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Abstract— Time series anomaly detection is one of the most active areas of research 

in data mining, with dozens of new approaches been suggested each year. In spite of all 

these creative solutions proposed for this problem, recent empirical evidence suggests 

that the time series discord, a relatively simple twenty-year old distance-based 

technique, remains among the state-of-art techniques. While there are many algorithms 

for computing the time series discords, they all have limitations. First, they are limited 

to the batch case, whereas the online case is more actionable. Second, these algorithms 

exhibit poor scalability beyond tens of thousands of datapoints. In this work we 

introduce DAMP, a novel algorithm that addresses both these issues. DAMP computes 

exact left-discords on fast arriving streams, at up to 300,000 Hz using a commodity 

desktop. This allows us to find time series discords in datasets with trillions of 

datapoints for the first time. We will demonstrate the utility of our algorithm with the 

most ambitious set of time series anomaly detection experiments ever conducted. We 

will further show that our speedup improvements can be applied in the 

multidimensional case. 
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1 INTRODUCTION 

Time series anomaly detection is one of the most important and widely used tools 

investigated by the data mining community [2][14][21]. It can be applied offline to 

investigate archival data, or online, to monitor critical situations where human 

intervention is possible. For example, by summoning a doctor or shutting down a 

machine that may be about to damage itself. Given its importance, it is unsurprising 

that this area attracts a lot of attention from the community, with dozens of algorithms 



  

proposed each year. However, in spite of the plethora of algorithms in the literature, 

there is increasing evidence that a twenty-year-old distance-based method called time 

series discords is still competitive [21]. Discords are competitive with deep learning 

methods in spite (or perhaps because) of their great simplicity. A time series discord is 

simply the subsequence of a time series that is maximally far from its nearest neighbor.  

At least one-hundred papers have reported using discords to solve problems in diverse 

domains, and discords seem to be the only time series anomaly detection technique to 

produce “superhuman” results (see discussion in Section 2). However, discords have 

three important limitations that have limited their broader adoption: 

• If an anomalous pattern appears at least twice in the time series, then each occurrence 

will be the other nearest neighbor, and thus fail to optimize the discord definition. 

This is informally called the twin-freak problem. 

• Discords are only defined for the batch case, but anomaly detection is most 

actionable in online settings. 

• In spite of extensive progress in speeding up discord discovery, datasets with 

millions of datapoints remain intractable.  

In this paper we introduce DAMP (Discord Aware Matrix Profile), a novel algorithm 

which solves all the above problems.  

• DAMP is not confused by repeated anomalies (twin-freaks), it simply flags the first 

occurrence (if desired, other occurrences can then be found by simple similarity 

search).  

• DAMP is defined for both online and offline cases. Moreover, DAMP has an 

extraordinary fast throughput, exceeding 300,000 Hz on standard hardware.  

• As the previous bullet point suggests, DAMP is extraordinarily scalable. For the first 

time, this allows us to consider datasets with millions, billions and even trillions of 

datapoints.  

The rest of this paper is organized as follows. In Section 2 we motivate the use of 

discords as the time series anomaly definition most worthy of acceleration and 

generalization. We also concretely define a new term, effectively online, that allows 

DAMP to tackle ultra-fast real-time data sources found in industry and science. Section 

3 contains the necessary definition and notation required, and Section 4 discusses 



  

related work, before we introduce our algorithm in Section 5. In Section 6 we conduct 

the most ambitious empirical evaluation of time series anomaly detection ever 

attempted. 

2 MOTIVATION 

Before we continue, it is necessary to answer the following question. Why do we 

attempt to fix discord’s scalability issues instead of inventing a new algorithm, or 

making one of the many dozens of more recently proposed methods more scalable?  

The reason is that there is increasing evidence that discords remain competitive with 

the state-of-the-art 1 [21]. Among the hundreds of time series anomaly detection 

algorithms proposed in the last two decades, only time series discords could claim to 

have been adopted by more than one hundred independent teams to actually solve a 

real-world problem. For example, a group of climatologists at France’s UMR Espace-

Dev laboratory use discords to find anomalies in climate data [17]. A team of 

researchers at NASA’s JLP lab have applied discord discovery to planetary data, noting 

that “(discords) detect Saturn bow shock transitions well” [9]. A group based in 

Halmstad University created a tool called IUSE for applying discord discovery to 

industrial datasets. One of their first applications was to a City Bus Fleet dataset, where 

they noted that the discords discovered did indeed have an objective meaning “The 

discords in this case primarily consisted of significant drops of pressure … likely 

correspond to the drainage of the wet tank.” [24]. Finally, a team of researchers at the 

National Renewable Energy Laboratory, in Golden, Colorado, have used discords to 

find anomalies in a large building portfolio, showing that they could discover anomalies 

with diverse causes caused by both “internal (occupant behavior) and external factors 

(weather conditions).” [28]. There are several other time series anomaly detection 

algorithms that are well cited [14][30], but most of the citations are from rival methods 

comparing these algorithms on a handful of benchmarks [35], there is little evidence 

that anyone actually uses these algorithms to solve real-world problems.  

In addition, time series discords seem to be the only anomaly detection algorithm that 

has been demonstrated to perform at superhuman levels [21]. All other algorithms that 

 
1 Note that some papers misattribute the success of their anomaly detection to the Matrix Profile or to HOTSAX, but these are simple 

different algorithms to compute time series discords.  



  

we are aware of have shown to discover anomalies that are also readily apparent to the 

human eye. For example, a recent paper proposed an LSTMs network for anomaly 

detection and evaluated it on data retrieved from Mars [14]. However, the only anomaly 

shown in the paper shows a visually obvious anomaly where a repeated periodic pattern 

suddenly transitions to a literal flatline. Of course, this does not mean that such 

algorithms have no value, as human attention is very expensive. However, the literature 

also offers some examples where discords have found anomalies that are very subtle, 

defying the possibility of human discovery. For example, in [21], their Figure 8 and 

Figure 9 both seem to meet that criterion. For completeness, we will show some 

additional examples. Consider Fig. 1, which shows the vibration of an industrial motor 

[7][23].  

 

Fig. 1 top) A 20-second run of an industrial motor. bottom) a zoom-in of the region known to contain 

an anomaly, which is the length of (but not necessarily at the location of) the red bar. 

The data comes for a motor running under no load, however for a brief instant a load 

was applied and immediately removed, creating an anomaly. It is clearly fruitless to 

visually search for the anomaly in the full dataset, however, even if we zoom into a 

local region containing the anomaly, it is not clear where it is. In Fig. 2 we task time 

series discords with detecting the anomaly. 

 

Fig. 2 top) A 20-second run of an industrial motor. bottom) The time series discord discovered by the 

Left-MP correctly locates the anomaly. Note that higher values are more anomalous. 

Beyond the accuracy of discords prediction here, note that this dataset contains 244,189 

datapoints, representing about 20 seconds of wall clock time recorded at 12,000 Hz. 
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We are not aware of any anomaly detection algorithm in the literature that could process 

this dataset in real-time, however, as we will show, DAMP can.  

We also consider a dataset that is dramatically different to the bearing data. In Fig. 3 

we show the Left-MP for an ECG which we know contains a single anomaly beat, a 

ventricular contraction.  

 

Fig. 3 top) A sixty-second snippet of an ECG. bottom) The top-1 time series discord correctly locates 

the anomaly. 

This dataset has a wandering baseline which is diagnostically meaningless, but which 

distracts the human eye (and many algorithms). However, once again time series 

discords have no problem detecting the anomaly, which noted cardiologist Dr. Gregory 

Mason says is on the cusp of his ability to detect by eye.  

Finally, in Fig. 4 we consider a dataset that was explicitly created with the sole purpose 

of having anomalies that are “difficult to spot for the human eye” [31]. Here again 

discords are superhuman.  

 

Fig. 4 top) The MGAB dataset was built to defy visual discovery of anomalies. bottom) The Top-1 

time series discord correctly locates the anomaly. 

In summary, both the recent literature and our experiments suggest that time series 

discords are at least competitive with recently proposed algorithms, and thus worthy of 

accelerating to allow discords to be discovered in settings that are currently infeasible.  

2.1 Effectively Online Anomaly Detection 

Although the meaning of the terms batch and online are obvious, it is helpful to 

introduce a new term, effectively online, to make our claim clearer. A true online 
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algorithm reports the instant it detects a monitored condition. However, let us imagine 

the following scenario: After a difficult cardiac surgery, a doctor decides she wants to 

monitor her patient for anomalous heartbeats, which may be an indication of 

postoperative Cardiac Tamponade (CT). If the patient does have an ECG suggestive of 

CT symptoms, the doctor has perhaps eight to ten minutes to confirm CT with an 

ultrasound and perform pericardiocentesis, a procedure done to remove fluid that has 

built up in the sac around the heart [18]. Because the doctor is nervous about the 

possibility of CT, she arranges the rest of her day such that she can be in the ICU within 

two minutes, for example eating her lunch in a hospital cafeteria rather than her favorite 

restaurant across town. Clearly in this situation an algorithm that reported an anomalous 

heartbeat ten minutes after its appearance would be unacceptable. However, an 

algorithm that reported an anomalous heartbeat at most two seconds after it appears 

would be just as good as a true online algorithm. As such we propose the following 

definition: 

Definition 1: An algorithm is said to be effectively online, if the lag in reporting a 

condition has little or no impact on the actionability of the reported information. 

Note that the scale of the permissible lag is problem dependent. In the above scenario, 

two seconds made sense to the cardiologists we consulted. In an ultrafast arriving data 

stream, the permissible lag may be as little as 0.1 seconds, and for telemetry arriving 

from devices with a slow cycle rate, say the daily periodicity of pedestrian traffic, the 

permissible lag may be minutes to hours. 

We suspect that many algorithms that are referred to as online in the literature, are really 

effectively online. The above discussion allows us to frame our contribution. Our 

proposed algorithm DAMP is parameterized by a single variable called lookahead.  

• If lookahead is zero, DAMP is a fast true online algorithm.  

• If lookahead is allowed to be arbitrarily large, DAMP is an ultrafast batch 

algorithm. We should not be surprised that a batch algorithm can be much faster, 

as it has access to all the information at once. 

And now the raison d'etre for our digression: 



  

• Even if lookahead is a small (but non-zero) number, DAMP is effectively online 

algorithm, yet it retains most or all the speedup of the arbitrarily large lookahead 

algorithm.  

As we will show, DAMP allows for the discovery of time series discords in ultra-fast-

moving streams for the first time. 

3 DEFINITIONS AND BACKGROUND 

We begin by defining the key terms used in this work. The data we work with is a time 

series. 

Definition 2: A time series T is a sequence of real-valued numbers 𝑡𝑖 : 𝑇 =

 [𝑡1, 𝑡2, . . . , 𝑡𝑛] where n is the length of T. 

Typically, we consider only local subsequences of the times series.  

Definition 3: A subsequence 𝑇𝑖,𝑚 of a time series T is a continuous subset of data 

points from T of length 𝑚 starting at position i. 𝑇𝑖,𝑚  =  [𝑡𝑖, 𝑡𝑖+1, . . . , 𝑡𝑖+𝑚−1], 1 ≤

 𝑖 ≤  𝑛 –  𝑚 +  1. 

The length of the subsequence is typically set by the user based on domain knowledge. 

For example, for most human actions, ½ second may be appropriate, but for classifying 

transient stars, three days may be appropriate.  

If we take any subsequence 𝑇𝑖,𝑚 as a query, calculate its distance from all subsequences 

in the time series T and store the distances in an array in order, we get a distance profile. 

Definition 4: Distance profile 𝐷𝑖  for time series T refers to an ordered array of 

Euclidean distances between the query subsequence 𝑇𝑖,𝑚 and all subsequences in time 

series T. Formally, 𝐷𝑖 = 𝑑𝑖,1, 𝑑𝑖,2, … , 𝑑𝑖,𝑛−𝑚+1 ,where 𝑑𝑖,𝑗  (1 ≤ 𝑖, 𝑗 ≤ 𝑛 − 𝑚 + 1) is 

the Euclidean distance between 𝑇𝑖,𝑚 and 𝑇𝑗,𝑚. 

For distance profile 𝐷𝑖 of query 𝑇𝑖,𝑚, the 𝑖𝑡ℎposition represents the distance between 

the query and itself, so the value must be 0. The values before and after position 𝑖 are 

also close to 0, because the corresponding subsequences have overlap with query. Our 

algorithm neglects these matches of the query and itself, and instead focuses on non-

self match. 



  

Definition 5: Non-Self Match: Given a time series T containing a subsequence 𝑇𝑝,𝑚 

of length m starting at position p and a matching subsequence 𝑇𝑞,𝑚 starting at q, 𝑇𝑝,𝑚 

is a non-self match to 𝑇𝑞,𝑚 with distance 𝑑𝑝,𝑞 if | 𝑝 –  𝑞|  ≥  𝑚. 

With the definition of non-self match, we can define time series discords. 

Definition 6: Time Series Discord: Given a time series T, the subsequence 𝑇𝑑,𝑚 of 

length m beginning at position d is said to be a discord of T if the distance between 

𝑇𝑑,𝑚 and its nearest non-self match is maximum. That is, ∀ subsequences 𝑇𝑐,𝑚 of T, 

non-self matching set MD of 𝑇𝑑,𝑚 , and non-self matching set MC of 𝑇𝑐,𝑚 , 

𝑚𝑖𝑛(𝑑𝑑,𝑀𝐷
)  >  𝑚𝑖𝑛(𝑑𝑐,𝑀𝐶

). 

Although there are many ways to locate time series discord, the most effective one 

recently is the matrix profile [39]. 

Definition 7: A matrix profile 𝑃 of a time series T is a vector storing the z-normalized 

Euclidean distance between each subsequence and its nearest non-self match. 

Formally, 𝑃 = [𝑚𝑖𝑛(𝐷1), 𝑚𝑖𝑛(𝐷2), … , 𝑚𝑖𝑛(𝐷𝑛−𝑚+1)], where 𝐷𝑖  (1 ≤ 𝑖 ≤ 𝑛 − 𝑚 +

1) is the distance profile of query 𝑇𝑖,𝑚 in time series T. It is easy to see that the highest 

value of the matrix profile is the time series discord. 

As we will explain below, we can compute a special matrix profile which only looks to 

the past. We call it the left matrix profile. 

Definition 8: A left matrix profile 𝑃𝐿 of a time series T is a vector that stores the z-

normalized Euclidean distance between each subsequence and the nearest non-self 

match appearing before that subsequence. Formally, given a query subsequence 𝑇𝑖,𝑚, 

let 𝐷𝑖
𝐿 = 𝑑𝑖,1, 𝑑𝑖,2, … , 𝑑𝑖,𝑖−𝑚+1  be a special distance profile that records only the 

distance between the query subsequence and all subsequences that occur before the 

query, then we have 𝑃𝐿 = [𝑚𝑖𝑛(𝐷1
𝐿), 𝑚𝑖𝑛(𝐷2

𝐿), … , 𝑚𝑖𝑛(𝐷𝑛−𝑚+1
𝐿 )].  

Note that the term discord in this paper refers to the highest value on the left matrix 

profile 𝑃𝐿, i.e., left-discord. For the sake of simplicity, we will refer to left-discord as 

discord where there is no ambiguity. It is clear that in the online case, we must use the 

Left-MP. However, here we argue that even in the offline case we should use it. To see 

why, consider the example shown in Fig. 5. 



  

 

Fig. 5 top to bottom) A snippet of ECG with two types of anomalous heartbeats indicated by a ground 

truth vector. A full Matrix Profile can find the sole occurrence of V-tach, but is confused by the multiple 

occurrences of PVCs (twin-freaks) and cannot find them. In contrast, the Left-MP flags the first 

occurrence of a PVC and the first (and only) V-tach. 

Here left-discords solve the twin-freak problem by reporting the first occurrence of the 

anomaly (later occurrences, if of interest, can be trivially found with subsequence 

search/monitoring). 

4 RELATED WORK 

In recent years, there has been a surge of research interest in the topic of time series 

anomaly detection. For a detailed review, we refer the interested reader to 

[1][2][4][14][21][31] and the references therein. In addition to the work listed in 

Section 2, we have also compiled a longer annotated biography at [10] that explicitly 

discusses discords. 

There are two important points that we have gathered from our survey of the literature. 

The first is due mostly to a single paper [35], that forcefully suggests some of the 

apparent success of recently proposed algorithms may be questionable, due to severe 

problems with the commonly used benchmarks in this area.  

Beyond four issues that [35] notes with benchmarks datasets, we wish to add another 

issue. Most of these benchmarks are minuscule. We suspect that the small datasets that 

the community has focused on are at least partly due to the poor scalability of current 

approaches. For example, a recent paper examines time series of length 140,256 and 

notes “Given the length of the dataset, we sub-sample it by a factor 10.” [1]. This paper 

is by a research group at Amazon, who presumably does not lack for computational 

resources. For reference, DAMP takes 0.9 seconds of the full-sized version of this 

dataset [10] on a commodity desktop.  
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In addition to the problems caused by using poor quality benchmarks, a recent paper 

suggests yet another compelling reason why much of the recent apparent success of 

recent research efforts should be viewed with caution. Paper [12] notes that “most 

recent approaches employ an inadequate evaluation criterion leading to an inflated F1 

score. (however) a rudimentary Random Guess method can outperform state-of-the-art 

detectors in terms of this popular but faulty evaluation criterion.”.   

A recent SIGKDD workshop keynote makes a related point about evaluation [16]. 

Suppose you have a year of data monitoring an industrial boiler, and it happens that on 

Xmas, the boiler leaks all day, causing an anomaly. One might imagine the best way to 

evaluate an algorithm on the task of discovering this anomaly would be a binary score, 

success/failure. However, many papers essentially consider each datapoint as if it was 

an independent event. Suppose they predicted all of Xmas day, and the first minute of 

the next day was an anomaly. They would report an F1 score of 0.9997. The four 

significant decimal digits imply some extraordinarily careful and significant 

measurement was made. However, with a little introspection will allow the diligent 

reader to see that this precision is unwarranted and misleading. The Time Series 

Anomaly Detection (TSAD) literature is replete with impressively large tables of 

numbers with four (and sometimes, five or six!) digits, that simply give the illusion of 

progress and rigor. 

It is somewhat surprising that so few papers in the literature discuss time complexity.  

This can possibly also be attributed to issues with the benchmark datasets. For example, 

by far the two most discussed datasets in the literature are Yahoo and NY-Taxi (NAB), 

with lengths of 1,200 and 10,321 respectively. Even the most sluggish of algorithms 

are unlikely to be taxed by such tiny datasets. If building a particular highly-quality 

anomaly detection algorithm had a high one-time cost, then we might be willing to 

throw whatever computational resources are needed at the task, and then deploy the 

model in perpetuity. However, the situation is worse than that. In virtually any domain, 

the model will become stale due to concept drift, and need to be periodically retrained, 

either on a regular schedule (say once a week), or when the model detects that it has 

drifted from the newly arriving data. 

Recently a handful of papers have recognized that the slow training times for deep 

learning anomaly detectors can be an issue. For example, [32] notes that “fast training 



  

times (are needed) to cope with the requirement of frequently re-updating the learning 

model.”. These authors then went on to introduce a “light-weight” anomaly detection 

system that can complete training in as little as twenty minutes (using GPUs) in a 

dataset of size 274,627. This kind of time frame may work for some domains, for 

example the three-year-long energy grid/weather data we consider in Section 6.1.  We 

surely could afford a few hours to build the model, and perhaps a few hours at the end 

of each month to retrain it. However, consider the machining dataset we examine in 

Section 6.2. Here we see the first thirty seconds of data, and then must instantly have a 

working model. While DAMP can do this, it is not clear that any other anomaly detector 

in the literature can. One might imagine that other methods could potentially look only 

at say, the first twenty seconds of data, and use the remaining ten seconds to build their 

model. However, this would require most of the algorithms in the literature to be 

accelerated by several orders of magnitude.  

A recent paper [26] compared twelve anomaly detection algorithms on 13,766 datasets. 

The datasets are a mixture of existing datasets and datasets created by the authors. There 

is a clear and unambiguous finding, two algorithms, the Matrix Profile and NORMA (a 

sort of Matrix Profile variant) are significantly better than all the other approaches. In 

fact, the news here is particularly good for our proposed approach. In a personal 

communication one of the authors [25], he revealed that many of the original datasets 

they made were specifically created to have the twin-freak problem (recall Fig. 5), in 

order to suppress the performance of the Matrix Profile. However, recall that the left 

matrix profile does not have an issue with twin-freaks. Consider Fig. 6. which shows 

three examples (of many) of the time series contrived to make the Matrix Profile 

underperform relative to NORMA [25]. Note that in every case, the left Matrix Profile 

correctly finds the anomaly.  



  

 

Fig. 6 Three examples of synthetic datasets contrived by [26] to make the Matrix Profile underperform.  

Interestingly, there is a historical precedent for this. A 2009 paper also created a 

synthetic data designed to make Matrix Profile underperform [6]. What is interesting 

about these papers is that in both cases they were unable to find a real dataset that had 

a twin-freak problem, both resorted to creating synthetic datasets. In any case, we will 

show that DAMP makes this a moot point.  

Finally, the reader may wonder why we do not test on the large collection of datasets 

in [26] in our empirical section. There are two reasons. First, the data collection includes 

datasets that [35] notes are deeply flawed, including mislabeled ground truth. If even a 

handful of datasets have mislabeled ground, as Wu and Keogh point out [35], and which 

the authors of [26] have acknowledged [25], it is hard to have any faith in evaluation 

on the overall data collection. Secondly, the agenda of creating datasets to make the 

Matrix Profile underperform (relative to NORMA) was not stated in the paper [26], and 

was only revealed [25] after we pointed out that it is obvious to anyone that examined 

the data. We should be wary of this dataset in case there are other unspoken agendas. 

In any case, testing on small synthetic unrealistic datasets seems pointless when we can 

test on large real datasets, as we do in this work.  

5 DAMP 

5.1 Intuitive Overview of DAMP 

Before giving a formal explanation of our algorithm, we will first provide an intuitive 

description of how it works. We will start with discussing the batch case and then 
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further generalize to the (minor) steps required for the online case. As shown in Fig. 7, 

it will be helpful to explain the algorithm mid-execution, as it is processing the 

subsequence Ti.  

 

Fig. 7 A sketch of the DAMP algorithm in progress, processing the current subsequence. top) The time 

series T. center) The Left-aMP, its values between 1 and i are computed, its values after i have yet to 

be computed. bottom) the Pruned Vector indicates subsequences that can be ignored without affecting 

the final result. 

Fig. 7.top shows the time series T being processed, the green bar indicating the current 

subsequence being processed at location i. Note that we have created two parallel 

vectors to accompany T. The Left-aMP is the vector we are computing. It is an 

approximation to the true Left-MP, with the following properties:  

• If location j is the true left-discord for the time series T1:j, then the discord value at 

aMPj is not an approximation, but the true left-discord value. 

• Otherwise, the approximation at aMPj is strictly bounded:  MPj ≤  aMPj  ≤ 

max(MP1:j) 

These properties tell us that we can take any prefix of T (inducing the special case of 

the entire length of T), and the left-discord reported by the Left-aMP will be the same 

as that reported by the Left-MP. 

In Fig. 7.bottom we show the other parallel vector that accompanies T and the Left-

aMPj. The Pruned Vector tells us which subsequences could not be the left-discord, and 

hence do not need to be processed. At initialization time, this vector is set to all ‘1’s, 

indicating that all subsequences must be processed. However, as we process the data, 

we may be able to “peek into the future” and cheaply determine locations that could not 

be a discord, and flip their corresponding bits to ‘0’. 

At the ith location, the processing can be divided into two independent steps, backward 

processing and forward processing. 
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5.1.1 Backward Processing 

The main task of backward processing is to discover whether the current subsequence 

Ti:i+m-1 is the left-discord, for which the naïve way would be to compute its nearest 

neighbor distance to any subsequences in T1:i. 

However, note that in general we may not need to find the nearest neighbor, any 

neighbor whose distance is less than the Best-So-Far will disqualify the current 

subsequence from being the discord. This suggests an early abandoning scheme that we 

can optimize with the two following observations: 

• Instead of incrementally searching from the beginning, we should expect to be able 

to abandon earlier if we search backwards from the ith location. The reason this is 

true is that the patterns can drift over time. In other words, the pattern most likely to 

be similar to the current subsequences is generally the subsequence just before the 

current subsequence2. 

• The MASS algorithm is optimized for queries with powers of two length. For 

example, using the machine that performed all the experiments in this paper, we find 

that a MASS search with a query of length 512, takes 0.025 seconds for a time series 

of length 524,288 (i.e., 219). But if we delete a single point to get a 524,287, it takes 

0.177 seconds. This suggests we should attempt to construct a backward search 

algorithm that is comprised mostly or solely of such pinteger length queries.  

These two observations suggest an algorithm. We should look backwards at the prefix 

that is the next power-of-two longer than m. If that yields a neighbor that is less than 

the Best-So-Far (BSF) we are done, we simply place that value in aMPi as our 

approximation. If that was not the case, we double the length of the prefix to two times 

the next power-of-two longer than m, and try again. We continue to iteratively double 

until we find a nearest neighbor distance that is less than the Best-So-Far, or until our 

prefix includes the full span back to the beginning of T. In that latter case, we use the 

nearest neighbor distance to update both the Best-So-Far and aMPi. 

 
2 This observation is true for heartbeats, gaits, machine cycles etc. One exception is for events tied to a cultural calendar. For 

example, for taxi demand or electrical power demand, the most similar day to any given day, is not the previous day, but the 

same day one week earlier. 



  

5.1.2 Forward Processing 

In the forward processing step, we attempt to discover and prune subsequences that 

cannot be left-discord. If we take the current subsequence and compare it to the suffix 

of T, that is, to Ti+m:n (the search must start at i+m to avoid self-match), any subsequence 

that is less than the Best-So-Far distance to the current subsequence can be pruned 

(have its corresponding bit in the Pruned Vector set to ‘0’).  

In principle, we could do this search from i+m to the end. However, the two 

observations in the previous section still apply. While the next few cycles may be 

similar and yield a good pruning rate, over time the patterns tend to drift and the pruning 

rate falls. The combination of a long expensive similarity search and the lower pruning 

rate means that the forward step may not “pay” for itself. So instead, we can look 

forward a limited amount, say four times the next power-of-two longer than m. 

After completing both the backward and forward processing, the algorithm increments 

the current pointer from i to the next index which has a ‘1’ in the Pruned Vector, and 

repeats the two processing steps.  

5.2 Formal Pseudocode for DAMP 

Here we give the pseudocode shown in Table 1 to formalize the intuition of the previous 

sections. For ease of explanation, we first consider only the batch case. 

Table 1: The Main DAMP Algorithm 

Function:  DAMP(T, m, spIndex) 

Input: T:  Time series 

m:  Subsequence length 

spIndex: Location of split point between training and test data 

Output: aMP: Left approximate Matrix Profile 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

PV = ones(1,length(T)-m+1) 

aMP = zeros(1,length(T)-m+1) 

BSF = 0              // The current best discord score 

// Scan all subsequences in the test data 

For i = spIndex to length(T) – m + 1 

If NOT PVi       // Skip the pruned subsequence 

aMPi = aMPi-1 

Else 

[aMPi, BSF] = BackwardProcessing(T, m, i, BSF) 

PV = ForwardProcessing(T, m, i, BSF, PV) 

return aMP 



  

In lines 1 and 2 we initialize two vectors that are essentially the same length as the time 

series T, but are actually of length n-m+1. These are PV (Pruned Vector), a Boolean 

vector that indicates which indices can be dismissed without evaluation, and aMP, 

which is the approximate Matrix Profile we wish to compute. The current highest 

discord score encountered during execution is stored in the BSF, initialized to zero in 

line 3.  

In lines 5 to 10, we iterate through all subsequences of length m in the test data. In each 

iteration, we first determine whether the current subsequence was pruned, i.e., whether 

it is marked as 0 in the PV (line 6). If yes, we assign the discord score of the previous 

subsequence to the current subsequence and then skip to the next subsequence (line 7). 

If the current subsequence was not pruned, we must process it. In line 9 we call 

BackwardProcessing to calculate the discord score of the current subsequence. In 

particular, if the backward search finds a value higher than the current highest discord 

score (BSF), BackwardProcessing returns the exact score of the current subsequence 

and updates the BSF; otherwise, BackwardProcessing returns an approximate score of 

the current subsequence and does not update the BSF. Note that while this score is 

approximate, it is bounded between the true score and the current BSF. 

At this point we have completely processed the current location. However, before we 

increment our loop index to process the next location, we take a brief digression. We 

will use the current subsequence to look “forward”, finding any subsequences ahead of 

it that have a distance to it that is less than the current BSF. It is easy to see that any 

such subsequences could not be a better discord than the current BSF, as when they do 

BackwardProcessing, they would find the current subsequences to be close enough to 

disqualify them. This observation allows us to prune these “near-enough” neighbors of 

the current subsequence. Concretely, line 10 invokes ForwardProcessing to find out the 

subsequences that can be pruned within a specific range in the future (if any), and their 

corresponding vectors are marked as 0 and recorded in the Pruned Vector PV. Finally 

in line 11 we return the left approximate Matrix Profile computed by the DAMP 

algorithm.  

Table 1 provides a high-level overview of how the DAMP algorithm works. Let us now 

“zoom in” and look at the two core subroutines of DAMP, BackwardProcessing and 



  

ForwardProcessing. We begin with Table 2 to explain backward processing, whose 

intuition we laid out in Section 5.1.1.  

Table 2: DAMP Backward Processing Algorithm 

Function:  [aMPi, BSF] = BackwardProcessing(T, m, i, BSF) 

Input: T:  Time series 

m:  Subsequence length 

i:  Index of current query 

BSF:  Highest discord score so far 

Output: aMPi: Discord value at position i 

BSF:  Updated highest discord score so far 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

aMPi = inf 

prefix = 2^nextpow2(m)  // Initial length of prefix  

While aMPi ≥ BSF 

If the search reaches the beginning of the time series 

aMPi = min(MASS(T1:i,Ti:i+m-1))  

If aMPi > BSF  // Update the current best discord score 

    BSF = aMPi 

break 

Else 

aMPi = min(MASS(Ti-prefix+1:i,Ti:i+m-1))  

If aMPi < BSF 

    break      // Stop searching 

Else           // Double the length of prefix 

    prefix = 2*prefix 

return aMPi, BSF 

In line 1 we begin by initializing the discord score of the current query at position i to 

positive infinity. Then in line 2 we specify the initial length of the backward processing 

and store it in the variable prefix. We employ 2^nextpow2(m) to define this initial length. 

Specifically, when we feed the subsequence length m into 2^nextpow2(m), it will return 

the smallest power of 2 greater than m. Recall that we are doing this because MASS is 

significantly faster when the length of the time series is a power of two. Since we are 

going to do a “piecewise” search of the time series that precedes the subsequence being 

processed, it makes sense to make these pieces be a power of two in length. 

The loop in lines 3-14 evaluates the exact or approximate discord score of the current 

query. Here we adopt the idea of “iterative doubling”. At the beginning, we find the 

nearest neighbor of the current query in the initial length prefix and save the distance 

between the current query and the nearest neighbor into aMPi (line 10). If this distance 

is lower than the current highest discord score, this means that we find a nearest 



  

neighbor for the current query within prefix that is more similar than the current discord 

and its nearest neighbor, so it cannot be a discord, and the iteration terminates (lines 

11-12). However, if the distance between the query and its nearest neighbor aMPi is 

higher than the current highest discord score BSF, we double the length of the backward 

processing and continue the search in the next iteration (lines 13-14). This idea is 

visualized in Fig. 8. 

 

Fig. 8 A visualization of the iterative doubling search policy used in lines 10-14 of Table 2. See also 

Fig. 7. 

We keep iteratively doubling until we compute a score smaller than the BSF within the 

range prefix, or search to the beginning of the time series T. If the search gets to the 

beginning of the time series, we first find the nearest neighbor of the query from 

position 1 to i and store the distance to the nearest neighbor in aMPi (lines 4-5). After 

that, we will check whether aMPi is still larger than BSF (line 6). If yes, this means that 

we cannot find a nearest neighbor that is similar enough to the current query, and clearly, 

the current query is the new discord. In this case, we will update the highest discord 

score and break out of the loop (lines 7-8). Finally, line 15 returns the result of backward 

processing, the score of the current query aMPi, and the current highest discord value 

BSF.  

Note that if the search reaches the very beginning of the time series, our computation is 

performed in the global region (from 1 to i), not in the local region prefix, in which case 

the discord score of the current query aMPi is an exact value; whereas if our score is 

computed in the local region prefix, aMPi is an approximate value, but bounded 

between the true score and the current BSF. 

If we just use the backward processing step (line 9 of Table 1), then we have a fast 

online algorithm to compute the aMP. However, the use of forward processing as 
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outlined in Table 3 can speed up the processing by at least a further order of magnitude. 

This is the algorithm whose intuition was laid out in Section 5.1.2. 

Table 3: DAMP Forward Processing Algorithm 

Function:  PV = ForwardProcessing(T, m, i, BSF, PV) 

Input: T:  Time series 

m:  Subsequence length 

i:  Index of current query 

BSF:  Highest discord score so far 

PV:  Pruned Vector 

Output: PV: Updated Pruned Vector 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

lookahead = 2^nextpow2(m)      // Length to “peek” ahead  

If the search does not reach the end of the time series 

start = i + m 

end = min(start + lookahead – 1,length(T)) 

   𝐷𝑖
′ = MASS(Tstart:end,Ti:i+m-1)    // Definition 4 

indices = all indices in 𝐷𝑖
′ with values less than BSF 

indices = indices + start – 1     // Convert indices on distance 

                           //profile to indices on time series 

PVindices = 0                  // Update the Pruned Vector 

return PV 

The purpose of forward processing is admissible pruning. That is, if there is evidence 

that some future subsequences cannot be a discord, we will ignore these subsequences 

and no longer perform expensive processing on them. To achieve this in line 1 we need 

to define lookahead, the range of how many subsequences to peek ahead. Here we also 

use 2^nextpow2(m), i.e., the smallest power of 2 larger than the subsequence length m. 

After that, we need to determine whether the forward search exceeds the range of T to 

ensure that our processing is safe and there is no out-of-bounds problem (line 2). Line 

3 defines the start position of the forward search, namely start. To avoid self-matching, 

we set the start to the position after the end of the query, that is, i+m. Line 4 explicitly 

defines the end position of the forward search, and since the length of our forward 

search is lookahead, or n. We can easily conclude that end is start + lookahead - 1. In 

line 5, we calculate the distance profile 𝐷𝑖
′ by calling the MASS function.  

The distance profile 𝐷𝑖
′ here is slightly different from the one described in Definition 4 

because it is computed under a specific range. That is, 𝐷𝑖
′ stores the distance between 

the current query and all subsequences in the range of lookahead (from start to end) 

instead of the distance between the current query and all subsequences of T. Once the 



  

distance profile 𝐷𝑖
′  is constructed, we can use it for pruning. Suppose there exist 

subsequences in the future that are more similar to the current query than the discord to 

its nearest neighbor. In that case, these subsequences cannot be a discord, so we can 

prune them. Therefore, we can use the current highest discord score BSF as a criterion 

to find all the indices in the distance profile with values lower than the BSF (line 6). 

Since the indices on the distance profile start at 1 and are not aligned with the true 

indices of the time series, we need an additional step in line 7 to convert the indices on 

the distance profile to the true indices of the subsequence. After line 7 we get a list of 

indices for the subsequences that can be pruned out. The Pruned Vector values at the 

corresponding positions specified in the list indices are set to 0 (line 9), indicating that 

when later iterations process the subsequences listed in indices we can simply skip them. 

At last, line 10 returns the updated Pruned Vector PV. 

The forward processing algorithm has exactly one parameter, the lookahead length. 

How should we set this? In Fig. 9.left we sketch out the tradeoffs involved. A longer 

lookahead can prune more subsequences, but this comes at the cost of more expensive 

similarity searches. The good news is that the speedup is dramatic, that the sweet spot 

is early (given us effectively online detection), and that the exact value of the lookahead 

parameter is not too critical. All datasets we examined exhibit this “U-shaped” behavior, 

although the similarity searches. As Fig. 9.right shows, this intuition is borne out by 

experiment. The height of the base of the “U” can be lower (smooth and highly periodic 

data) or higher. 

 

Fig. 9 left) The lookahead tradeoff is based on two factors. As the lookahead grows, the pruning rate 

becomes greater, but the cost of the similarity search increases. right) The empirically measured 

effectiveness of forward processing (on random walks of length 220) is indeed the sum of the two 

factors.  

Finally, this is a good place to mention an important caveat about interpreting a Left-

aMP that is computed using forward processing. Failure this understand this caveat may 
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lead a user to think the aMP is indicating an anomaly where there is none. Consider 

Fig. 10 which shows DAMP processing an excerpt of the MGAB, both with and without 

forward processing. 

 
Fig. 10 bottom-to-top) An excerpt of the MGAB with an anomaly highlighted in red. The top-1 Left-

aMP computed without using forward processing. The top-1 Left-aMP computed without forward 

processing produces long constant runs that indicate that the algorithm admissibly skipped those regions.  
 

When using DAMP with forward processing to search for the top-k left-discords, the k 

highest peaks do correctly show the location and strength (the height of the peaks) of 

the top-k left-discords (in Fig. 10, k = 1). However, the remaining k + 1 peaks should 

not be assumed to indicate slightly smaller anomalies. They simply indicate regions 

that were pruned by encountering a matching subsequence that was below the current 

Best-So-Far. For example, towards the end of the forward processing variant of DAMP 

in Fig. 10 there is a long constant plateau with a relatively high value. As we can see 

by comparing that region to the no-forward-processing region just below it, we should 

not assume that there are any anomalies in that region.  

Again, to summarize: The top-k peaks of the top-k Left-aMP do indicate the correct 

values of top-k discords of T, but the remaining values of the top-k Left-aMP have no 

direct interpretation.  

 

5.2.1 The Time and Space Complexity of DAMP 

Since all computation results are stored in a one-dimensional vector of size n, the space 

complexity of DAMP is just the size of the original data, O(n). The worst-case time 

complexity is O(nlogn) per datapoint ingested, the time required to do a full similarity 

search with MASS [19]. However, empirically, on diverse real-world datasets, more 

than 99.999% of the times we enter the loop in line 3 of  Table 2 we will break out in 

0 0.5 1 1.5 2

Excerpt of Mackey-Glass anomaly benchmark (MGAB)  

DAMP: No forward processing

DAMP: Forward processing
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calculations
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the first iteration (line 12), making the algorithm effectively O(mlogm) per datapoint 

ingested, and linear in the time series length. Fig. 24 shows this linear assumption 

strongly holds up to at least n = 230. 

5.3 DAMP Variants 

There are more general cases that can be easily handled by modifying the basic DAMP, 

for example: 

• The algorithm as explained in Table 1 is a batch algorithm. To make it an online 

algorithm, we simply must reduce the size of the lookahead (Table 3, line 1) to the 

largest delay we are willing to accept (including possibly zero delay). 

• The algorithm as explained in Table 1 computes the Left-aMP, however we can 

modify it to compute the classic Full-aMP. If the backward processing step reaches 

the beginning of the time series, instead of updating the BSF, we do the same type of 

iterative doubling search, but forward from the current index (not to be confused with 

forward pruning search in Table 3). We have made this code available at [10], but we 

do not consider it further here, due to page limits.  

• It may be useful to limit how far back the backward processing can look, essentially 

redefining anomalies as “the subsequence with the maximum distance to any of the X 

subsequences before it”. We call this variant the X-Lag-Amnesic DAMP. 

• Instead of searching an ever-growing amount of previously seen data in the 

BackwardProcessing step, we can search a fixed pool of explicit training data. For 

example, an engineer could curate a dataset that contains all the allowable behaviors 

for a manufacturing process (i.e., the “Golden Batch”). 

There are several other useful variants that we have considered, and we suspect the 

community will quickly exploit the scalability of the basic DAMP algorithm to invent 

further variants.  

Below we give more details about the two useful variants of DAMP, X-Lag-Amnesic 

DAMP and Golden DAMP mentioned above. To help the reader better understand how 

these two variants work, let us start with the most basic variant, namely, Classic DAMP. 



  

 

Fig. 11 Three variants of DAMP. top) Classic DAMP middle) X-Lag Amnesic DAMP bottom) Golden 

DAMP 

The Classic DAMP algorithm illustrated in Fig. 11.top was already discussed in 

Sections 5.1 and 5.2. It is worth noting here that for Classic DAMP, all data collected 

before the current time T1:i-1 are our training data by default, and our backward search 

is executed on this progressively growing training data. This means that to calculate the 

discord score of the current subsequence Ti:i+m-1, Classic DAMP searches all the way 

forward from position i by the iterative doubling process, and, in the worst case, all the 

way to the beginning of the time series, i.e., T1:i. Therefore, as we process more and 

more data points over time, our backward search may also require more and more time.  

As we shall see in our experimental section, empirically this is not a problem on the 

dozens of datasets we consider. Nevertheless, X-Lag-Amnesic DAMP and Golden 

DAMP allow us to provide a strict bound on the worst-case behavior, in addition to 

possessing other useful properties.  

5.3.1 X-Lag-Amnesic DAMP 

In some settings we may require an algorithm that can show us the most unusual 

behavior in just the last few minutes, days, months, or years. In that case, a DAMP 

variant that constrains how far back the backward search can look is required. Formally, 

we refer to such a DAMP variant as X-Lag-Amnesic DAMP.  

Compared with Classic DAMP, the time overhead of X-Lag-Amnesic DAMP is 

bounded and controllable. This is because it only cares about what happened in a fixed 
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unit of time before the present, and its calculation is based on fixed-size and real-time 

updated training data. For example, if we only need to find anomalies that occurred in 

the most recent month, X-Lag-Amnesic DAMP will perform an iterative doubling 

search in the most recent month’s data rather than searching through all past data. 

Consequently, the time cost of X-Lag-Amnesic DAMP is bounded by the length of X 

as opposed to increasing gradually. 

In addition, X-Lag-Amnesic DAMP can better deal with concept drift. For time series 

in some domains, their patterns change over time and the dependence between their 

data weakens as the distance increases, at which point it makes no sense to consider 

data that is too far from the present. For example, for many batch processes in the food 

and beverage industry the time series patterns are known to drift over each day, due to 

changes in ambient temperature and humidity. A pattern that happens during the 

nightshift may be anomalous because the process is “running hot”. It might be obvious 

if we compare only to the patterns in the previous hour or so, but it will not be obvious 

if we allow comparisons back to the previous midday. Obviously, since X-Lag-Amnesic 

DAMP focuses only on what happened recently, it can avoid such issues caused by 

concept drift. By contrast, Classic DAMP is more vulnerable to this, as its backward 

search may cover all data that occurred before the present, and all these data have the 

same weight for the discord score calculation regardless of their proximity to the current 

subsequence. 

Fig. 11.middle describes how the X-Lag-Amnesic DAMP works. Here we introduce a 

new parameter X, the maximum length that the backward processing algorithm can look 

back, specified by the user as needed. The framework of the X-Lag-Amnesic DAMP 

algorithm is the same as Classic DAMP; it retains the forward and backward processing 

steps, in which the forward processing is identical to Classic DAMP. The only 

difference between X-Lag-Amnesic DAMP and Classic DAMP is that for the current 

subsequence being processed Ti:i+m-1, we only perform a backward search on the X data 

points before it, not on all the previous data. However, the search is still iteratively 

doubled: it terminates either when it finds the nearest neighbor with a distance smaller 

than the BSF or when it reaches the beginning of X. Therefore, to make X-Lag-Amnesic 

DAMP work, we simply need to change lines 4-5 of Table 2 for Classic DAMP to the 

five lines shown in Table 4. 



  

Table 4: Pseudo code snippet for X-Lag-Amnesic DAMP 

1 

2 

3 

4 

5 

If Starting position of the search < max(i-X,1) Or X < prefix 

If i – X < 1 

         aMPi = min(MASS(T1:i,Ti:i+m-1))  

   Else 

   aMPi = min(MASS(Ti-X:i,Ti:i+m-1)) 

In line 1 we added two new criteria for search termination, i.e., reaching the beginning 

of the time series Ti-X:i, or the maximum length of looking back X is less than the initial 

length of the iterative doubling search prefix. In both cases, we do not iteratively double 

our search anymore. Instead, we only search for the nearest neighbor of the current 

subsequence in the range i-X to i (lines 4-5). Moreover, there is a special case where 

the number of data points that arrived has not yet reached X (i<X+1). In this case, we 

can only conduct the backward search in all available data T1:i as shown in lines 2-3. 

Others works have noted the utility of amnesic anomaly detection (although not using 

that phrase), including the SAND algorithm of [5]. However, SAND requires 

significant effort to build a reference dataset, and the setting of several unintuitive 

parameters. 

5.3.2 Golden DAMP 

Recall that Classic DAMP has a parameter called spIndex, which sets the location of 

the split point between the training and test data in the initial state. When Classic 

DAMP processes a time series, it assumes that the data before spIndex, T1:spIndex-1 are 

normal, which may lead to three issues. First, this causes the algorithm to ignore the 

potential anomalous behavior present in T1:spIndex-1, resulting in certain false-negative 

results. Second, this approach may have the algorithm wasting time searching 

redundant data. It is possible that the patterns in T1:spIndex-1 are highly redundant, such 

as 1,000 heartbeats that are essentially identical. If the heartbeats all have the same 

pattern, it would suffice for the algorithm to take just one of them to learn3; there is 

no need to consider the same pattern 1,000 times, which will waste a lot of time. 

Further, it may be difficult for T1:spIndex-1 to contain every normal pattern, which can 

cause the algorithm to incorrectly identify normal behavior that does not appear in 

 
3 Actually, using exactly one heartbeat (or pattern more generally), may make the downstream algorithms brittle to 

the choice of the starting point of the heartbeat. To bypass this issue, we always extract two consecutive beats. 



  

T1:spIndex-1 as an anomaly. For example, if T1:spIndex-1 only contains data on the solar 

zenith angle during the day, the algorithm may incorrectly identify normal solar zenith 

angles at night as anomalies. These potential problems can undermine the accuracy 

and efficiency of the algorithm. 

Golden DAMP is our proposed solution to the above three problems. It processes each 

subsequence not by referring to information that occurred before the current time, but 

to user-defined, curated, out-of-band information, denoted as Golden Batch.  The 

Golden Batch implicitly defines every possible legal behavior, such as every possible 

dance move, every normal heartbeat, etc. It includes all the things the user expects to 

happen in the system. With this correct and comprehensive priori knowledge, the 

algorithm will be able to make more accurate and efficient decisions.  

This idea of creating a curated collection of data that spans the space of all possible 

acceptable behaviors is well known in the process industry [37]. For example, 

food/beverage engineers will often set aside one day to create a recipe under all 

combinations of conditions encountered: under cool conditions, under hot conditions, 

with carbonated infeed, with flat infeed etc. However, the use of these batch profiles is 

typically human comparison of the evolving process to the Golden Batch(es) [37]. Here 

we are interested in automatic anomaly detection.  In addition, note that while the 

Golden Batch data can be hand curated, it can also be created automatically by various 

numerosity reduction algorithms [15][36]. 

Further note that the execution time of Golden DAMP is also bounded because its 

training data is the Golden Batch with a fixed size. Therefore, as we explained in 

Section 5.3.1, the cost of Golden DAMP’s backward search is proportional to the size 

of Golden Batch. 

Fig. 11.bottom illustrates the idea of Golden DAMP. When processing the current 

subsequence Ti:i-m+1, Golden DAMP no longer looks backward in the time series T but 

toward the Golden Batch, a vector containing all acceptable patterns. We still use the 

iterative doubling search policy shown in Fig. 8 for Golden Batch. The search keeps 

iteratively doubling until it finds the nearest neighbor within the prefix whose distance 

from Ti:i-m+1 is less than the BSF, or it gets to the beginning of the Golden Batch. After 

computing the approximate or exact discord score for position i, we invoke the same 



  

forward processing procedure as in Classic DAMP to disqualify future subsequences 

that are unlikely to become a discord. 

The implementation details of Golden DAMP are given in Table 5 and Table 6. Since 

most of them are the same as Table 1 and Table 2, we will highlight the parts that we 

changed. 

Table 5: The Main Golden DAMP Algorithm 

Function:  Golden_DAMP(T, m, GoldenBatch) 

Input: T:  Time series 

m:  Subsequence length 

GoldenBatch:  A long time series with all possible normal 

patterns 

Output: aMP: Left approximate Matrix Profile 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

PV = ones(1,length(T)-m+1) 

aMP = zeros(1,length(T)-m+1) 

BSF = 0              // The current best discord score 

                     // Scan all subsequences in the test data 

For i = 1 to length(T) – m + 1 

If NOT PVi        // Skip the pruned subsequence 

aMPi = aMPi-1 

Else 

[aMPi, BSF] = BackwardProcessing(T, m, i, BSF, GoldenBatch) 

PV = ForwardProcessing(T, m, i, BSF, PV) 

return aMP 

The main framework of Golden DAMP is shown in Table 5. Golden DAMP has a new 

input, GoldenBatch, a long vector that joins all normal patterns together. As with Table 

1, the algorithm starts with initialization in lines 1-3. Since we already have the training 

data GoldenBatch, we no longer need to use the first spIndex-1 data of the time series 

T. As a result, in line 5 we adjust the processing range of Golden DAMP from TspIndex:n-

m+1 to T1:n-m+1. After that, within the loop, lines 6-7 decide whether to process the current 

subsequence Ti:i-m+1 according to the value in the pruned vector PV. If the subsequence 

at position i needs to be processed, we first invoke BackwardProcessing in line 9 to 

calculate the discord score for position i and update the current highest discord value, 

and then call ForwardProcessing in line 10 to determine the subsequences to be pruned 

in the future. Finally, lines 5-10 iterate through each subsequence in T1:n-m+1 and line 11 

returns the Golden Left-aMP. In particular, the ForwardProcessing here is identical to 

that of Classic DAMP, so we do not repeat it below. However, we partially changed 



  

BackwardProcessing from Table 2 of Classic DAMP, so we give Table 6 detailing the 

backward processing for Golden DAMP. 

Table 6: Golden DAMP Backward Processing Algorithm 

Function:  [aMPi, BSF] = BackwardProcessing(T, m, i, BSF, GoldenBatch) 

Input: T:  Time series 

m:  Subsequence length 

i:  Index of current query 

BSF:   Highest discord score so far 

GoldenBatch:  A long time series with all possible normal 

patterns 

Output: aMPi: Discord value at position i 

BSF:  Updated highest discord score so far 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

aMPi = inf 

prefix = min(2^nextpow2(m),length(GoldenBatch))  

While aMPi ≥ BSF 

If the search reaches the beginning of the Golden Batch 

aMPi = min(MASS(GoldenBatch1:end,Ti:i+m-1))  

If aMPi > BSF  // Update the current best discord score 

   BSF = aMPi 

break 

Else 

aMPi = min(MASS(GoldenBatchend-prefix+1:end,Ti:i+m-1))  

If aMPi < BSF 

   break      // Stop searching 

Else          // Double the length of prefix 

   prefix =2*prefix 

return aMPi, BSF 

Table 6 illustrates the backward processing algorithm of Golden DAMP. As the 

backward search is performed on top of Golden Batch, we need to enter GoldenBatch 

into the algorithm. The first two lines of Table 6 are still the initialization phase. Line 

1 is the same as in Table 2, initializing the discord score of the current subsequence to 

positive infinity. In line 2 we define the initial length of the iterative doubling search 

prefix. Here we set it as the lower bound of 2nextpow2(m) and Golden Batch size to prevent 

possible array out-of-bounds problem at line 10. Then in the loop in lines 3-14, we 

perform the iterative doubling search, which starts from the end of Golden Batch and 

goes backwards. We keep searching in GoldenBatchend-prefix+1:end  until we find the 

nearest neighbor whose distance from the current subsequence is less than BSF (line 11) 

or reach the beginning of Golden Batch (line 4). Specifically, if we find the nearest 

neighbor within the range prefix, we assign the approximate discord score of the current 



  

subsequence to aMPi and stop the search (lines 10-12); if not, in lines 13 and 14 we 

double the length of prefix and continue the search in GoldenBatchend-prefix+1:end. If the 

search finally reaches the beginning of Golden Batch (line 4), we first calculate the 

exact discord score of the current subsequence using all the data in GoldenBatch (line 

5), and then determine whether the current highest discord score BSF needs to be 

updated (line 6). If the discord score of the current subsequence is still greater than BSF, 

it means that the subsequence at position i does not have a nearest neighbor similar 

enough to it in the Golden Batch and it is a discord, at which point we should update 

the current highest discord score BSF in line 7. 

5.4 Multidimensional DAMP 

The previous sections have shown how to find anomalies in a one-dimensional time 

series. We believe that in many cases, anomaly detection of all the one-dimensional 

data is sufficient for user demands. For example, in a hospital setting, a doctor may 

monitor a patient’s ECG, blood pressure, and respiration. Most life-threatening 

situations will show up in at least one of the above. For example, a myocardial 

infarction, will first show up in the patient’s ECG, septicemia will first show up in the 

patient’s blood pressure, and tracheomalacia will first show up in the patient’s blood 

respiration. 

However, there are also special cases where anomalies occur in only two or more 

dimensions. For example, in the low-latitude Pacific West Coast region, typhoons 

accompanied by heavy precipitation occasionally make landfall in summer. In order to 

identify such unusual weather events, it is insufficient to monitor only precipitation or 

wind speed. This is because these areas may have strong winds but sunny weather, or 

extreme rainfall but still air. As a result, we need to combine wind speed and 

precipitation as two-dimensional data to find out which day has both precipitation and 

wind speed anomalies. If such anomalies can be identified in two dimensions, there is 

a high chance of typhoon weather on that day. Therefore, it is necessary to generalize 

our DAMP algorithm to support searching in high-dimensional spaces. We refer to the 

DAMP algorithm for multidimensional data anomaly detection as multidimensional 

DAMP. 



  

 

Fig. 12 Multidimensional distance profile for position i.  

The basic idea of multidimensional DAMP is the same as the one-dimensional 

DAMP we introduced in Section 5.1, which retains the procedure of backward 

iterative doubling and forward pruning. The difference between them is reflected 

solely in the calculation of the discord score. Fig. 12 illustrates how the 

multidimensional DAMP calculates the discord score for position i. Let TA be the 

time series of dimension A in a two-dimensional time series, while TB corresponds to 

dimension B, and the length and frequency of TA and TB are equal. For position i, we 

first compute the distances between the current subsequence of TA and TB and the 

subsequences before position i in their respective dimensions, forming two distance 

vectors DA
i and DB

i (see Definition 4). After that, we add the elements of the two 

distance vectors two by two according to their positions to produce a new vector MDi, 

which contains the distance information in both dimensions A and B. Finally, the 

minimum value on MDi is the discord score at position i. As the algorithm progresses, 

the BSF continuously tracks the current highest discord score that combines 

information from both dimensions. 

Table 7 and Table 8 give the implementation details of multidimensional DAMP. 

Here we only demonstrate the two-dimensional version, however the reader can 

easily modify it to work with higher dimensional data. Since the basic steps of 

multidimensional DAMP and one-dimensional DAMP are the same, the framework 

of multidimensional DAMP is identical to Table 1. 
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Table 7: Multidimensional DAMP Backward Processing Algorithm 

Function:  [aMPi, BSF] = BackwardProcessing(TA, TB, m, i, BSF) 

Input: TA:  Dimension A of the multidimensional time series 

TB:  Dimension B of the multidimensional time series 

m:  Subsequence length 

i:  Index of current query 

BSF:  Highest discord score so far 

Output: aMPi: Discord value at position i 

BSF:  Updated highest discord score so far 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

aMPi = inf 

prefix = 2^nextpow2(m)  // Initial length of prefix  

While aMPi ≥ BSF 

If the search reaches the beginning of the time series 

aMPi = min(MASS(TA1:i,TAi:i+m-1) + MASS(TB1:i,TBi:i+m-1))  

If aMPi > BSF  // Update the current best discord score 

    BSF = aMPi 

break 

Else 

aMPi = min(MASS(TAi-prefix+1:i,TAi:i+m-1) + MASS(TBi-prefix+1:i,TBi:i+m-1))   

If aMPi < BSF 

    break      // Stop searching 

Else           // Double the length of prefix 

    prefix =2*prefix 

return aMPi, BSF 
 

Table 7 presents the multidimensional backward processing algorithm. As it is 

primarily similar to Table 2, we refer the reader to Section 5.2 for more details on the 

iterative doubling backward algorithm. Here we only highlight the parts that have 

changed. Compared to Table 2, we add two new inputs TA and TB, the time series in 

dimensions A and B. In lines 5 and 10, we change the calculation of the discord score 

at position i aMPi. In line 5, to obtain aMPi, we call MASS twice to calculate the 

distance between the current subsequence of TA and TB and all subsequences before 

position i respectively. Next, we add the elements in the two distance vectors returned 

by MASS two by two according to the positions to obtain the multidimensional distance 

profile. Finally, the minimum value of the multidimensional distance vector is taken as 

the exact discord score of position i. Line 10 is similar to line 5. The only difference is 

that line 10 only finds the nearest neighbor in the prefixes of TA and TB before position 

i and aMPi is the approximate discord score for position i. 



  

Table 8: Multidimensional DAMP Forward Processing Algorithm 

Function:  PV = ForwardProcessing(TA, TB, m, i, BSF, PV) 

Input: TA:  Dimension A of the multidimensional time series 

TB:  Dimension B of the multidimensional time series 

m:  Subsequence length 

i:  Index of current query 

BSF:  Highest discord score so far 

PV:  Pruned Vector 

Output: PV: Updated Pruned Vector 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

lookahead = 2^nextpow2(m)      // Length to peek ahead  

If the search does not reach the end of the time series 

start = i + m 

end = min(start + lookahead – 1,length(T)) 

   𝑀𝐷𝑖
′ = MASS(TAstart:end,TAi:i+m-1) + MASS(TBstart:end,TBi:i+m-1) 

indices = all indices in 𝑀𝐷𝑖
′ with values less than BSF 

indices = indices + start – 1     // Convert indices on distance   

profile to indices on time series 

PVindices = 0                  // Update the Pruned Vector 

return PV 

 

Multidimensional DAMP also has a similar forward pruning process to that of one-

dimensional DAMP, as shown in Table 8. Compared with Table 3, we need to only 

change line 5. In the range of lookahead, the distances between the current and future 

subsequences of TA and TB are calculated separately. Then the distance vectors of A and 

B dimensions are summed to yield a distance vector MD'i containing two-dimensional 

information. Our pruning decisions are made based on this two-dimensional distance 

vector. 

 

Fig. 13 Synthetic time series A and B. top) Synthetic dataset A and its corresponding one-dimensional 

Left-aMP. bottom) Synthetic dataset B and its corresponding one-dimensional Left-aMP. 

Let us start with a toy data set to understand the difference between multidimensional 

DAMP and one-dimensional DAMP. The red curves in Fig. 13 illustrate two synthetic 

time series A and B. These two time series consist mainly of sine waves. Specifically, 

for time series A, the data at positions 3700-3799 (X) are noisier than the other parts, 
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while for time series B, the data at positions 1700-1799 (Y) are noisier. If you look 

closely, you will find that the two time series will have a square wave at random 

positions from time to time. It so happens that at positions 2605-2644, both time series 

show a square wave simultaneously, which is where our real anomaly lies. We denote 

it as Z. We tested the time series A and B with one-dimensional DAMP and two-

dimensional DAMP respectively to see if they could find the true anomaly Z. Fig. 13 

also gives the results of performing a one-dimensional DAMP on time series A and B. 

It is easy to see by the highest point of the blue curve in Fig. 13.top that one-dimensional 

DAMP is attracted to the noisy sine wave in A and does not notice the anomaly at 

position Z. Similarly, as illustrated in Fig. 13.bottom, one-dimensional DAMP on B 

also fails to detect the anomaly at Z, instead considers the nosier Y as the anomaly. 

Missing information in another dimension, the one-dimensional DAMPs mistakenly 

believe that the presence of the square wave at Z is justified because they observe 

similar patterns before Z. 

 

Fig. 14 Left-aMP generated by two-dimensional DAMP. 

Next, we combine A and B into a two-dimensional time series and feed it into the two-

dimensional DAMP to see if the results will be different. The Left-aMP generated by 

two-dimensional DAMP is shown in Fig. 14. Note that compared with the Left-aMP 

generated by the one-dimensional DAMP in Fig. 14, the two-dimensional Left-aMP 

captures more anomalies with more “bumps” on its curve. All these bumps can be 

interpreted intuitively. For example, when both square and sine waves are present, or 

when one of the sine waves is noisier, they are recognized by the algorithm as a 

potential anomaly and correspond to a bump in the Left-aMP. What is more, the 

position of the highest point of Left-aMP in Fig. 14 corresponds to the coincidence of 

two square waves, that is, Z. This is because if you look at the entire time series of A 
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and B, you will see that the square wave only appears at Z in both dimensions 

simultaneously, which cannot be observed at other locations. 

We have seen that we can create a synthetic dataset that has an anomaly that can be 

discovered only by considering two time series simultaneously. However, can we 

discover two-dimensional anomalies in real data? Surprisingly, we are not aware of any 

such benchmark dataset. Most datasets in the space are synthetic, or are 

multidimensional, but have anomalies that are so obvious that it suffices to examine 

any single dimension [2][14]. However, we can explore energy grid data published by 

a consortium of Texas A&M and USC in 2021 [38], and use out-of-band data to 

evaluate the returned anomalies. Fig. 15.top shows three years of wind speed and 

relative humidity data from the New York area between 2018 to 2020 [38]. 

 

Fig. 15 top) Three years of wind speed and relative humidity data for the New York area from [38]. 

bottom) The two corresponding top 2D discord in this dataset. 
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Fig. 15.bottom shows the results of our search on the one-dimensional data of wind 

speed and relative humidity, respectively, and the anomalies identified by one-

dimensional DAMP are marked in red. First, for wind speed, the one-dimensional 

DAMP reports the constant interval occurring on January 24, 2019, as an anomaly; 

however, we do not find any reported climate anomaly in New York State on that date. 

That is to say, although the algorithm finds an anomaly with a pattern that is different 

from its context, it does not seem to noticeably affect people’s lives. As a result, we can 

conclude that the wind speed anomaly is trivial. Second, for relative humidity, the one-

dimensional DAMP identifies the continuous peak occurring on November 23, 2018, 

as an anomaly. Through a Google search, we found reports of heavy rainfall and 

flooding that occurred in New York State on that day [22], which confirms that the 

anomalies identified in the dimension of relative humidity are informative and that the 

one-dimensional DAMP is effective. 

 

Fig. 16 Top discord for two-dimensional DAMP. 

However, if we combine wind speed and humidity and search in two dimensions, will 

the algorithm give us more interesting results? To investigate this, we took wind speed 

as dimension A and relative humidity as dimension B and re-executed this two-

dimensional data using multidimensional DAMP. The results are presented in Fig. 16. 

Note that the two-dimensional DAMP reports a different date to either of the one-

dimensional DAMP runs, May 28, 2019. This means that both humidity and wind speed 

in New York City showed anomalous patterns on this date. This anomaly is confirmed 

by the news “A powerful thunderstorm slammed Staten Island Tuesday night, pounding 

the borough with large hail, heavy rain and the threat of a tornado.” [29]. 
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Fig. 17 The scalability of 1D and 2D DAMP over increasingly large datasets. The cost to double the 

number of dimensions considered is only slightly worse than double the time, suggesting that 

multidimensional DAMP search inherits the efficiency of the 1D version.  

We have demonstrated the utility of multidimensional DAMP. However, readers may 

wonder if it will pay a large time overhead for it. To investigate this, we used the data 

shown in Fig. 15.bottom (wind speed) and Fig. 16 and recorded the time cost of the 

one-dimensional and two-dimensional algorithms for increasingly long subsets. The 

experimental results are shown in Fig. 17. It can be seen that the time cost of a two-

dimensional DAMP is only a small constant ratio to the cost of a one-dimensional 

DAMP, which suggests the good scalability for multidimensional DAMP. 

6 EMPIRICAL EVALUATION 

To ensure the reproducibility of our experiments, we have built a website [10] 

containing all the data/code used in this work. All experiments were conducted on an 

Intel® Core i7-9700CPU at 3.00GHz with 32 GB of main memory, unless otherwise 

stated. 

There are two things one normally needs to establish to validate an anomaly detection 

algorithm. 

• Effectiveness: Here we feel less of an obligation. As we noted in Section 2, there are 

at least one hundred independent papers that have used discords to solve a real-world 

problem and that have shown that discords are the only technique that seems to be 
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able to discover anomalies that are not visually obvious (Fig. 2, Fig. 3 and Fig. 4). 

Nevertheless, for completeness we will show examples in Sections 6.1 and 6.2 that 

further demonstrate the excellent effectiveness of discords in diverse domains, and 

Section 6.3 and Section 6.4 offer comparisons to several deep learning-based 

methods. 

• Efficiency: As this is the main contribution of the paper, here we will attempt an 

ambitious set of anomaly detection experiments in terms of both throughput and scale.  

6.1 Energy Grid Dataset 

Recently, a consortium from Texas A&M and USC released a large dataset on 

decarbonized energy grids [38]. The dataset contains files representing three years of 

measurements of various metrics in sixty-six electrical zones in the continental USA. 

As Fig. 18 suggests, each file represents eleven measurements, ten of which are 

measured (temperature, wind speed etc.), but one is computed from the first principles 

of astronomy, the Solar Zenith Angle. 

 
Fig. 18 top) Two examples of time series from [38]. Most, like temperature are measured, but Solar 

Zenith Angle is computed. bottom) The two corresponding top discords in these datasets.  
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The total size of this dataset is 12 GB, representing 2,174 years of data with 

1,142,668,098 datapoints. As such, we believe that it is the largest real dataset ever 

searched for anomalies. This complete search took only 2.06 days. 

As Fig. 18 shows, most of the anomalies discovered do have a semantic meaning that 

can be traced. For example, a temperature trace from California had a discord that 

reflected “Valentine’s Day Storm Slams California” [33]. Even the computed time 

series reveals a strange anomaly echoing a biblical event.  Joshua persuades God to stop 

the sun from moving for a day “There has never been a day like it before or since 

(Joshua 10:14)”. In our dataset there is a similarly unique day in which the sun 

apparently does not move! The reader will readily appreciate the cause of this anomaly, 

after noting it occurs on the 29th of February [34]. It is a classic leap year bug. Note that 

we informed the Texas A&M and USC team of this bug, so presumably it will be fixed 

in upcoming releases.  

6.2 Machining Dataset 

The example in Section 6.1 demonstrates the utility of anomaly detection in batch data 

exploration. However, in some cases if we can do anomaly detection in real-time, we 

may be able to perform an intervention to improve an outcome. For example, consider 

the process of making parts using a CNC milling machine. Occasionally a problem 

arises where an item being machined is not held correctly and it moves. This can cause 

a milling machine to “crash” [8]. High-end CNC mills can cost over one million dollars, 

and crashes resulting in more than $20,000 in damage are known. Many (but not all) 

machining processes can be paused by an operator, so in principle it may be possible to 

stop a machine before it crashes. However, with the speed at which these machines 

operate, it is unlikely that the operators’ reflexes would be fast enough.  

This suggests the question, could we monitor the process with telemetry, and pause the 

process if we detected an anomaly? In order to test this, we recreated a common 

scenario in Fig. 19. 



  

 

Fig. 19 top) Vibration telemetry from a milling machine that was cutting cast iron, but then overshot 

to start cutting the steel jaws of the vice. bottom) The Left-aMP discovers the transition.  

A common CNC programming error is to give the wrong coordinates for a cutting pass, 

and have the cutter overshoot the intended material to be machined, and inadvertently 

attempt to remove material from the jaws of the vice. Because the jaws are typically 

harder than the material they hold, and more resistant to cutting, two things can happen:  

• The milling cutter itself will break. This is a $20 to $200 error.  

• A much worse possibility is that the cutter will move the vice. If it happens to push it 

into the path of later traversal, this could cause a head crash, which is a $2,000 to 

$20,000 error. 

As Fig. 19 shows, the aMP can detect the change of material, and this could be used to 

sound an alarm, or pause the machining process until the operator can inspect this.  

Note that before the true anomaly there are other areas with high discord scores. They 

are when the milling cutter changes direction (from Climb milling to Conventional 

milling). Under our proposed scheme these would have a small cost, the process would 

pause until the operator visually confirms all is well, and hits continue. 

6.3 Comparison to LSTM Deep Learning 

Although dozens of competing deep learning anomaly detection (DLAD) algorithms 

now exist, it is impossible to say which is the state-of-the-art. This is because, as Wu 

and Keogh have demonstrated, the amount of mislabeling in the benchmark datasets 

dwarfs the reported differences between algorithms [35]. It makes no sense to say that 

algorithm A is 5% better than algorithm B, when up to 30% of the ground truth labels 

are suspect. 

To bypass this issue, here we will compare to just Telemanom. It is the most cited 

anomaly detection paper of the last five years [14], and several independent papers have 

also found it to be effective. The general idea of this work is to use LSTM to predict 

future values, then detect anomalies based on the difference between predictions and 

actual data. Can Telemanom detect the anomalies we consider in this work? 
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• ECG (Fig. 3) No. Given the same 500 datapoint prefix as training data, it fails to find 

the anomaly. If we give it ten times as much training data (the first 5,000 datapoints), 

it still fails. 

• Bearing (Fig. 2): Yes. However, Telemanom took a total of (517.6 training + 700.4 

testing) 1,218 seconds. This is two orders of magnitude slower than DAMP, which 

took 16.1 seconds. More importantly, Telemanom is an order of magnitude slower 

than real-time, precluding any possibility of online monitoring. 

• Energy Grid (Section 6.1) Maybe. There are only objective labels for Solar Zenith 

Angle (this anomaly was discovered with DAMP but confirmed with the data 

creators). If Telemanom sees only the first week as training data (as DAMP did), then 

it only learns that the Solar Zenith Angle can decrease over time, and it will flag as 

anomalous anything that happens after the summer solstice. A solution to this problem 

is to allow Telemanom to train on the full first year, then test on the subsequent years. 

Then it may find the “Joshua” anomaly. However, this will take 59.1 hours, over 1,300 

times slower than DAMP.  

• Milling Data (Fig. 19) No. Actually, Telemanom can detect the same anomaly as 

DAMP. But recall it can only start training when the first 5,000 datapoints arrive, and 

it takes 411 seconds to train the model. However, 127 seconds after it begins training, 

we encounter the anomaly, and about 21 seconds after that, the endmill snaps off. 

Telemanom is just too slow to be useful here.  

These comparisons suggest that the most cited deep learning anomaly detection 

algorithm is not as accurate as DAMP, requires more training data, and is much slower. 

6.4 Comparison on the KDD Cup 2021 datasets  

To further see the limitations of deep learning time series anomaly detection, we can 

compare DAMP to DLAD algorithms on publicly available benchmarks. Wu and 

Keogh have shown that most benchmarks in this space are too trivial to be interesting, 

and in any case are plagued by mislabeling and other problems [35]. Instead, we 

consider the KDD Cup 2021 dataset consisting of 250 univariate time series [11]. This 

archive was designed to be diverse, have a spectrum of difficulties ranging from easy 

to essentially impossible, and has a detailed provenance for each of the 250 datasets, 

giving us some confidence that the ground truth is correct. Moreover, the datasets 



  

include a wide range of domains, including cardiology, industry, medicine, zoology, 

weather, human behavior, etc. Table 9 shows the results. 

Table 9: Accuracy and Time for Eight TSAD Methods 

Method Accuracy Train and Test Time 

USAD [2] 0.276 8.05 hours 

LSTM-VAE [27] 0.198 23.6 hours 

AE [2] 0.236 6.11 hours 

Telemanom [14] Out of memory error on longer examples 

NORMA [4] 0.474 17.8 minutes 

SCRIMP (Full-MP) 0.416 24.5 minutes 

DAMP (Left-MP) out-of-the-box 0.512 4.26 hours 

DAMP (Left-MP) sharpened data 0.632 4.26 hours 

Once again, these results show that DAMP is more accurate and faster than deep 

learning-based methods. It is important to note that the results for DAMP are 

completely free of any human intervention or tuning. We use four hardcoded lines of 

Matlab (see [10]) to find the approximate period in each training dataset, and used that 

as the value of m. Likewise, we simply hardcoded a single lookahead value for all 250 

datasets. Further optimizing the former would improve accuracy and personalizing the 

latter for each individual problem would improve the speed. However, we wanted to 

show that even the most naïve out-of-the-box use of DAMP is highly competitive. As 

an example of a small intervention that can further improve accuracy, if we run DAMP 

on sharpened data (a single extra line of code, see [10] for details) the accuracy 

improves to 0.632. 

The left-discords of DAMP are significantly more accurate than the full-discords 

computed by SCRIMP, because some anomalies have near “twin-freaks” that suppress 

the distance of the anomaly to its nearest neighbor. Note that the time for SCRIMP and 

NORMA here is relatively good, as there are 250 short time series. In Fig. 22 we will 

see that for longer time series this advantage of SCRIMP/NORMA rapidly inverts. 

We included a comparison to the recently published NORMA [4], which can be seen 

as a sort of Matrix Profile that uses an automatically discovered subset of the training 

data as the reference data. Here we used the original authors’ tools and suggestions to 

set the parameters (we were able to make the results slightly better with our own 



  

parameter settings [10]). The time for NORMA is apparently good, but it is important 

to note the following: 

• These datasets have tiny training data splits (they were deliberately made that 

way, to allow the deep learning community to consider them in a tenable fashion 

[11]). But as Fig. 23 shows the NORMA algorithm scales poorly for large 

datasets. 

• On these datasets, we can easily close all of the time gap by using either X-Lag-

Amnesic DAMP (Section 5.3.1) or Golden DAMP (Section 5.3.2), with only a 

minimal decrease in accuracy. Indeed, the Golden DAMP algorithm essentially 

subsumes NORMA as a special case. 

• The results in Table 9 mask a unique timing advantage that DAMP has over not 

only NORMA, but all other non-trivial anomaly detectors4. We believe that 

DAMP is the only instantaneous TSAD in the literature. To see this, consider 

the situation in Fig. 20. 

 

Fig. 20 An excerpt from the 243_UCR_Anomaly_tilt12744mtabledataset. The task is to 

exploit information in the training split, to detect the most significant anomaly in the test split. 

When requested, DAMP can instantaneously begin to monitor. However, NORMA (and all 

other TSAD algorithm), must have a period of inaction or “linger” while they build their 

models. 

 
4  Here we explain “non-trivial anomaly detector”. Simple rule-based conditionals such as: “if the time 

series ever reports a value that is higher than any value you have seen 

before, then flag anomaly” could be used as an anomaly detector, and could be instantaneously 

instantiated.  By non-trivial we mean any TSAD algorithm that examines each subsequence for any information 

about shape, autocorrelation, Markov properties etc., and compares this information (in the most general sense), 

to a model gleaned from training data. The reader will appreciate that this includes essentially all proposed anomaly 

detectors in the literature.  

…

…

…

…

Request to monitor happens here

DAMP begins to monitor instantaneously

NORMA begins model building here…
…and is ready to start monitoring here

Training data (excerpt): 
40 seconds of wall-clock time

Test data (excerpt)

Linger = 13 seconds

243_UCR_Anomaly_tilt12744mtable



  

The figure shows a dataset from the KDD Cup 2021. The first forty seconds of 

wall-clock time pass, and then we are invited to monitor for anomalies in the 

remainder of the data. We define “linger” as the time a TSAD algorithm requires 

to ingest the training data, build its model, and be ready to start monitoring. As 

shown in Fig. 20, the linger for NORMA on this problem is thirteen seconds. 

This means that any anomaly that occurs in the first thirteen seconds will not be 

detected (or will only be detected post-mortem). Note that DAMP appears to be 

unique among TSAD algorithms in having zero linger. In this example, the 

linger of NORMA may not be too consequential (although it grows rapidly with 

more training data, see Fig. 23). Perhaps the attending physician can wait with 

the patient while the model is being built. However, recall our machining 

example in Section 6.2. Here, if the linger is more than 127 seconds, the TSAD 

algorithm would not be able to avoid the expensive head-crash. 

Recall that Table 9 notes “Out of memory error on longer examples” for Telemanom [8]. 

There does not seem to be any simple way to fix this issue, so we did the following. We 

sorted all the datasets from smallest to largest, and kept evaluating increasingly longer 

datasets until the first failure. Telemanom failed at the 63rd smallest dataset 

(114_UCR_Anomaly_CIMIS44AirTemperature2). On the first 62 datasets it correctly 

found the anomaly on 29, giving an accuracy of 0.468. This took Telemanom 3.4 

hours. When we run DAMP on just these 62 shorter datasets, it takes 64.9 seconds. In 

general, the 62 shorter test cases are the easier ones (they certainly have a much higher 

default rate), yet both flavors of DAMP are still significantly more accurate.  

6.5 Threshold Learning for DAMP  

Up to this point, we have experimentally demonstrated that DAMP can locate the most 

anomalous subsequence. However, we have not shown how the algorithm makes a 

binary decision thereafter to flag the subsequence as anomalous or not. For this purpose, 

we simply need to learn a threshold. To demonstrate, consider the following experiment. 

We created 200 random walk time series of length one million. As shown in Fig. 21.top, 

into half of them we randomly inserted a subtle anomaly, a low amplitude random 

section of length 950 (Why length 950? We found that if we used length 1,000 we got 

perfect accuracy, which is uninteresting for this experiment. So, we tuned the value to 



  

give an error rate of about 10%). In Fig. 21.left, we show the top-1 discord score (for m 

= 1,024) for all 200 time series, divided into the two cases. This plot suggests that a 

threshold of 36.0 is the optimal value to maximize the accuracy on future occurrences. 

To test this, we created and tested an additional million examples, all of which are also 

of length one million, classifying an actual anomaly as a true positive if the correct 

location of the anomaly was discovered and the top-1 discord score was above the 

threshold. Fig. 21.right shows the confusion matrix.  

 

 

 Predicted 

anomaly 

Predicted 

no-

anomaly 

Actual 

anomaly 
57,987 6,013 

Actual 

no-

anomaly 

5,502 58,498 

Fig. 21 top) A sample random walk with an anomaly embedded. left) The distribution of top-1 discord 

scores for the two cases of interest. right) The confusion matrix for this task. 

We note in passing that this experiment (which took several days distributed across 

commodity laptops and desktops), trained on time series with a total length of 200 

million, and tested on time series with a total length of 128 billion. To the best of our 

knowledge, this is the largest scale time series anomaly detection experiment ever 

conducted. Could deep learning do this? We estimate that Telemanom [14] would take 

about twelve years to do this, although in practice it gives out-of-memory errors. 

6.6 Scalability Comparisons 

To find out which elements of our proposed method contribute most to its efficiency, 

we have performed an ablation study, in which various elements of DAMP were 

progressively crippled. As a baseline, we also compare to SCRIMP [39]. This 
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comparison to SCRIMP is a little unfair, as it discovers motifs as well as discords. 

However, it seems to be the most used discord discovery algorithm in recent years. Fig. 

22 summarizes our findings. 

 

Fig. 22 The CPU time vs time series length for various discord discovery algorithms. Note the Y-axis 

is in log scale. 

It is clear that each element we proposed does actually contribute to speed up, and that 

DAMP is effectively linear in n. 

As we earlier noted, most of the benchmark datasets are only hundreds to thousands of 

datapoints long [35], and that seems to have set the limit of the ambition of most of the 

community when it comes to scalability. However, a recent paper pushed that envelope 

by considering a two million length ECG dataset [4]. In fact, these authors graciously 

gave us the exact dataset they used, (which was in fact even longer than they considered 

in [4]), and helped us create a perfectly commensurate experiment, as shown in Fig. 23. 

A real-time video trace of this experiment is at [10]. 

 

Fig. 23 (Most of this figure is taken from [4] with permission, only the green elements are new). The 

scalability of various algorithms on increasing large subsets of a long ECG trace. All algorithms except 

DAMP are limited to the first 2M data points by [4]. Note that the Y-axis is logarithmic.  
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Note that of the many approaches considered, some time out (i.e., are not finished in a 

four-hour cutoff) at length 500K. In contrast, DAMP can handle eight million 

datapoints in just 22.3 seconds, this is over 358,000 Hz. In fact, DAMP is so fast, that 

the time it reports for the 50K length trial is literally off the original chart, taking less 

than one second. 

As eight million datapoints are about the longest publicly available ECG, in Fig. 24 we 

conclude this section by searching a single random walk time series of length 230. 

 

Fig. 24 The time taken for DAMP to process a random walk time series of length 230 (just over one 

billion). For context, we have labeled the size of two concrete tasks, processing a month of ECGs and 

twenty-five years of sensor data. 

6.7 Scalability and Stability of DAMP 

One of Wu and Keogh’s criticisms of common benchmarks is unrealistic anomaly 

density [35]. They noted that over 20% of the data is labeled anomalous in many 

benchmarks, which poses a real problem for the evaluation. Suppose that an algorithm 

has near perfect sensitivity, but it will randomly give out a false positive once in every 

million datapoints (perhaps due to the numerical instability of streaming algorithms 

[13]). Note that because most benchmarks in the literature only have a few thousand 

datapoints, this issue would almost certainly not be observed during testing. However, 

it clearly would be a problem for any real-world deployment. For example, for a 

continuous processing system with telemetry reporting every second, this would give 

us about thirty-one false positives a year.  

To demonstrate DAMP does not have this issue, we did the following test. Recall the 

subtle anomaly shown in the 100,000 datapoint MGAB dataset in Fig. 4. We can append 

anomaly-free data from the same Mackey-Glass model (but free of the embedded 

anomalies [31]) to make it one thousand times longer, i.e., a total length of 100 million. 

When we search this with DAMP (m = 40), we count a trial successful if the top-1 

discord is found in the first 100,000 datapoints (created by [31]), rather than from the 
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appended ninety-nine million nine hundred thousand datapoints. Each of the coauthors 

of this work ran this experiment multiple times in the background of their desktops over 

a week, and in total conducted over 16,000 such trials, finding a total of zero false 

positives. 

Note that this experiment required performing anomaly detection on time series with a 

total length of 1.648 trillion datapoints, using off-the-shelf hardware. This is something 

that would be inconceivable with any other anomaly detection method. 

7 CONCLUSIONS AND FUTURE WORK 

In this paper, we created the left-discord anomaly detection framework, generalizing 

classic time series discords that previously only handled the batch case, to the online 

case, and solving the twin-freak problem in the process. Further, we have introduced 

DAMP, a fast and scalable algorithm to discover such discords. Experimental results 

have demonstrated that our proposed left-discords outperform the current SOTA 

methods, including the most cited deep learning methods in terms of accuracy. 

Moreover, we have further demonstrated that DAMP is orders of magnitude faster and 

more scalable than any method in the literature.   

We believe that the throughput and scalability of DAMP will allow the community to 

address datasets and applications that are currently out of reach, and that this will open 

new challenges and research problems. Finally, we have made all our code and data 

available to the community to confirm and build upon our work. 
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