithm [16]. 

The z-normalized Euclidean distance di,j of two time series 
subsequences Ti,m and Tj,m can be evaluated as follows: 

݀, = ඨ2݉ቆ1 − ܳ, − ߪߪ݉ߤߤ݉ ቇ (1) 

Here m is the subsequence length, Qi,j is the dot product of 
Ti,m and Tj,m, μi is the mean of Ti,m, μj is the mean of Tj,m, σi is the 
standard deviation of Ti,m, and σj is the standard deviation of Tj,m. 

We can precompute the means and standard deviations for 
all subsequences in the time series in O(n) time by applying the 
technique introduced in [7]. Once that is done, the means and 
standard deviations in (1) can all be obtained in O(1) time. 
Furthermore, it is demonstrated in [16] that Qi,j can also be 
evaluated in O(1) time once Qi-1,j-1 is given: ܳ, = ܳିଵ,ିଵ − ିଵݐିଵݐ +  ାିଵ (2)ݐାିଵݐ

Based on (1) and (2), the STOMP algorithm [16] evaluates 
the distance matrix in Fig. 4 row-by-row in-order and updates 
the matrix profile accordingly, rendering an O(n2) time 
complexity. However, as indicated in Fig. 6, this in-order 
computation prevents motifs at the end of a time series from 
being discovered at an early stage. Can we fix this undesirable 
property? 

Note that (2) also implies that we can evaluate the diagonals 
of the distance matrix in Fig. 4 in random order. The SCRIMP 
algorithm (Algorithm 1) exploits this, evaluating the matrix 

PreSCRIMP SCRIMP

SCRIMP++

time series

approximate Matrix Profile

exact Matrix Profile



profile in an anytime fashion while keeping the same O(n2) time 
complexity. 

Algorithm 1: The SCRIMP Algorithm 
 Input: A time series T and a subsequence length m 

Output: Matrix profile P and matrix profile index I of T  
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

n ← Length(T) 
μ, σ ← ComputeMeanStd(T, m) // see [7] 
P ← infs, I ← ones     // initialization 
Orders← RandPerm(m/4+1 : n-m+1) // randomize evaluation order 
for k in Orders           //evaluating diagonals in random order 

for i ← 1 to n-m+2-k 
    if i=1 do q ← DotProduct(T1,m, Tk,m) 

             else q ← q - ti-1 ti+k-2 + ti+m-1 ti+k+m-2      // see (2)  

        end if 
        d ← CalculateDistance(q, μi, σi , μi+k-1, σi+k-1) // see (1) 
        if d < Pi do Pi ← d, Ii ← i+k-1 end if 
        if d < Pi+k-1 do Pi+k-1 ← d, Ii+k-1 ← i end if 
    end for 
end for 
return P, I 

Line 2 precomputes the means and standard deviations of 
all subsequences in T. The matrix profile P and matrix profile 
index I are initialized in line 3. In lines 5-14, we iteratively 
evaluate the diagonals of the distance matrix in Fig. 4 in random 
order. Fig. 8 visualizes this. The distance values d1,k, d2,k, …,  
dn-m+2-k,n-m+1 are calculated one by one; if di,i+k-1 (denoted as d in 
line 10, 1 ≤ i ≤ n-m+2-k) is smaller than Pi (line 11) or Pi+k-1 
(line 12), we update the corresponding matrix profile (and index) 
values. At any time, the user can interrupt the algorithm to 
inspect the current P and I. 

Fig. 8. A single iteration of SCRIMP evaluates a randomly selected diagonal in 
Fig. 4, thus updating the matrix profile in an anytime fashion. 

B. Limitations of the SCRIMP Algorithm 

As motifs in the time series correspond to the minimum 
points of the oracle (or exact) matrix profile (indicated in Fig. 
9.top), we hope that SCRIMP could “focus” on these minimum 
points rather than at other locations. This has an element of a 
chicken-and-egg paradox to it, we want the algorithm to focus 
on where the motifs are, but we are using the algorithm to 
discover where the motifs are. 

Recall that in each iteration of SCRIMP (as shown in Fig. 8), 
we evaluate a random diagonal of the distance matrix. To locate 
the motifs of time series T in Fig. 9.top, we need to evaluate the 
diagonal starting from d1,126 (126-1=137-12) as early as possible. 
As shown in Fig. 9.middle, if SCRIMP evaluates that diagonal 
in its first iteration, the running matrix profile already overlaps 
perfectly with the oracle at the minimum points. However, if 
SCRIMP does not evaluate that diagonal until its very last 
iteration (Fig. 9.bottom shows the running matrix profile before 
the last iteration), we need to wait until the algorithm is 100% 
completed to locate the motifs. In fact, the probability to 

evaluate the diagonal of d1,126 before the kth iteration is k/(n-
m+1). While SCRIMP has a chance to find the motif early no 
matter where they are located (which is its advantage over 
STOMP), that probability is not high. 

Fig. 9. top) Motifs (highlighted, located at 12 and 137) correspond to the 
minimum values of the matrix profile. middle) Ideally, SCRIMP can locate the 
motifs after its first iteration. bottom) In the pathological worst case, SCRIMP 
cannot locate the motifs until fully completed. 

However, note that Fig. 9.top shows the hardest possible 
scenario for motif discovery; there is only a single pair of motifs 
in the time series. When the data contain more motifs, SCRIMP 
will perform much better. This is much like how the famous 
birthday paradox has an unexpectedly fast converge to 
probability 1 as we consider more individuals. The chance of 
SCRIMP making an early discovery of some pair from a motif 
set, increases dramatically if there are more members in that 
motif set. In the next section, we will introduce SCRIMP++, an 
extended version of SCRIMP which has a much higher 
probability of discovering not some, but all the true motifs at an 
early stage, even when the motifs are very rare. 

C. Our Ultimate Solution: The SCRIMP++ Algorithm 

The SCRIMP++ Algorithm is simply the SCRIMP 
algorithm (Algorithm 1) augmented by an additional 
preprocessing stage called PreSCRIMP (recall Fig. 7). We begin 
by introducing the Consecutive Neighborhood Preserving 
Property of time series subsequences, upon which PreSCRIMP 
is based. 

Let us reexamine the matrix profile index of the example 
time series T in Fig. 9.top. Fig. 10 shows its first 25 entries. 

Fig. 10. The matrix profile index of T. 

Here Index = [1, 2, 3, …, n-m+1] is the locations of all the 
subsequences in T, I is the matrix profile index (Definition 5) of 
T. We can see that the matrix profile index can be divided into 
multiple sections of consecutive values: within each section, a 
set of consecutive subsequences find another set of consecutive 
subsequences as their nearest neighbors. We call this the 
Consecutive Neighborhood Preserving (CNP) Property of time 
series subsequences. 

With a little introspection, one can see that the CNP property 
should exist: since consecutive subsequences overlap by a large 
portion, if the ith subsequence is very similar to the jth 
subsequence, then there is a very high probability that the (i+1)th 
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subsequence is also very similar to the (j+1)th subsequence. In 
Fig. 11, we can see that the 11th, 12th, 13th, and 14th subsequences 
find the 136th, 137th, 138th and 139th subsequences as their 
nearest neighbors, respectively; the subsequence-neighbor pairs 
remain a constant location difference of 125. 

Fig. 11. Visualizing the CNP property of time series subsequences at the 
vicinity of the 1st motif pattern. 

Exploiting the CNP property, we propose a preprocessing 
algorithm PreSCRIMP, that produces a very close 
approximation of the oracle matrix profile while costing only a 
tiny fraction of its O(n2) computation time. Essentially, we 
sample subsequences from the time series with a fixed interval 
s (Fig. 12.top shows the starting locations of these sampled 
subsequences). For each sampled subsequence, we find its exact 
nearest neighbor. Assume that Ti,m is a sampled subsequence, 
and its nearest neighbor is Tj,m, then according to the CNP 
property, there is a high probability that the nearest neighbor of 
Ti+k,m is Tj+k,m (k=-s+1, -s+2, …, -2, -1, 1, 2, …, s-2, s-1). We 
compute the distances between these pairs of subsequences and 
update the matrix profile if a smaller distance value shows up. 

Fig. 12. top) Subsequences are sampled from time series T with a fixed interval 
s. bottom) After running PreSCRIMP, the running matrix profile becomes very 
similar to the oracle matrix profile, especially at the low values we care about. 

The overall algorithm is outlined in Algorithm 2. Line 2 
precomputes the means and standard deviations of all 
subsequences in T. In line 3, we sample subsequences from time 
series T with a fixed interval s (Fig. 12.top shows their starting 
position), then process these subsequences in random order. 
Each sample subsequence is processed with two stages (lines 4-
22). 

In the first stage (lines 4-7), we evaluate the distance profile 
corresponding to the current sample subsequence Ti,m with the 
MASS algorithm [5], then update the running matrix profile 
(and index) if we find a smaller distance value. Note that after 
this stage, we already know the nearest neighbor of Ti,m (assume 
it is Tj,m), and the matrix profile and matrix profile index are 
exact at the ith entry. As a result, we can see from Fig. 12.bottom 
that the running matrix profile aligns perfectly with the oracle 
matrix profile at the sampled locations. 

In the second stage (lines 8-22), we refine the running matrix 
profile (and index) near the ith entry by exploiting the CNP 
property. Starting from the current sample subsequence Ti,m and 
its nearest neighbor Tj,m, we move forward to evaluate the 

pairwise distances between (Ti+1,m, Tj+1,m), (Ti+2,m, Tj+2,m), …, 
until we reach the next sampled location or the end of the time 
series (lines 10-15). After that, we traverse backward from Ti,m  
and Tj,m to evaluate the pairwise distance between (Ti-1,m, Tj-1,m), 
(Ti-2,m, Tj-2,m), …, until we reach an earlier sampled location or 
the beginning of the time series (lines 17-22). The corresponding 
running matrix profile (and index) entries are updated once we 
find a smaller distance value. 

Algorithm 2: The PreSCRIMP Algorithm 
 Input: A time series T, a subsequence length m and a sampling 

interval s. 
Output: The running matrix profile P and matrix profile index I of T 

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

n ← Length(T), P← infs, I← ones // initialization 
μ, σ ← ComputeMeanStd(T, m)   // precomputation, see [7] 
for i ← RandPerm( 1 : s : (n-m+1) ) do   //sampling with interval s 
    seq ← Ti,m       //obtain a sample subsequence 
    D ← MASS (T, seq)   // evaluate a distance profile, see [5]   
    P, I ← ElementWiseMin (D, P, i) 
    Pi , Ii ← min(D) 
     j ← Ii       // the nearest neighbor of the sample subsequence  
    q ← CalculateDotProduct (Pi, μi, σi, μj, σj), q’ ← q  // see (1) 
    for k ← 1 to min (s-1, n-m+1- max(i,j) ) do 

            q ← q - ti+k-1 tj+k-1 + ti+k+m-1 tj+k+m-1      // see (2) 
        d ← CalculateDistance (q, μi+k, σi+k , μj+k, σj+k) // see (1) 
        if d < Pi+k do Pi+k ← d, Ii+k ← j+k end if 
        if d < Pj+k do Pj+k ← d, Ij+k ← i+k end if 
    end for 
    q ← q’ 
    for k ← 1 to min(s-1, i-1, j-1) do 
          q ← q - ti-k+m tj-k+m + ti-k tj-k      // see (2) 
        d ← CalculateDistance (q, μi-k, σi-k , μj-k, σj-k) // see (1) 
        if d < Pi-k do Pi-k ← d, Ii-k ← j-k end if 
        if d < Pj-k do Pj-k ← d, Ij-k ← i-k end if 
    end for 
end for 
return P, I 

The overall time complexity of the algorithm is O(n2logn/s), 
where n is the length of the time series and s is the sampling 
interval. The space complexity is O(n). From Fig. 12.bottom, we 
can see that after running PreSCRIMP, the running matrix 
profile aligns very well with the oracle matrix profile, especially 
at the minimum points, which for motif discovery, are all we 
care about. 

The reader may wonder how we determine the sampling 
interval s. Note that any unsampled subsequence must overlap 
with one of the sampled subsequences by at least 1-s/(2m). 
Therefore, the smaller s is, the more accurate is our running 
matrix profile (and the longer PreSCRIMP takes to compute it). 
As a practical matter (as we will demonstrate later in Section 
IV), we set s=m/4, which guarantees that all the subsequences 
overlap with at least one sampled subsequence by at least 87.5%. 
This setting renders PreSCRIMP an O(n2logn/m) time 
complexity. As the subsequence length m is normally much 
larger than logn, the time needed for PreSCRIMP is a tiny 
fraction required for SCRIMP/STOMP. 

After running PreSCRIMP, we continue to refine the matrix 
profile with SCRIMP, until it converges to the exact solution. 
We call the augmentation of SCRIMP with PreSCRIMP, 
SCRIMP++ (recall Fig. 7). Note that SCRIMP++ can be 
interrupted at any stage (including during the PreSCRIMP 
stage), to produce an approximate solution. 
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IV. EMPIRICAL EVALUATION 

To ensure that our experiments are reproducible, we have 
built a website which contains all data/code/raw spreadsheets for 
the results, in addition to many experiments that are omitted here 
for brevity [18]. All experiments were run on a Dell XPS 8920, 
with Intel Core i7-7700 CPU @ 3.6GHz and 64GB RAM. 

A. Comparing Convergence Behaviors 

We begin by comparing the convergence behavior of 
STAMP [15], STOMP [16] and SCRIMP++. Note that STOMP 
is not regarded as a true anytime algorithm but is included for 
completeness. 

To stress-test these algorithms with different circumstances 
(different numbers and locations of motifs, different data type, 
etc.), we created four different synthetic datasets. Fig. 13 shows 
one example from each of the four datasets. 

Each dataset includes 100 time series of length 40,000. 
Within each time series we embed various numbers of motif 
patterns of length m=400 at random locations. The first dataset 
(Fig. 13.a) is a set of random-walk time series; within each of 
these time series we embed a single pair of random-walk motif 
patterns (they are similar, but not identical). The second dataset 
(Fig. 13.b) is also random-walk data, but contains 10 pairs of 
different random-walk motif patterns. The third dataset (Fig. 
13.c) is adapted from  [16], where we have a continuous 
recording of seismograph background noise, and embed in it one 
pair of repeated earthquake signals (similar but not identical) at 
random locations. The fourth dataset (Fig. 13.d) is random noise 
time series; we embed no motifs in it, but regard its natural top-
1 motif pattern of length 400 as target. 

Fig. 13 a) Random-walk data with one pair of embedded random-walk motif 
patterns. b) Random-walk data with 10 embedded random-walk motif pairs. c) 
Seismology data with two repeated earthquake signals. d) Random noise 
without any embedded motif patterns. 

As the algorithms evaluate the matrix profile of a time series, 
we constantly interrupt it, mark the current runtime t, then 
extract the top-k motif patterns (we set k = 10 for Fig. 13.b; k = 
1 for Fig. 13.a, Fig. 13.c and Fig. 13.d) from the running matrix 
profile and check to see if the embedded motif patterns have 
been discovered. We regard an embedded motif pattern as 
discovered if it overlaps with one of the k extracted motif 
patterns by at least 95%. We use a value p to represent the 
percentage of embedded motif pairs discovered at each time 
instant t. 

We first consider Fig. 13.b, where the random-walk time 
series includes 10 pairs of embedded motifs. Fig. 14 shows the 
average value of p as the three algorithms search for motifs. 

                                                           
2 To be clear, many biologists produce terabytes of data, but often each “run” 
or “treatment” is only of the order of tens to hundreds of thousands in length.  

Fig. 14 The average percentage of embedded motif pairs discovered at each 
time instant for the dataset shown in Fig. 13.b. Note that the time for STAMP’s 
convergence is truncated. 

We can see that SCRIMP++ shows much faster convergence 
characteristics than STAMP or STOMP in locating the top 10 
motif pairs. After the PreSCRIMP phase (requiring only 0.26 
seconds) finishes, all the 10 embedded motifs randomly located 
in all 100 random-walk time series are successfully discovered. 
In contrast, to be just 99% sure that we have discovered all the 
true motifs, STAMP takes about 8 times longer and STOMP 
needs to almost run to completion (about 9 times longer). 

Now let us consider the harder scenarios in Fig. 13.a, Fig. 
13.c and Fig. 13.d, where there are only one pair of motif 
patterns in the data. We experimented in these scenarios 
because: 1) The top-1 motif in these datasets are hard to locate 
as they are rare. 2) The seismology data in Fig. 13.c is a typical 
example of “less-than-cooperative” data discussed in Section 
II.C, which would degenerate rival motif discovery methods 
such as Quick-Motif [4] or MK [6] to their worst case time 
complexity [16]. 3) The random-noise data in Fig. 13.d shows 
an extremely hard case for motif discovery, as essentially all 
pairs of time series subsequences are approximately equidistant. 
Nevertheless, as shown in Fig. 15, SCRIMP++ shows a very fast 
convergence characteristic in all these datasets. After the 
PreSCRIMP phase is completed (0.26 seconds), all the top-1 
motifs in all the time series within all three datasets are already 
successfully discovered, costing only a tiny fraction of time 
needed by STOMP or STAMP. Note that here STAMP does not 
perform as well as in Fig. 14, as the motifs are very rare. 

Fig. 15 left-to-right) The observed probability for the top-1 motif discovered at 
each time instant for the dataset shown in Fig. 13.a, Fig. 13.c and Fig. 13.d. 
Note that the full time for STAMP’s convergence is truncated. 

As we show in the next section, SCRIMP++ maintains this 
advantage over different lengths of time series and motif 
lengths. We chose to consider 40,000 data points here, because 
based on our informal survey of practitioners that use motif 
discovery, this is about the median size of datasets2 considered 
[1][9]. Here we can find such motifs in just ¼ of a second, truly 
interactive time [11]. 
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B. Runtime Comparison of SCRIMP++ and STOMP 

In this section, we compare the run time of SCRIMP++ with 
the state-of-the-art exact motif discovery algorithm, STOMP 
[16]. The time measurements are based on the C++ 
implementation of both algorithms. Note that the runtime for 
both algorithms is invariant to the type of time series data we are 
using. TABLE I shows the time required by both algorithms 
with a fixed subsequence length m, on random noise time series 
with increasing length n. 

TABLE I. TIME NEEDED FOR MOTIF DISCOVERY WITH ݉ = 4096, VARYING ݊  

Algorithm                     n     217 218 219 220 221 
STOMP 22.5s 1.78m 7.37m 37.1m 2.22h 

SCRIMP++ 
PreSCRIMP 0.51s 2.33s 17.2s 1.52m 6.83m 

SCRIMP 23.9s 1.94m 7.96m 40.9m 2.46h 

 

We can see that the runtime of the SCRIMP Algorithm is 
similar to the STOMP algorithm, as they vary only in evaluation 
order. The PreSCRIMP algorithm consumes only a very small 
fraction (less than 6%) of their time3. 

In TABLE II, we fixed the time series length n and vary 
subsequence length m. We can see that the runtime of STOMP 
and SCRIMP are essentially invariant to the subsequence length 
m. PreSCRIMP, with a time complexity O(n2logn/m), costs less 
and less time while we increase m. As m can be in the thousands 
for real-world problems (cf. Sections IV.D-IV.F), this is a 
desirable feature. 

TABLE II. TIME NEEDED FOR MOTIF DISCOVERY WITH ݊ = 218, VARYING ݉  

Algorithm                     m     1024 2048 4096 8192 16384 
STOMP 1.83m 1.78m 1.78m 1.8m 1.67m 

SCRIMP++ 
PreSCRIMP 9.22s 4.81s 2.33s 1.23s 0.58s 

SCRIMP 2.17m 2.12m 1.94m 2.05m 1.96m 

 

Furthermore, as PreSCRIMP is based on iterative vector 
operations, the computation process is highly parallelizable. 
Implementing PreSCRIMP with high-performance computing 
platforms such as GPU is trivial, and we make the GPU version 
freely available at [18]. 

C. Comparison to Rival Methods 

We have argued that there is a critical difference between 
approximate algorithms and anytime algorithms for motif 
discovery. By definition, anytime algorithms are also 
approximate algorithms (if stopped early), but the converse is 
not true. If the motifs returned by an approximate algorithm are 
not satisfactory, the user has no recourse but to adjust parameters 
and try again, or resort to the fastest exact algorithm [16]. 

Nevertheless, it may be instructive to compare our proposed 
algorithm to the state-of-the-art approximate algorithm. But 
which algorithm is state-of-the-art for this task? A recent survey 
reviews more than a dozen algorithms without explicitly 
answering that question [10]. Fortunately, we can bypass this 

                                                           
3 Note that though we could further speed up PreSCRIMP with multi-threading 
or piece-wise FFT, we reported its run time here without any of these 
optimizations.  

issue, and effectively compare to all of them. All such 
algorithms, whether they use hashing, grammars, Markov 
models, suffix trees etc. [10], must first convert the data into a 
symbolic representation. The time taken to do this is clearly a 
lower bound on the time to produce any motifs. Note that we 
cannot bypass this time requirement with any 
precomputation/indexing, as this is only possible if one knows 
the length of motifs, but as we have shown, this can be changed 
in an ad-hoc manner during the user’s interactive session. 

We used the code written by L. Wei [13]  (which is the code 
used by the majority of papers reviewed in [10]), to discretize 
increasingly long time series, while keeping m fixed to 4,096 
and a dimensionality of 8 and cardinality of 5 (typical values for 
most research efforts [10]). As Fig. 16 shows, we compare the 
runtime of this preprocessing discretization step of the rival 
algorithms to that of PreSCRIMP. 

Fig. 16. The time needed to discretize data and the time need to perform 
PreSCRIMP for increasingly long data. 

We can see that when the time series length is smaller than 
219, SCRIMP++ has already reported a very high-quality 
solution with PreSCRIMP, before any approximate algorithm is 
even in a position to finally start the hashing or suffix tree 
construction that they hope will yield an approximate answer. 

Note that this experiment offers an extremely weak lower 
bound for the cost of the rival approximate algorithms. In 
practice, the searching such algorithms take is 3 to 20 times 
longer than this preprocessing [10]. Finally, all these methods 
are reporting motifs found in a lossy data representation with the 
inherent error that produces, whereas SCRIMP++ is searching 
the original data. 

D. Case Study: Multiscale-Motifs 

We believe that the extraordinary speed of PreSCRIMP will 
allow the community to invent novel time series primitives. To 
give an example, we consider a question suggested by an 
entomologist collaborator: are there any multiscale-motifs in the 
EPG datasets previously discussed in Section I.A? We 
informally define a multiscale-motif as a pair of patterns that are 
very similar to each other but differ by at least a factor of two in 
length. 

Clearly finding multiscale-motifs is computationally 
challenging, because beyond comparing all pairs of 
subsequences, we must now compare all pairs of subsequences, 
and at all possible combinations of scales. It may be possible to 
create a scalable novel algorithm to find multiscale motifs, but 
the speed of PreSCRIMP suggests a very easy “fast-enough” 
method that we can implement in a handful of lines of code, 
given PreSCRIMP as a primitive. 
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Recall we can use PreSCRIMP to do self-joins or AB-joins. 
Suppose we set B = rescale(A,300%) and compute an AB-join. 
The resulting motifs discovered will reflect a short pattern in A 
that matches a much longer pattern in B, after the patterns are 
scaled to a common length. In this case, we do not know what 
the “right” rescaling length is, but PreSCRIMP is fast enough to 
allow us to run it fifty times and simply test all possible scalings 
from 200% to 300%, in 2% increments. We have done this for a 
1.8 hour (650,000 datapoints) long trace of Asian citrus psyllid 
(Diaphorina citri) feeding on Citrangor, a subspecies of orange. 
Fig. 17 shows that the best multiscale-motif occurs for a 
rescaling of 218%. 

Fig. 17. top.left) An Asian citrus psyllid feeding on a citrango leaf. top.right) 
The top-1 multiscale-motif discovered. bottom) the two motif occurrences in 
context. 

Note that one may wish to normalize the Euclidian distance 
for length when comparing multiscale-motifs (it happens to 
make no difference in this case). Further note that we are not 
claiming any particular entomological significance here, 
although it is interesting that this insect has behaviors that 
manifest themselves at such different scales. Our point is simply 
to show that PreSCRIMP is fast enough to be considered as a 
primitive we can call multiple times for higher-level analytics. 
The time taken for this entire experiment was just 84 seconds 
(m=15,000). 

This ability to handle motifs that occur at different lengths 
may also be of interest to the neuroscience/neuroinformatics 
community, which has recently adopted time series motifs as 
one of their most used analytic tools [1][9]. However, some of 
these authors have criticized current motif discovery algorithms 
because they “consider only exactly equal duration sequences 
as potential matches” [9]. The authors of [9] note that motifs of 
“turning maneuvers” of Drosophila larval have a variable length 
scale, with µ = 0.83s and σ = 0.27s. Using the simple algorithm 
described above, we can find multiscale motifs in the range of 
µ ±2σ in a dataset of 40,000 points, searching all rescalings in 
5% increments ([35%, 40%, … ,160%, 165%]) in just 17 
seconds. 

E. Case Study: Motif Joins 

The EPG domain considered in the previous section is a rich 
source of fundamental problems that can be addressed with 
motif discovery, below we consider another such problem. 

As shown in Fig. 18.top, we consider three datasets, each of 
length 7,560,000, representing 21-hours of insect behavior. One 
of them, in which the insect was feeding on Valencia (a type of 
orange), we designated as reference sample, ValenciaRef. We are 
interested to know if any elements of this reference behavior are 
to be found in the two other datasets, in one of which an insect 
was feeding on a Yamaguchi (a different type of citrus), and the 

other in which a different insect is feeding on a Valencia. We 
hope to understand what elements of the Asian citrus psyllid 
may be attributed to the type of plant it is feeding on, and what 
may be attributed to simple differences between individuals. 
Such studies have implications for breeding resistant strains and 
hybrids. 

Fig. 18. top) The three EPG time series under investigation. bottom-left to right) 
There is little evidence of conserved patterns when the insects are feeding on 
different citrus plants, but there are strongly conserved patterns when feeding 
on a single plant type. 

It is instructive to think of the cost of a brute-force-search 
here. The motifs are of length 4,000, requiring (at least) 4,000 
real-valued operations. Each AB-join requires about 5.71 * 1013 

pairwise comparisons of subsequences, requiring 2.28 * 1017 
real-valued operations. Even at one hundred gigaFLOPS, this 
would require 26.4 days. In contrast, SCRIMP++ took just 2 
hours. 

F. Case Study: Electrical Power Demand 

As a final example of the scalability of SCRIMP++, and the 
potential actionability of motif discovery, we examined the 
electrical power demand dataset of [8]. Each trace corresponds 
to two calendar years or 8,198,756 datapoints, sampled once 
every 8 seconds. As shown in Fig. 19, a pair of motifs from trace 
3 of House-5 caught our attention. 

Fig. 19. The top two motifs in an electrical power data set. 

The first motif is the (near) binary switching on-and-off of a 
freezer compressor at very regular intervals. This unusually 
“perfect” motif has dozens of occurrences, almost all at night 
when there is no kitchen actively that would cause the 
compressor to “kick-in” after the freezer was opened and disrupt 
the perfect spacing. The second motif is more interesting. It 
suggests that the compressor was running continuously for at 
least three hours. Two common causes of a freezer motor 
running for a long time are a faulty thermostat, or the more 
prosaic explanation, the homeowner not fully closing the door. 
In either case this is clearly a low-hanging fruit for energy 
conservation.  

SCRIMP++ allows us to find such patterns in real-time 
interactive sessions, something that no other tool allows [10]. 
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G. When can PreSCRIMP fail? 

The previous sections have shown the extraordinary alacrity 
and effectiveness of PreSCRIMP. To explore the limits of 
PreSCRIMP, in section IV.A, we considered all the possible 
worst-case scenarios: when the motifs are very rare, when the 
dataset is of very high intrinsic dimensionality, when all the 
subsequence pairs are equidistant, etc. Nevertheless, 
PreSCRIMP succeeded in quickly locating all the true motifs in 
all these scenarios. It is natural to ask, can PreSCRIMP ever fail? 
Do we ever need to resort to running the SCRIMP phase of the 
SCRIMP++ algorithm, to refine the PreSCRIMP answer?  

In spite of a diligent search of over 100 diverse datasets, we 
could not find any real dataset that prevents PreSCRIMP from 
quickly discovering motifs. However, with careful 
introspection, we can create a pathological example that is 
difficult for PreSCRIMP. As shown in Fig. 20.top, we created a 
synthetic random walk time series of length 40,000, with a pair 
of motifs embedded at fixed locations (T21842,400 and T24871,400, 
shown in red and yellow respectively).  We edited the first/red 
motif pattern such that just before and after the pattern, the level 
of the time series dramatically changes. In this scenario, the CNP 
property no longer hold at locations around the motif patterns. 
Though T21842,400 is very similar to T24871,400, T21842+k,400 is very 
different from T24871+k,400 (k=-3, -2, -1, 1, 2, 3) because of the 
dramatic level change. As a result, PreSCRIMP cannot discover 
the motif pair unless either T21842,400 or T24871,400 is sampled. 

Fig. 20. top) A pathological random walk time series with a pair of embedded 
motifs. The level of the data dramatically changes just before and after the first 
motif pattern, which invalidates the CNP property. bottom) the observed 
probability for the top-1 motif discovered at each time instant. Note that the 
probability for STOMP is binary, and flips to 100% as soon as it encounters the 
first motif. That could happen arbitrarily late (i.e. to the far right) in the worse 
case.  

However, as Fig. 20.bottom shows, the overall SCRIMP++ 
algorithm still converges much faster than STAMP [15] and 
STOMP [16] at the early stage. Here the result is averaged over 
100 runs, and the value p represents the probability that the 
embedded motif pair is discovered at each time instant t. 
Although SCRIMP++ fails to discover the motif at the 
PreSCRIMP phase, p quickly increases as the algorithm turns 
into the SCRIMP phase thanks to its random computation 
ordering. In contrast, STOMP shows a 0% probability in 
locating the motifs until after 1.2 seconds (recall that STOMP is 
deterministic, and reports the same result over the 100 runs); 
STAMP shows a very low probability in finding the motifs even 
when SCRIMP++ finishes. This example demonstrates the 

robustness of SCRIMP++, even in the most pathological and 
contrived cases that defeat PreSCRIMP. 

V. CONCLUSIONS 

In many domains, including neuroscience [1][2], 
entomology [9], medicine and consumer-level energy 
conservation [8], etc., analysts routinely deal with datasets that 
are in the range of a few million data points long. For the first 
time, SCRIMP++ allows the possibility of real-time interactive 
discovery of motifs in such datasets, using off-the-shelf 
consumer desktops.  We believe that this ability will allow novel 
discoveries to be made in the relevant domains, and even new 
types of analytics to be invented. We have made all code and 
data freely available in perpetuity to allow the community to 
confirm and extend our findings [18]. 
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