

Matrix Profile XXIV: Scaling Time Series Anomaly
Detection to Trillions of Datapoints and Ultra-fast
Arriving Data Streams
Yue Lu1 , Renjie Wu1 , Abdullah Mueen2 , Maria A. Zuluaga3 , Eamonn Keogh1
1 University of California, Riverside, Riverside, USA
2 Department of Computer Science, University of New Mexico, Albuquerque, USA
3 Data Science Department, EURECOM, Sophia Antipolis, France

{ylu175, rwu034} @ucr.edu, mueen@cs.unm.edu, maria.zuluaga@eurecom.fr, eamonn@cs.ucr.edu

Dear Reader: This is an expanded version of the 2022 SIGKDD paper.

Abstract— Time series anomaly detection is one of the most active areas of research

in data mining, with dozens of new approaches been suggested each year. In spite of all

these creative solutions proposed for this problem, recent empirical evidence suggests

that the time series discord, a relatively simple twenty-year old distance-based

technique, remains among the state-of-art techniques. While there are many algorithms

for computing the time series discords, they all have limitations. First, they are limited

to the batch case, whereas the online case is more actionable. Second, these algorithms

exhibit poor scalability beyond tens of thousands of datapoints. In this work we

introduce DAMP, a novel algorithm that addresses both these issues. DAMP computes

exact left-discords on fast arriving streams, at up to 300,000 Hz using a commodity

desktop. This allows us to find time series discords in datasets with trillions of

datapoints for the first time. We will demonstrate the utility of our algorithm with the

most ambitious set of time series anomaly detection experiments ever conducted. We

will further show that our speedup improvements can be applied in the

multidimensional case.

Keywords: Time Series, Anomaly Detection, Streaming Data

1 INTRODUCTION

Time series anomaly detection is one of the most important and widely used tools

investigated by the data mining community [2][14][21]. It can be applied offline to

investigate archival data, or online, to monitor critical situations where human

intervention is possible. For example, by summoning a doctor or shutting down a

machine that may be about to damage itself. Given its importance, it is unsurprising

that this area attracts a lot of attention from the community, with dozens of algorithms

proposed each year. However, in spite of the plethora of algorithms in the literature,

there is increasing evidence that a twenty-year-old distance-based method called time

series discords is still competitive [21]. Discords are competitive with deep learning

methods in spite (or perhaps because) of their great simplicity. A time series discord is

simply the subsequence of a time series that is maximally far from its nearest neighbor.

At least one-hundred papers have reported using discords to solve problems in diverse

domains, and discords seem to be the only time series anomaly detection technique to

produce “superhuman” results (see discussion in Section 2). However, discords have

three important limitations that have limited their broader adoption:

• If an anomalous pattern appears at least twice in the time series, then each occurrence

will be the other nearest neighbor, and thus fail to optimize the discord definition.

This is informally called the twin-freak problem.

• Discords are only defined for the batch case, but anomaly detection is most

actionable in online settings.

• In spite of extensive progress in speeding up discord discovery, datasets with

millions of datapoints remain intractable.

In this paper we introduce DAMP (Discord Aware Matrix Profile), a novel algorithm

which solves all the above problems.

• DAMP is not confused by repeated anomalies (twin-freaks), it simply flags the first

occurrence (if desired, other occurrences can then be found by simple similarity

search).

• DAMP is defined for both online and offline cases. Moreover, DAMP has an

extraordinary fast throughput, exceeding 300,000 Hz on standard hardware.

• As the previous bullet point suggests, DAMP is extraordinarily scalable. For the first

time, this allows us to consider datasets with millions, billions and even trillions of

datapoints.

The rest of this paper is organized as follows. In Section 2 we motivate the use of

discords as the time series anomaly definition most worthy of acceleration and

generalization. We also concretely define a new term, effectively online, that allows

DAMP to tackle ultra-fast real-time data sources found in industry and science. Section

3 contains the necessary definition and notation required, and Section 4 discusses

related work, before we introduce our algorithm in Section 5. In Section 6 we conduct

the most ambitious empirical evaluation of time series anomaly detection ever

attempted.

2 MOTIVATION

Before we continue, it is necessary to answer the following question. Why do we

attempt to fix discord’s scalability issues instead of inventing a new algorithm, or

making one of the many dozens of more recently proposed methods more scalable?

The reason is that there is increasing evidence that discords remain competitive with

the state-of-the-art 1 [21]. Among the hundreds of time series anomaly detection

algorithms proposed in the last two decades, only time series discords could claim to

have been adopted by more than one hundred independent teams to actually solve a

real-world problem. For example, a group of climatologists at France’s UMR Espace-

Dev laboratory use discords to find anomalies in climate data [17]. A team of

researchers at NASA’s JLP lab have applied discord discovery to planetary data, noting

that “(discords) detect Saturn bow shock transitions well” [9]. A group based in

Halmstad University created a tool called IUSE for applying discord discovery to

industrial datasets. One of their first applications was to a City Bus Fleet dataset, where

they noted that the discords discovered did indeed have an objective meaning “The

discords in this case primarily consisted of significant drops of pressure … likely

correspond to the drainage of the wet tank.” [24]. Finally, a team of researchers at the

National Renewable Energy Laboratory, in Golden, Colorado, have used discords to

find anomalies in a large building portfolio, showing that they could discover anomalies

with diverse causes caused by both “internal (occupant behavior) and external factors

(weather conditions).” [28]. There are several other time series anomaly detection

algorithms that are well cited [14][30], but most of the citations are from rival methods

comparing these algorithms on a handful of benchmarks [35], there is little evidence

that anyone actually uses these algorithms to solve real-world problems.

In addition, time series discords seem to be the only anomaly detection algorithm that

has been demonstrated to perform at superhuman levels [21]. All other algorithms that

1 Note that some papers misattribute the success of their anomaly detection to the Matrix Profile or to HOTSAX, but these are simple

different algorithms to compute time series discords.

we are aware of have shown to discover anomalies that are also readily apparent to the

human eye. For example, a recent paper proposed an LSTMs network for anomaly

detection and evaluated it on data retrieved from Mars [14]. However, the only anomaly

shown in the paper shows a visually obvious anomaly where a repeated periodic pattern

suddenly transitions to a literal flatline. Of course, this does not mean that such

algorithms have no value, as human attention is very expensive. However, the literature

also offers some examples where discords have found anomalies that are very subtle,

defying the possibility of human discovery. For example, in [21], their Figure 8 and

Figure 9 both seem to meet that criterion. For completeness, we will show some

additional examples. Consider Fig. 1, which shows the vibration of an industrial motor

[7][23].

Fig. 1 top) A 20-second run of an industrial motor. bottom) a zoom-in of the region known to contain

an anomaly, which is the length of (but not necessarily at the location of) the red bar.

The data comes for a motor running under no load, however for a brief instant a load

was applied and immediately removed, creating an anomaly. It is clearly fruitless to

visually search for the anomaly in the full dataset, however, even if we zoom into a

local region containing the anomaly, it is not clear where it is. In Fig. 2 we task time

series discords with detecting the anomaly.

Fig. 2 top) A 20-second run of an industrial motor. bottom) The time series discord discovered by the

Left-MP correctly locates the anomaly. Note that higher values are more anomalous.

Beyond the accuracy of discords prediction here, note that this dataset contains 244,189

datapoints, representing about 20 seconds of wall clock time recorded at 12,000 Hz.

0 1000 2000 3000

The anomaly is the length of this red bar Zoom-in

0 100,000 200,000

2 hp Reliance Electric motor, fan-end bearing (20 seconds)

0
100,000 200,000

0

5

10

15

20 Left-MP top-1 discord

2 hp Reliance Electric motor, fan-end bearing (20 seconds)

Warm up, no

prediction made

Ground Truth

We are not aware of any anomaly detection algorithm in the literature that could process

this dataset in real-time, however, as we will show, DAMP can.

We also consider a dataset that is dramatically different to the bearing data. In Fig. 3

we show the Left-MP for an ECG which we know contains a single anomaly beat, a

ventricular contraction.

Fig. 3 top) A sixty-second snippet of an ECG. bottom) The top-1 time series discord correctly locates

the anomaly.

This dataset has a wandering baseline which is diagnostically meaningless, but which

distracts the human eye (and many algorithms). However, once again time series

discords have no problem detecting the anomaly, which noted cardiologist Dr. Gregory

Mason says is on the cusp of his ability to detect by eye.

Finally, in Fig. 4 we consider a dataset that was explicitly created with the sole purpose

of having anomalies that are “difficult to spot for the human eye” [31]. Here again

discords are superhuman.

Fig. 4 top) The MGAB dataset was built to defy visual discovery of anomalies. bottom) The Top-1

time series discord correctly locates the anomaly.

In summary, both the recent literature and our experiments suggest that time series

discords are at least competitive with recently proposed algorithms, and thus worthy of

accelerating to allow discords to be discovered in settings that are currently infeasible.

2.1 Effectively Online Anomaly Detection

Although the meaning of the terms batch and online are obvious, it is helpful to

introduce a new term, effectively online, to make our claim clearer. A true online

1 15000
0

5

10

15

ECG (43-year-old male)

Warm up, no

prediction made
Left-MP top-1 discord

Ground Truth

Sixty Seconds

0 100,000

85,000 87,000 89,000

0

5

10

15
Mackey-Glass anomaly benchmark (MGAB)

Anomaly

Zoom-in

Anomaly

algorithm reports the instant it detects a monitored condition. However, let us imagine

the following scenario: After a difficult cardiac surgery, a doctor decides she wants to

monitor her patient for anomalous heartbeats, which may be an indication of

postoperative Cardiac Tamponade (CT). If the patient does have an ECG suggestive of

CT symptoms, the doctor has perhaps eight to ten minutes to confirm CT with an

ultrasound and perform pericardiocentesis, a procedure done to remove fluid that has

built up in the sac around the heart [18]. Because the doctor is nervous about the

possibility of CT, she arranges the rest of her day such that she can be in the ICU within

two minutes, for example eating her lunch in a hospital cafeteria rather than her favorite

restaurant across town. Clearly in this situation an algorithm that reported an anomalous

heartbeat ten minutes after its appearance would be unacceptable. However, an

algorithm that reported an anomalous heartbeat at most two seconds after it appears

would be just as good as a true online algorithm. As such we propose the following

definition:

Definition 1: An algorithm is said to be effectively online, if the lag in reporting a

condition has little or no impact on the actionability of the reported information.

Note that the scale of the permissible lag is problem dependent. In the above scenario,

two seconds made sense to the cardiologists we consulted. In an ultrafast arriving data

stream, the permissible lag may be as little as 0.1 seconds, and for telemetry arriving

from devices with a slow cycle rate, say the daily periodicity of pedestrian traffic, the

permissible lag may be minutes to hours.

We suspect that many algorithms that are referred to as online in the literature, are really

effectively online. The above discussion allows us to frame our contribution. Our

proposed algorithm DAMP is parameterized by a single variable called lookahead.

• If lookahead is zero, DAMP is a fast true online algorithm.

• If lookahead is allowed to be arbitrarily large, DAMP is an ultrafast batch

algorithm. We should not be surprised that a batch algorithm can be much faster,

as it has access to all the information at once.

And now the raison d'etre for our digression:

• Even if lookahead is a small (but non-zero) number, DAMP is effectively online

algorithm, yet it retains most or all the speedup of the arbitrarily large lookahead

algorithm.

As we will show, DAMP allows for the discovery of time series discords in ultra-fast-

moving streams for the first time.

3 DEFINITIONS AND BACKGROUND

We begin by defining the key terms used in this work. The data we work with is a time

series.

Definition 2: A time series T is a sequence of real-valued numbers 𝑡𝑖 : 𝑇 =

 [𝑡1, 𝑡2, . . . , 𝑡𝑛] where n is the length of T.

Typically, we consider only local subsequences of the times series.

Definition 3: A subsequence 𝑇𝑖,𝑚 of a time series T is a continuous subset of data

points from T of length 𝑚 starting at position i. 𝑇𝑖,𝑚 = [𝑡𝑖, 𝑡𝑖+1, . . . , 𝑡𝑖+𝑚−1], 1 ≤

 𝑖 ≤ 𝑛 – 𝑚 + 1.

The length of the subsequence is typically set by the user based on domain knowledge.

For example, for most human actions, ½ second may be appropriate, but for classifying

transient stars, three days may be appropriate.

If we take any subsequence 𝑇𝑖,𝑚 as a query, calculate its distance from all subsequences

in the time series T and store the distances in an array in order, we get a distance profile.

Definition 4: Distance profile 𝐷𝑖 for time series T refers to an ordered array of

Euclidean distances between the query subsequence 𝑇𝑖,𝑚 and all subsequences in time

series T. Formally, 𝐷𝑖 = 𝑑𝑖,1, 𝑑𝑖,2, … , 𝑑𝑖,𝑛−𝑚+1 ,where 𝑑𝑖,𝑗 (1 ≤ 𝑖, 𝑗 ≤ 𝑛 − 𝑚 + 1) is

the Euclidean distance between 𝑇𝑖,𝑚 and 𝑇𝑗,𝑚.

For distance profile 𝐷𝑖 of query 𝑇𝑖,𝑚, the 𝑖𝑡ℎposition represents the distance between

the query and itself, so the value must be 0. The values before and after position 𝑖 are

also close to 0, because the corresponding subsequences have overlap with query. Our

algorithm neglects these matches of the query and itself, and instead focuses on non-

self match.

Definition 5: Non-Self Match: Given a time series T containing a subsequence 𝑇𝑝,𝑚

of length m starting at position p and a matching subsequence 𝑇𝑞,𝑚 starting at q, 𝑇𝑝,𝑚

is a non-self match to 𝑇𝑞,𝑚 with distance 𝑑𝑝,𝑞 if | 𝑝 – 𝑞| ≥ 𝑚.

With the definition of non-self match, we can define time series discords.

Definition 6: Time Series Discord: Given a time series T, the subsequence 𝑇𝑑,𝑚 of

length m beginning at position d is said to be a discord of T if the distance between

𝑇𝑑,𝑚 and its nearest non-self match is maximum. That is, ∀ subsequences 𝑇𝑐,𝑚 of T,

non-self matching set MD of 𝑇𝑑,𝑚 , and non-self matching set MC of 𝑇𝑐,𝑚 ,

𝑚𝑖𝑛(𝑑𝑑,𝑀𝐷
) > 𝑚𝑖𝑛(𝑑𝑐,𝑀𝐶

).

Although there are many ways to locate time series discord, the most effective one

recently is the matrix profile [39].

Definition 7: A matrix profile 𝑃 of a time series T is a vector storing the z-normalized

Euclidean distance between each subsequence and its nearest non-self match.

Formally, 𝑃 = [𝑚𝑖𝑛(𝐷1), 𝑚𝑖𝑛(𝐷2), … , 𝑚𝑖𝑛(𝐷𝑛−𝑚+1)], where 𝐷𝑖 (1 ≤ 𝑖 ≤ 𝑛 − 𝑚 +

1) is the distance profile of query 𝑇𝑖,𝑚 in time series T. It is easy to see that the highest

value of the matrix profile is the time series discord.

As we will explain below, we can compute a special matrix profile which only looks to

the past. We call it the left matrix profile.

Definition 8: A left matrix profile 𝑃𝐿 of a time series T is a vector that stores the z-

normalized Euclidean distance between each subsequence and the nearest non-self

match appearing before that subsequence. Formally, given a query subsequence 𝑇𝑖,𝑚,

let 𝐷𝑖
𝐿 = 𝑑𝑖,1, 𝑑𝑖,2, … , 𝑑𝑖,𝑖−𝑚+1 be a special distance profile that records only the

distance between the query subsequence and all subsequences that occur before the

query, then we have 𝑃𝐿 = [𝑚𝑖𝑛(𝐷1
𝐿), 𝑚𝑖𝑛(𝐷2

𝐿), … , 𝑚𝑖𝑛(𝐷𝑛−𝑚+1
𝐿)].

Note that the term discord in this paper refers to the highest value on the left matrix

profile 𝑃𝐿, i.e., left-discord. For the sake of simplicity, we will refer to left-discord as

discord where there is no ambiguity. It is clear that in the online case, we must use the

Left-MP. However, here we argue that even in the offline case we should use it. To see

why, consider the example shown in Fig. 5.

Fig. 5 top to bottom) A snippet of ECG with two types of anomalous heartbeats indicated by a ground

truth vector. A full Matrix Profile can find the sole occurrence of V-tach, but is confused by the multiple

occurrences of PVCs (twin-freaks) and cannot find them. In contrast, the Left-MP flags the first

occurrence of a PVC and the first (and only) V-tach.

Here left-discords solve the twin-freak problem by reporting the first occurrence of the

anomaly (later occurrences, if of interest, can be trivially found with subsequence

search/monitoring).

4 RELATED WORK

In recent years, there has been a surge of research interest in the topic of time series

anomaly detection. For a detailed review, we refer the interested reader to

[1][2][4][14][21][31] and the references therein. In addition to the work listed in

Section 2, we have also compiled a longer annotated biography at [10] that explicitly

discusses discords.

There are two important points that we have gathered from our survey of the literature.

The first is due mostly to a single paper [35], that forcefully suggests some of the

apparent success of recently proposed algorithms may be questionable, due to severe

problems with the commonly used benchmarks in this area.

Beyond four issues that [35] notes with benchmarks datasets, we wish to add another

issue. Most of these benchmarks are minuscule. We suspect that the small datasets that

the community has focused on are at least partly due to the poor scalability of current

approaches. For example, a recent paper examines time series of length 140,256 and

notes “Given the length of the dataset, we sub-sample it by a factor 10.” [1]. This paper

is by a research group at Amazon, who presumably does not lack for computational

resources. For reference, DAMP takes 0.9 seconds of the full-sized version of this

dataset [10] on a commodity desktop.

0

10

0 12000

0

10

mit_long_term_ecg_14157

Ground Truth
V-tach
PVC
Normal

94 seconds

Left-MP

Full-MP
False negative caused

by “twin freaks”

True positive, the first

occurrence of a PVC

True positive: Ventricular

tachycardia (V-tach)

KEY

True positive: Ventricular

tachycardia (V-tach)

In addition to the problems caused by using poor quality benchmarks, a recent paper

suggests yet another compelling reason why much of the recent apparent success of

recent research efforts should be viewed with caution. Paper [12] notes that “most

recent approaches employ an inadequate evaluation criterion leading to an inflated F1

score. (however) a rudimentary Random Guess method can outperform state-of-the-art

detectors in terms of this popular but faulty evaluation criterion.”.

A recent SIGKDD workshop keynote makes a related point about evaluation [16].

Suppose you have a year of data monitoring an industrial boiler, and it happens that on

Xmas, the boiler leaks all day, causing an anomaly. One might imagine the best way to

evaluate an algorithm on the task of discovering this anomaly would be a binary score,

success/failure. However, many papers essentially consider each datapoint as if it was

an independent event. Suppose they predicted all of Xmas day, and the first minute of

the next day was an anomaly. They would report an F1 score of 0.9997. The four

significant decimal digits imply some extraordinarily careful and significant

measurement was made. However, with a little introspection will allow the diligent

reader to see that this precision is unwarranted and misleading. The Time Series

Anomaly Detection (TSAD) literature is replete with impressively large tables of

numbers with four (and sometimes, five or six!) digits, that simply give the illusion of

progress and rigor.

It is somewhat surprising that so few papers in the literature discuss time complexity.

This can possibly also be attributed to issues with the benchmark datasets. For example,

by far the two most discussed datasets in the literature are Yahoo and NY-Taxi (NAB),

with lengths of 1,200 and 10,321 respectively. Even the most sluggish of algorithms

are unlikely to be taxed by such tiny datasets. If building a particular highly-quality

anomaly detection algorithm had a high one-time cost, then we might be willing to

throw whatever computational resources are needed at the task, and then deploy the

model in perpetuity. However, the situation is worse than that. In virtually any domain,

the model will become stale due to concept drift, and need to be periodically retrained,

either on a regular schedule (say once a week), or when the model detects that it has

drifted from the newly arriving data.

Recently a handful of papers have recognized that the slow training times for deep

learning anomaly detectors can be an issue. For example, [32] notes that “fast training

times (are needed) to cope with the requirement of frequently re-updating the learning

model.”. These authors then went on to introduce a “light-weight” anomaly detection

system that can complete training in as little as twenty minutes (using GPUs) in a

dataset of size 274,627. This kind of time frame may work for some domains, for

example the three-year-long energy grid/weather data we consider in Section 6.1. We

surely could afford a few hours to build the model, and perhaps a few hours at the end

of each month to retrain it. However, consider the machining dataset we examine in

Section 6.2. Here we see the first thirty seconds of data, and then must instantly have a

working model. While DAMP can do this, it is not clear that any other anomaly detector

in the literature can. One might imagine that other methods could potentially look only

at say, the first twenty seconds of data, and use the remaining ten seconds to build their

model. However, this would require most of the algorithms in the literature to be

accelerated by several orders of magnitude.

A recent paper [26] compared twelve anomaly detection algorithms on 13,766 datasets.

The datasets are a mixture of existing datasets and datasets created by the authors. There

is a clear and unambiguous finding, two algorithms, the Matrix Profile and NORMA (a

sort of Matrix Profile variant) are significantly better than all the other approaches. In

fact, the news here is particularly good for our proposed approach. In a personal

communication one of the authors [25], he revealed that many of the original datasets

they made were specifically created to have the twin-freak problem (recall Fig. 5), in

order to suppress the performance of the Matrix Profile. However, recall that the left

matrix profile does not have an issue with twin-freaks. Consider Fig. 6. which shows

three examples (of many) of the time series contrived to make the Matrix Profile

underperform relative to NORMA [25]. Note that in every case, the left Matrix Profile

correctly finds the anomaly.

Fig. 6 Three examples of synthetic datasets contrived by [26] to make the Matrix Profile underperform.

Interestingly, there is a historical precedent for this. A 2009 paper also created a

synthetic data designed to make Matrix Profile underperform [6]. What is interesting

about these papers is that in both cases they were unable to find a real dataset that had

a twin-freak problem, both resorted to creating synthetic datasets. In any case, we will

show that DAMP makes this a moot point.

Finally, the reader may wonder why we do not test on the large collection of datasets

in [26] in our empirical section. There are two reasons. First, the data collection includes

datasets that [35] notes are deeply flawed, including mislabeled ground truth. If even a

handful of datasets have mislabeled ground, as Wu and Keogh point out [35], and which

the authors of [26] have acknowledged [25], it is hard to have any faith in evaluation

on the overall data collection. Secondly, the agenda of creating datasets to make the

Matrix Profile underperform (relative to NORMA) was not stated in the paper [26], and

was only revealed [25] after we pointed out that it is obvious to anyone that examined

the data. We should be wary of this dataset in case there are other unspoken agendas.

In any case, testing on small synthetic unrealistic datasets seems pointless when we can

test on large real datasets, as we do in this work.

5 DAMP

5.1 Intuitive Overview of DAMP

Before giving a formal explanation of our algorithm, we will first provide an intuitive

description of how it works. We will start with discussing the batch case and then

Dataset 5_2_0.02_3

Left-MP peaks for a true
positive (yellow)

Classic-MP peaks for a
false positive (red)

Dataset 30_2_0.02_35

Left-MP peaks for a true
positive (yellow)

Classic-MP peaks for a
false positive (red)

Dataset 52_2_0.02_6

Left-MP peaks for a true
positive (yellow)

Classic-MP peaks for a
false positive (red)

further generalize to the (minor) steps required for the online case. As shown in Fig. 7,

it will be helpful to explain the algorithm mid-execution, as it is processing the

subsequence Ti.

Fig. 7 A sketch of the DAMP algorithm in progress, processing the current subsequence. top) The time

series T. center) The Left-aMP, its values between 1 and i are computed, its values after i have yet to

be computed. bottom) the Pruned Vector indicates subsequences that can be ignored without affecting

the final result.

Fig. 7.top shows the time series T being processed, the green bar indicating the current

subsequence being processed at location i. Note that we have created two parallel

vectors to accompany T. The Left-aMP is the vector we are computing. It is an

approximation to the true Left-MP, with the following properties:

• If location j is the true left-discord for the time series T1:j, then the discord value at

aMPj is not an approximation, but the true left-discord value.

• Otherwise, the approximation at aMPj is strictly bounded: MPj ≤ aMPj ≤

max(MP1:j)

These properties tell us that we can take any prefix of T (inducing the special case of

the entire length of T), and the left-discord reported by the Left-aMP will be the same

as that reported by the Left-MP.

In Fig. 7.bottom we show the other parallel vector that accompanies T and the Left-

aMPj. The Pruned Vector tells us which subsequences could not be the left-discord, and

hence do not need to be processed. At initialization time, this vector is set to all ‘1’s,

indicating that all subsequences must be processed. However, as we process the data,

we may be able to “peek into the future” and cheaply determine locations that could not

be a discord, and flip their corresponding bits to ‘0’.

At the ith location, the processing can be divided into two independent steps, backward

processing and forward processing.

0.9 0.8 1.1 1.2 - - - -

1 1 1 1 1 0 0 1

T

Left-aMP

Pruned Vector

Ti
Best-So-Far = 2.2

Current Subsequence

Ti:i+m-1

5.1.1 Backward Processing

The main task of backward processing is to discover whether the current subsequence

Ti:i+m-1 is the left-discord, for which the naïve way would be to compute its nearest

neighbor distance to any subsequences in T1:i.

However, note that in general we may not need to find the nearest neighbor, any

neighbor whose distance is less than the Best-So-Far will disqualify the current

subsequence from being the discord. This suggests an early abandoning scheme that we

can optimize with the two following observations:

• Instead of incrementally searching from the beginning, we should expect to be able

to abandon earlier if we search backwards from the ith location. The reason this is

true is that the patterns can drift over time. In other words, the pattern most likely to

be similar to the current subsequences is generally the subsequence just before the

current subsequence2.

• The MASS algorithm is optimized for queries with powers of two length. For

example, using the machine that performed all the experiments in this paper, we find

that a MASS search with a query of length 512, takes 0.025 seconds for a time series

of length 524,288 (i.e., 219). But if we delete a single point to get a 524,287, it takes

0.177 seconds. This suggests we should attempt to construct a backward search

algorithm that is comprised mostly or solely of such pinteger length queries.

These two observations suggest an algorithm. We should look backwards at the prefix

that is the next power-of-two longer than m. If that yields a neighbor that is less than

the Best-So-Far (BSF) we are done, we simply place that value in aMPi as our

approximation. If that was not the case, we double the length of the prefix to two times

the next power-of-two longer than m, and try again. We continue to iteratively double

until we find a nearest neighbor distance that is less than the Best-So-Far, or until our

prefix includes the full span back to the beginning of T. In that latter case, we use the

nearest neighbor distance to update both the Best-So-Far and aMPi.

2 This observation is true for heartbeats, gaits, machine cycles etc. One exception is for events tied to a cultural calendar. For

example, for taxi demand or electrical power demand, the most similar day to any given day, is not the previous day, but the

same day one week earlier.

5.1.2 Forward Processing

In the forward processing step, we attempt to discover and prune subsequences that

cannot be left-discord. If we take the current subsequence and compare it to the suffix

of T, that is, to Ti+m:n (the search must start at i+m to avoid self-match), any subsequence

that is less than the Best-So-Far distance to the current subsequence can be pruned

(have its corresponding bit in the Pruned Vector set to ‘0’).

In principle, we could do this search from i+m to the end. However, the two

observations in the previous section still apply. While the next few cycles may be

similar and yield a good pruning rate, over time the patterns tend to drift and the pruning

rate falls. The combination of a long expensive similarity search and the lower pruning

rate means that the forward step may not “pay” for itself. So instead, we can look

forward a limited amount, say four times the next power-of-two longer than m.

After completing both the backward and forward processing, the algorithm increments

the current pointer from i to the next index which has a ‘1’ in the Pruned Vector, and

repeats the two processing steps.

5.2 Formal Pseudocode for DAMP

Here we give the pseudocode shown in Table 1 to formalize the intuition of the previous

sections. For ease of explanation, we first consider only the batch case.

Table 1: The Main DAMP Algorithm

Function: DAMP(T, m, spIndex)

Input: T: Time series

m: Subsequence length

spIndex: Location of split point between training and test data

Output: aMP: Left approximate Matrix Profile

1

2

3

4

5

6

7

8

9

10

11

PV = ones(1,length(T)-m+1)

aMP = zeros(1,length(T)-m+1)

BSF = 0 // The current best discord score

// Scan all subsequences in the test data

For i = spIndex to length(T) – m + 1

If NOT PVi // Skip the pruned subsequence

aMPi = aMPi-1

Else

[aMPi, BSF] = BackwardProcessing(T, m, i, BSF)

PV = ForwardProcessing(T, m, i, BSF, PV)

return aMP

In lines 1 and 2 we initialize two vectors that are essentially the same length as the time

series T, but are actually of length n-m+1. These are PV (Pruned Vector), a Boolean

vector that indicates which indices can be dismissed without evaluation, and aMP,

which is the approximate Matrix Profile we wish to compute. The current highest

discord score encountered during execution is stored in the BSF, initialized to zero in

line 3.

In lines 5 to 10, we iterate through all subsequences of length m in the test data. In each

iteration, we first determine whether the current subsequence was pruned, i.e., whether

it is marked as 0 in the PV (line 6). If yes, we assign the discord score of the previous

subsequence to the current subsequence and then skip to the next subsequence (line 7).

If the current subsequence was not pruned, we must process it. In line 9 we call

BackwardProcessing to calculate the discord score of the current subsequence. In

particular, if the backward search finds a value higher than the current highest discord

score (BSF), BackwardProcessing returns the exact score of the current subsequence

and updates the BSF; otherwise, BackwardProcessing returns an approximate score of

the current subsequence and does not update the BSF. Note that while this score is

approximate, it is bounded between the true score and the current BSF.

At this point we have completely processed the current location. However, before we

increment our loop index to process the next location, we take a brief digression. We

will use the current subsequence to look “forward”, finding any subsequences ahead of

it that have a distance to it that is less than the current BSF. It is easy to see that any

such subsequences could not be a better discord than the current BSF, as when they do

BackwardProcessing, they would find the current subsequences to be close enough to

disqualify them. This observation allows us to prune these “near-enough” neighbors of

the current subsequence. Concretely, line 10 invokes ForwardProcessing to find out the

subsequences that can be pruned within a specific range in the future (if any), and their

corresponding vectors are marked as 0 and recorded in the Pruned Vector PV. Finally

in line 11 we return the left approximate Matrix Profile computed by the DAMP

algorithm.

Table 1 provides a high-level overview of how the DAMP algorithm works. Let us now

“zoom in” and look at the two core subroutines of DAMP, BackwardProcessing and

ForwardProcessing. We begin with Table 2 to explain backward processing, whose

intuition we laid out in Section 5.1.1.

Table 2: DAMP Backward Processing Algorithm

Function: [aMPi, BSF] = BackwardProcessing(T, m, i, BSF)

Input: T: Time series

m: Subsequence length

i: Index of current query

BSF: Highest discord score so far

Output: aMPi: Discord value at position i

BSF: Updated highest discord score so far

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

aMPi = inf

prefix = 2^nextpow2(m) // Initial length of prefix

While aMPi ≥ BSF

If the search reaches the beginning of the time series

aMPi = min(MASS(T1:i,Ti:i+m-1))

If aMPi > BSF // Update the current best discord score

 BSF = aMPi

break

Else

aMPi = min(MASS(Ti-prefix+1:i,Ti:i+m-1))

If aMPi < BSF

 break // Stop searching

Else // Double the length of prefix

 prefix = 2*prefix

return aMPi, BSF

In line 1 we begin by initializing the discord score of the current query at position i to

positive infinity. Then in line 2 we specify the initial length of the backward processing

and store it in the variable prefix. We employ 2^nextpow2(m) to define this initial length.

Specifically, when we feed the subsequence length m into 2^nextpow2(m), it will return

the smallest power of 2 greater than m. Recall that we are doing this because MASS is

significantly faster when the length of the time series is a power of two. Since we are

going to do a “piecewise” search of the time series that precedes the subsequence being

processed, it makes sense to make these pieces be a power of two in length.

The loop in lines 3-14 evaluates the exact or approximate discord score of the current

query. Here we adopt the idea of “iterative doubling”. At the beginning, we find the

nearest neighbor of the current query in the initial length prefix and save the distance

between the current query and the nearest neighbor into aMPi (line 10). If this distance

is lower than the current highest discord score, this means that we find a nearest

neighbor for the current query within prefix that is more similar than the current discord

and its nearest neighbor, so it cannot be a discord, and the iteration terminates (lines

11-12). However, if the distance between the query and its nearest neighbor aMPi is

higher than the current highest discord score BSF, we double the length of the backward

processing and continue the search in the next iteration (lines 13-14). This idea is

visualized in Fig. 8.

Fig. 8 A visualization of the iterative doubling search policy used in lines 10-14 of Table 2. See also

Fig. 7.

We keep iteratively doubling until we compute a score smaller than the BSF within the

range prefix, or search to the beginning of the time series T. If the search gets to the

beginning of the time series, we first find the nearest neighbor of the query from

position 1 to i and store the distance to the nearest neighbor in aMPi (lines 4-5). After

that, we will check whether aMPi is still larger than BSF (line 6). If yes, this means that

we cannot find a nearest neighbor that is similar enough to the current query, and clearly,

the current query is the new discord. In this case, we will update the highest discord

score and break out of the loop (lines 7-8). Finally, line 15 returns the result of backward

processing, the score of the current query aMPi, and the current highest discord value

BSF.

Note that if the search reaches the very beginning of the time series, our computation is

performed in the global region (from 1 to i), not in the local region prefix, in which case

the discord score of the current query aMPi is an exact value; whereas if our score is

computed in the local region prefix, aMPi is an approximate value, but bounded

between the true score and the current BSF.

If we just use the backward processing step (line 9 of Table 1), then we have a fast

online algorithm to compute the aMP. However, the use of forward processing as

0.9 0.8 1.1 1.2 - - - -

T

Left-aMP

Ti

Current Subsequence

Ti:i+m-1

Look back this far, to try to find a
subsequence that will disqualify Current
Subsequence from being the Discord…

If not found, double the length and look back this far..

If not found, double the length and look back this far..

outlined in Table 3 can speed up the processing by at least a further order of magnitude.

This is the algorithm whose intuition was laid out in Section 5.1.2.

Table 3: DAMP Forward Processing Algorithm

Function: PV = ForwardProcessing(T, m, i, BSF, PV)

Input: T: Time series

m: Subsequence length

i: Index of current query

BSF: Highest discord score so far

PV: Pruned Vector

Output: PV: Updated Pruned Vector

1

2

3

4

5

6

7

8

9

10

lookahead = 2^nextpow2(m) // Length to “peek” ahead

If the search does not reach the end of the time series

start = i + m

end = min(start + lookahead – 1,length(T))

 𝐷𝑖
′ = MASS(Tstart:end,Ti:i+m-1) // Definition 4

indices = all indices in 𝐷𝑖
′ with values less than BSF

indices = indices + start – 1 // Convert indices on distance

 //profile to indices on time series

PVindices = 0 // Update the Pruned Vector

return PV

The purpose of forward processing is admissible pruning. That is, if there is evidence

that some future subsequences cannot be a discord, we will ignore these subsequences

and no longer perform expensive processing on them. To achieve this in line 1 we need

to define lookahead, the range of how many subsequences to peek ahead. Here we also

use 2^nextpow2(m), i.e., the smallest power of 2 larger than the subsequence length m.

After that, we need to determine whether the forward search exceeds the range of T to

ensure that our processing is safe and there is no out-of-bounds problem (line 2). Line

3 defines the start position of the forward search, namely start. To avoid self-matching,

we set the start to the position after the end of the query, that is, i+m. Line 4 explicitly

defines the end position of the forward search, and since the length of our forward

search is lookahead, or n. We can easily conclude that end is start + lookahead - 1. In

line 5, we calculate the distance profile 𝐷𝑖
′ by calling the MASS function.

The distance profile 𝐷𝑖
′ here is slightly different from the one described in Definition 4

because it is computed under a specific range. That is, 𝐷𝑖
′ stores the distance between

the current query and all subsequences in the range of lookahead (from start to end)

instead of the distance between the current query and all subsequences of T. Once the

distance profile 𝐷𝑖
′ is constructed, we can use it for pruning. Suppose there exist

subsequences in the future that are more similar to the current query than the discord to

its nearest neighbor. In that case, these subsequences cannot be a discord, so we can

prune them. Therefore, we can use the current highest discord score BSF as a criterion

to find all the indices in the distance profile with values lower than the BSF (line 6).

Since the indices on the distance profile start at 1 and are not aligned with the true

indices of the time series, we need an additional step in line 7 to convert the indices on

the distance profile to the true indices of the subsequence. After line 7 we get a list of

indices for the subsequences that can be pruned out. The Pruned Vector values at the

corresponding positions specified in the list indices are set to 0 (line 9), indicating that

when later iterations process the subsequences listed in indices we can simply skip them.

At last, line 10 returns the updated Pruned Vector PV.

The forward processing algorithm has exactly one parameter, the lookahead length.

How should we set this? In Fig. 9.left we sketch out the tradeoffs involved. A longer

lookahead can prune more subsequences, but this comes at the cost of more expensive

similarity searches. The good news is that the speedup is dramatic, that the sweet spot

is early (given us effectively online detection), and that the exact value of the lookahead

parameter is not too critical. All datasets we examined exhibit this “U-shaped” behavior,

although the similarity searches. As Fig. 9.right shows, this intuition is borne out by

experiment. The height of the base of the “U” can be lower (smooth and highly periodic

data) or higher.

Fig. 9 left) The lookahead tradeoff is based on two factors. As the lookahead grows, the pruning rate

becomes greater, but the cost of the similarity search increases. right) The empirically measured

effectiveness of forward processing (on random walks of length 220) is indeed the sum of the two

factors.

Finally, this is a good place to mention an important caveat about interpreting a Left-

aMP that is computed using forward processing. Failure this understand this caveat may

Increasingly long lookahead →

T
im

e

The time required for

MASS grows almost

linearly (actually nlog2(n))

Time saved by pruning

initially grows quickly, but

then suffers from

diminishing returns.

Increasingly long lookahead →

T
im

e
 (

s
e
c
o
n
d
s
)

0

800

0 1024
(multiples of 1024)

The empirical curve

matches the sum of two

theoretical curves.

lead a user to think the aMP is indicating an anomaly where there is none. Consider

Fig. 10 which shows DAMP processing an excerpt of the MGAB, both with and without

forward processing.

Fig. 10 bottom-to-top) An excerpt of the MGAB with an anomaly highlighted in red. The top-1 Left-

aMP computed without using forward processing. The top-1 Left-aMP computed without forward

processing produces long constant runs that indicate that the algorithm admissibly skipped those regions.

When using DAMP with forward processing to search for the top-k left-discords, the k

highest peaks do correctly show the location and strength (the height of the peaks) of

the top-k left-discords (in Fig. 10, k = 1). However, the remaining k + 1 peaks should

not be assumed to indicate slightly smaller anomalies. They simply indicate regions

that were pruned by encountering a matching subsequence that was below the current

Best-So-Far. For example, towards the end of the forward processing variant of DAMP

in Fig. 10 there is a long constant plateau with a relatively high value. As we can see

by comparing that region to the no-forward-processing region just below it, we should

not assume that there are any anomalies in that region.

Again, to summarize: The top-k peaks of the top-k Left-aMP do indicate the correct

values of top-k discords of T, but the remaining values of the top-k Left-aMP have no

direct interpretation.

5.2.1 The Time and Space Complexity of DAMP

Since all computation results are stored in a one-dimensional vector of size n, the space

complexity of DAMP is just the size of the original data, O(n). The worst-case time

complexity is O(nlogn) per datapoint ingested, the time required to do a full similarity

search with MASS [19]. However, empirically, on diverse real-world datasets, more

than 99.999% of the times we enter the loop in line 3 of Table 2 we will break out in

0 0.5 1 1.5 2

Excerpt of Mackey-Glass anomaly benchmark (MGAB)

DAMP: No forward processing

DAMP: Forward processing

Long “runs” of

admissibly pruned

calculations

Both approaches are only guaranteed to

agree at the top-K (here, K = 1) locations

the first iteration (line 12), making the algorithm effectively O(mlogm) per datapoint

ingested, and linear in the time series length. Fig. 24 shows this linear assumption

strongly holds up to at least n = 230.

5.3 DAMP Variants

There are more general cases that can be easily handled by modifying the basic DAMP,

for example:

• The algorithm as explained in Table 1 is a batch algorithm. To make it an online

algorithm, we simply must reduce the size of the lookahead (Table 3, line 1) to the

largest delay we are willing to accept (including possibly zero delay).

• The algorithm as explained in Table 1 computes the Left-aMP, however we can

modify it to compute the classic Full-aMP. If the backward processing step reaches

the beginning of the time series, instead of updating the BSF, we do the same type of

iterative doubling search, but forward from the current index (not to be confused with

forward pruning search in Table 3). We have made this code available at [10], but we

do not consider it further here, due to page limits.

• It may be useful to limit how far back the backward processing can look, essentially

redefining anomalies as “the subsequence with the maximum distance to any of the X

subsequences before it”. We call this variant the X-Lag-Amnesic DAMP.

• Instead of searching an ever-growing amount of previously seen data in the

BackwardProcessing step, we can search a fixed pool of explicit training data. For

example, an engineer could curate a dataset that contains all the allowable behaviors

for a manufacturing process (i.e., the “Golden Batch”).

There are several other useful variants that we have considered, and we suspect the

community will quickly exploit the scalability of the basic DAMP algorithm to invent

further variants.

Below we give more details about the two useful variants of DAMP, X-Lag-Amnesic

DAMP and Golden DAMP mentioned above. To help the reader better understand how

these two variants work, let us start with the most basic variant, namely, Classic DAMP.

Fig. 11 Three variants of DAMP. top) Classic DAMP middle) X-Lag Amnesic DAMP bottom) Golden

DAMP

The Classic DAMP algorithm illustrated in Fig. 11.top was already discussed in

Sections 5.1 and 5.2. It is worth noting here that for Classic DAMP, all data collected

before the current time T1:i-1 are our training data by default, and our backward search

is executed on this progressively growing training data. This means that to calculate the

discord score of the current subsequence Ti:i+m-1, Classic DAMP searches all the way

forward from position i by the iterative doubling process, and, in the worst case, all the

way to the beginning of the time series, i.e., T1:i. Therefore, as we process more and

more data points over time, our backward search may also require more and more time.

As we shall see in our experimental section, empirically this is not a problem on the

dozens of datasets we consider. Nevertheless, X-Lag-Amnesic DAMP and Golden

DAMP allow us to provide a strict bound on the worst-case behavior, in addition to

possessing other useful properties.

5.3.1 X-Lag-Amnesic DAMP

In some settings we may require an algorithm that can show us the most unusual

behavior in just the last few minutes, days, months, or years. In that case, a DAMP

variant that constrains how far back the backward search can look is required. Formally,

we refer to such a DAMP variant as X-Lag-Amnesic DAMP.

Compared with Classic DAMP, the time overhead of X-Lag-Amnesic DAMP is

bounded and controllable. This is because it only cares about what happened in a fixed

0.6 0.7 1.0 1.1 - - - -

1 1 1 1 1 0 0 1

T

X-Lag-Amnesic Left-aMP

Pruned Vector

Ti

Ti:i+m-1

1.0 0.8

1 1

X-Lag-Amnesic DAMP: Look
back only as far as the ith – X
data point (if necessary)

0.5

1

X

0.9 0.8 1.1 1.2 - - - -

1 1 1 1 1 0 0 1

T

Left-aMP

Pruned Vector

Ti

Ti:i+m-1

Classic DAMP: Look all
the way to beginning
of time (if necessary) 0.0 0.0

1 1

0.9 0.8 1.1 1.2 - - - -

1 1 1 1 1 0 0 1

T

Golden Left-aMP

Pruned Vector

Ti

Ti:i+m-1

Golden DAMP: Look all only at a fixed curated
time series, that contains all the allowable
behavior of a system.

Golden Batch

unit of time before the present, and its calculation is based on fixed-size and real-time

updated training data. For example, if we only need to find anomalies that occurred in

the most recent month, X-Lag-Amnesic DAMP will perform an iterative doubling

search in the most recent month’s data rather than searching through all past data.

Consequently, the time cost of X-Lag-Amnesic DAMP is bounded by the length of X

as opposed to increasing gradually.

In addition, X-Lag-Amnesic DAMP can better deal with concept drift. For time series

in some domains, their patterns change over time and the dependence between their

data weakens as the distance increases, at which point it makes no sense to consider

data that is too far from the present. For example, for many batch processes in the food

and beverage industry the time series patterns are known to drift over each day, due to

changes in ambient temperature and humidity. A pattern that happens during the

nightshift may be anomalous because the process is “running hot”. It might be obvious

if we compare only to the patterns in the previous hour or so, but it will not be obvious

if we allow comparisons back to the previous midday. Obviously, since X-Lag-Amnesic

DAMP focuses only on what happened recently, it can avoid such issues caused by

concept drift. By contrast, Classic DAMP is more vulnerable to this, as its backward

search may cover all data that occurred before the present, and all these data have the

same weight for the discord score calculation regardless of their proximity to the current

subsequence.

Fig. 11.middle describes how the X-Lag-Amnesic DAMP works. Here we introduce a

new parameter X, the maximum length that the backward processing algorithm can look

back, specified by the user as needed. The framework of the X-Lag-Amnesic DAMP

algorithm is the same as Classic DAMP; it retains the forward and backward processing

steps, in which the forward processing is identical to Classic DAMP. The only

difference between X-Lag-Amnesic DAMP and Classic DAMP is that for the current

subsequence being processed Ti:i+m-1, we only perform a backward search on the X data

points before it, not on all the previous data. However, the search is still iteratively

doubled: it terminates either when it finds the nearest neighbor with a distance smaller

than the BSF or when it reaches the beginning of X. Therefore, to make X-Lag-Amnesic

DAMP work, we simply need to change lines 4-5 of Table 2 for Classic DAMP to the

five lines shown in Table 4.

Table 4: Pseudo code snippet for X-Lag-Amnesic DAMP

1

2

3

4

5

If Starting position of the search < max(i-X,1) Or X < prefix

If i – X < 1

 aMPi = min(MASS(T1:i,Ti:i+m-1))

 Else

 aMPi = min(MASS(Ti-X:i,Ti:i+m-1))

In line 1 we added two new criteria for search termination, i.e., reaching the beginning

of the time series Ti-X:i, or the maximum length of looking back X is less than the initial

length of the iterative doubling search prefix. In both cases, we do not iteratively double

our search anymore. Instead, we only search for the nearest neighbor of the current

subsequence in the range i-X to i (lines 4-5). Moreover, there is a special case where

the number of data points that arrived has not yet reached X (i<X+1). In this case, we

can only conduct the backward search in all available data T1:i as shown in lines 2-3.

Others works have noted the utility of amnesic anomaly detection (although not using

that phrase), including the SAND algorithm of [5]. However, SAND requires

significant effort to build a reference dataset, and the setting of several unintuitive

parameters.

5.3.2 Golden DAMP

Recall that Classic DAMP has a parameter called spIndex, which sets the location of

the split point between the training and test data in the initial state. When Classic

DAMP processes a time series, it assumes that the data before spIndex, T1:spIndex-1 are

normal, which may lead to three issues. First, this causes the algorithm to ignore the

potential anomalous behavior present in T1:spIndex-1, resulting in certain false-negative

results. Second, this approach may have the algorithm wasting time searching

redundant data. It is possible that the patterns in T1:spIndex-1 are highly redundant, such

as 1,000 heartbeats that are essentially identical. If the heartbeats all have the same

pattern, it would suffice for the algorithm to take just one of them to learn3; there is

no need to consider the same pattern 1,000 times, which will waste a lot of time.

Further, it may be difficult for T1:spIndex-1 to contain every normal pattern, which can

cause the algorithm to incorrectly identify normal behavior that does not appear in

3 Actually, using exactly one heartbeat (or pattern more generally), may make the downstream algorithms brittle to

the choice of the starting point of the heartbeat. To bypass this issue, we always extract two consecutive beats.

T1:spIndex-1 as an anomaly. For example, if T1:spIndex-1 only contains data on the solar

zenith angle during the day, the algorithm may incorrectly identify normal solar zenith

angles at night as anomalies. These potential problems can undermine the accuracy

and efficiency of the algorithm.

Golden DAMP is our proposed solution to the above three problems. It processes each

subsequence not by referring to information that occurred before the current time, but

to user-defined, curated, out-of-band information, denoted as Golden Batch. The

Golden Batch implicitly defines every possible legal behavior, such as every possible

dance move, every normal heartbeat, etc. It includes all the things the user expects to

happen in the system. With this correct and comprehensive priori knowledge, the

algorithm will be able to make more accurate and efficient decisions.

This idea of creating a curated collection of data that spans the space of all possible

acceptable behaviors is well known in the process industry [37]. For example,

food/beverage engineers will often set aside one day to create a recipe under all

combinations of conditions encountered: under cool conditions, under hot conditions,

with carbonated infeed, with flat infeed etc. However, the use of these batch profiles is

typically human comparison of the evolving process to the Golden Batch(es) [37]. Here

we are interested in automatic anomaly detection. In addition, note that while the

Golden Batch data can be hand curated, it can also be created automatically by various

numerosity reduction algorithms [15][36].

Further note that the execution time of Golden DAMP is also bounded because its

training data is the Golden Batch with a fixed size. Therefore, as we explained in

Section 5.3.1, the cost of Golden DAMP’s backward search is proportional to the size

of Golden Batch.

Fig. 11.bottom illustrates the idea of Golden DAMP. When processing the current

subsequence Ti:i-m+1, Golden DAMP no longer looks backward in the time series T but

toward the Golden Batch, a vector containing all acceptable patterns. We still use the

iterative doubling search policy shown in Fig. 8 for Golden Batch. The search keeps

iteratively doubling until it finds the nearest neighbor within the prefix whose distance

from Ti:i-m+1 is less than the BSF, or it gets to the beginning of the Golden Batch. After

computing the approximate or exact discord score for position i, we invoke the same

forward processing procedure as in Classic DAMP to disqualify future subsequences

that are unlikely to become a discord.

The implementation details of Golden DAMP are given in Table 5 and Table 6. Since

most of them are the same as Table 1 and Table 2, we will highlight the parts that we

changed.

Table 5: The Main Golden DAMP Algorithm

Function: Golden_DAMP(T, m, GoldenBatch)

Input: T: Time series

m: Subsequence length

GoldenBatch: A long time series with all possible normal

patterns

Output: aMP: Left approximate Matrix Profile

1

2

3

4

5

6

7

8

9

10

11

PV = ones(1,length(T)-m+1)

aMP = zeros(1,length(T)-m+1)

BSF = 0 // The current best discord score

 // Scan all subsequences in the test data

For i = 1 to length(T) – m + 1

If NOT PVi // Skip the pruned subsequence

aMPi = aMPi-1

Else

[aMPi, BSF] = BackwardProcessing(T, m, i, BSF, GoldenBatch)

PV = ForwardProcessing(T, m, i, BSF, PV)

return aMP

The main framework of Golden DAMP is shown in Table 5. Golden DAMP has a new

input, GoldenBatch, a long vector that joins all normal patterns together. As with Table

1, the algorithm starts with initialization in lines 1-3. Since we already have the training

data GoldenBatch, we no longer need to use the first spIndex-1 data of the time series

T. As a result, in line 5 we adjust the processing range of Golden DAMP from TspIndex:n-

m+1 to T1:n-m+1. After that, within the loop, lines 6-7 decide whether to process the current

subsequence Ti:i-m+1 according to the value in the pruned vector PV. If the subsequence

at position i needs to be processed, we first invoke BackwardProcessing in line 9 to

calculate the discord score for position i and update the current highest discord value,

and then call ForwardProcessing in line 10 to determine the subsequences to be pruned

in the future. Finally, lines 5-10 iterate through each subsequence in T1:n-m+1 and line 11

returns the Golden Left-aMP. In particular, the ForwardProcessing here is identical to

that of Classic DAMP, so we do not repeat it below. However, we partially changed

BackwardProcessing from Table 2 of Classic DAMP, so we give Table 6 detailing the

backward processing for Golden DAMP.

Table 6: Golden DAMP Backward Processing Algorithm

Function: [aMPi, BSF] = BackwardProcessing(T, m, i, BSF, GoldenBatch)

Input: T: Time series

m: Subsequence length

i: Index of current query

BSF: Highest discord score so far

GoldenBatch: A long time series with all possible normal

patterns

Output: aMPi: Discord value at position i

BSF: Updated highest discord score so far

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

aMPi = inf

prefix = min(2^nextpow2(m),length(GoldenBatch))

While aMPi ≥ BSF

If the search reaches the beginning of the Golden Batch

aMPi = min(MASS(GoldenBatch1:end,Ti:i+m-1))

If aMPi > BSF // Update the current best discord score

 BSF = aMPi

break

Else

aMPi = min(MASS(GoldenBatchend-prefix+1:end,Ti:i+m-1))

If aMPi < BSF

 break // Stop searching

Else // Double the length of prefix

 prefix =2*prefix

return aMPi, BSF

Table 6 illustrates the backward processing algorithm of Golden DAMP. As the

backward search is performed on top of Golden Batch, we need to enter GoldenBatch

into the algorithm. The first two lines of Table 6 are still the initialization phase. Line

1 is the same as in Table 2, initializing the discord score of the current subsequence to

positive infinity. In line 2 we define the initial length of the iterative doubling search

prefix. Here we set it as the lower bound of 2nextpow2(m) and Golden Batch size to prevent

possible array out-of-bounds problem at line 10. Then in the loop in lines 3-14, we

perform the iterative doubling search, which starts from the end of Golden Batch and

goes backwards. We keep searching in GoldenBatchend-prefix+1:end until we find the

nearest neighbor whose distance from the current subsequence is less than BSF (line 11)

or reach the beginning of Golden Batch (line 4). Specifically, if we find the nearest

neighbor within the range prefix, we assign the approximate discord score of the current

subsequence to aMPi and stop the search (lines 10-12); if not, in lines 13 and 14 we

double the length of prefix and continue the search in GoldenBatchend-prefix+1:end. If the

search finally reaches the beginning of Golden Batch (line 4), we first calculate the

exact discord score of the current subsequence using all the data in GoldenBatch (line

5), and then determine whether the current highest discord score BSF needs to be

updated (line 6). If the discord score of the current subsequence is still greater than BSF,

it means that the subsequence at position i does not have a nearest neighbor similar

enough to it in the Golden Batch and it is a discord, at which point we should update

the current highest discord score BSF in line 7.

5.4 Multidimensional DAMP

The previous sections have shown how to find anomalies in a one-dimensional time

series. We believe that in many cases, anomaly detection of all the one-dimensional

data is sufficient for user demands. For example, in a hospital setting, a doctor may

monitor a patient’s ECG, blood pressure, and respiration. Most life-threatening

situations will show up in at least one of the above. For example, a myocardial

infarction, will first show up in the patient’s ECG, septicemia will first show up in the

patient’s blood pressure, and tracheomalacia will first show up in the patient’s blood

respiration.

However, there are also special cases where anomalies occur in only two or more

dimensions. For example, in the low-latitude Pacific West Coast region, typhoons

accompanied by heavy precipitation occasionally make landfall in summer. In order to

identify such unusual weather events, it is insufficient to monitor only precipitation or

wind speed. This is because these areas may have strong winds but sunny weather, or

extreme rainfall but still air. As a result, we need to combine wind speed and

precipitation as two-dimensional data to find out which day has both precipitation and

wind speed anomalies. If such anomalies can be identified in two dimensions, there is

a high chance of typhoon weather on that day. Therefore, it is necessary to generalize

our DAMP algorithm to support searching in high-dimensional spaces. We refer to the

DAMP algorithm for multidimensional data anomaly detection as multidimensional

DAMP.

Fig. 12 Multidimensional distance profile for position i.

The basic idea of multidimensional DAMP is the same as the one-dimensional

DAMP we introduced in Section 5.1, which retains the procedure of backward

iterative doubling and forward pruning. The difference between them is reflected

solely in the calculation of the discord score. Fig. 12 illustrates how the

multidimensional DAMP calculates the discord score for position i. Let TA be the

time series of dimension A in a two-dimensional time series, while TB corresponds to

dimension B, and the length and frequency of TA and TB are equal. For position i, we

first compute the distances between the current subsequence of TA and TB and the

subsequences before position i in their respective dimensions, forming two distance

vectors DA
i and DB

i (see Definition 4). After that, we add the elements of the two

distance vectors two by two according to their positions to produce a new vector MDi,

which contains the distance information in both dimensions A and B. Finally, the

minimum value on MDi is the discord score at position i. As the algorithm progresses,

the BSF continuously tracks the current highest discord score that combines

information from both dimensions.

Table 7 and Table 8 give the implementation details of multidimensional DAMP.

Here we only demonstrate the two-dimensional version, however the reader can

easily modify it to work with higher dimensional data. Since the basic steps of

multidimensional DAMP and one-dimensional DAMP are the same, the framework

of multidimensional DAMP is identical to Table 1.

0.9 0.8 1.1 1.2 - - - -

TA

Distance Profile DA
i for TA

TAi

Current Subsequence

TAi:i+m-1

0.6 2.2 1.5 0.6 - - - -

TB

Distance Profile DB
i for TB

TBi

TBi:i+m-1

1.5 3.0 2.6 1.8 - - - -Multidimensional Distance
Profile MDi for A and B

Table 7: Multidimensional DAMP Backward Processing Algorithm

Function: [aMPi, BSF] = BackwardProcessing(TA, TB, m, i, BSF)

Input: TA: Dimension A of the multidimensional time series

TB: Dimension B of the multidimensional time series

m: Subsequence length

i: Index of current query

BSF: Highest discord score so far

Output: aMPi: Discord value at position i

BSF: Updated highest discord score so far

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

aMPi = inf

prefix = 2^nextpow2(m) // Initial length of prefix

While aMPi ≥ BSF

If the search reaches the beginning of the time series

aMPi = min(MASS(TA1:i,TAi:i+m-1) + MASS(TB1:i,TBi:i+m-1))

If aMPi > BSF // Update the current best discord score

 BSF = aMPi

break

Else

aMPi = min(MASS(TAi-prefix+1:i,TAi:i+m-1) + MASS(TBi-prefix+1:i,TBi:i+m-1))

If aMPi < BSF

 break // Stop searching

Else // Double the length of prefix

 prefix =2*prefix

return aMPi, BSF

Table 7 presents the multidimensional backward processing algorithm. As it is

primarily similar to Table 2, we refer the reader to Section 5.2 for more details on the

iterative doubling backward algorithm. Here we only highlight the parts that have

changed. Compared to Table 2, we add two new inputs TA and TB, the time series in

dimensions A and B. In lines 5 and 10, we change the calculation of the discord score

at position i aMPi. In line 5, to obtain aMPi, we call MASS twice to calculate the

distance between the current subsequence of TA and TB and all subsequences before

position i respectively. Next, we add the elements in the two distance vectors returned

by MASS two by two according to the positions to obtain the multidimensional distance

profile. Finally, the minimum value of the multidimensional distance vector is taken as

the exact discord score of position i. Line 10 is similar to line 5. The only difference is

that line 10 only finds the nearest neighbor in the prefixes of TA and TB before position

i and aMPi is the approximate discord score for position i.

Table 8: Multidimensional DAMP Forward Processing Algorithm

Function: PV = ForwardProcessing(TA, TB, m, i, BSF, PV)

Input: TA: Dimension A of the multidimensional time series

TB: Dimension B of the multidimensional time series

m: Subsequence length

i: Index of current query

BSF: Highest discord score so far

PV: Pruned Vector

Output: PV: Updated Pruned Vector

1

2

3

4

5

6

7

8

9

10

lookahead = 2^nextpow2(m) // Length to peek ahead

If the search does not reach the end of the time series

start = i + m

end = min(start + lookahead – 1,length(T))

 𝑀𝐷𝑖
′ = MASS(TAstart:end,TAi:i+m-1) + MASS(TBstart:end,TBi:i+m-1)

indices = all indices in 𝑀𝐷𝑖
′ with values less than BSF

indices = indices + start – 1 // Convert indices on distance

profile to indices on time series

PVindices = 0 // Update the Pruned Vector

return PV

Multidimensional DAMP also has a similar forward pruning process to that of one-

dimensional DAMP, as shown in Table 8. Compared with Table 3, we need to only

change line 5. In the range of lookahead, the distances between the current and future

subsequences of TA and TB are calculated separately. Then the distance vectors of A and

B dimensions are summed to yield a distance vector MD'i containing two-dimensional

information. Our pruning decisions are made based on this two-dimensional distance

vector.

Fig. 13 Synthetic time series A and B. top) Synthetic dataset A and its corresponding one-dimensional

Left-aMP. bottom) Synthetic dataset B and its corresponding one-dimensional Left-aMP.

Let us start with a toy data set to understand the difference between multidimensional

DAMP and one-dimensional DAMP. The red curves in Fig. 13 illustrate two synthetic

time series A and B. These two time series consist mainly of sine waves. Specifically,

for time series A, the data at positions 3700-3799 (X) are noisier than the other parts,

Z

Left-aMP for A

Left-aMP for B

Y

X0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

A

B

while for time series B, the data at positions 1700-1799 (Y) are noisier. If you look

closely, you will find that the two time series will have a square wave at random

positions from time to time. It so happens that at positions 2605-2644, both time series

show a square wave simultaneously, which is where our real anomaly lies. We denote

it as Z. We tested the time series A and B with one-dimensional DAMP and two-

dimensional DAMP respectively to see if they could find the true anomaly Z. Fig. 13

also gives the results of performing a one-dimensional DAMP on time series A and B.

It is easy to see by the highest point of the blue curve in Fig. 13.top that one-dimensional

DAMP is attracted to the noisy sine wave in A and does not notice the anomaly at

position Z. Similarly, as illustrated in Fig. 13.bottom, one-dimensional DAMP on B

also fails to detect the anomaly at Z, instead considers the nosier Y as the anomaly.

Missing information in another dimension, the one-dimensional DAMPs mistakenly

believe that the presence of the square wave at Z is justified because they observe

similar patterns before Z.

Fig. 14 Left-aMP generated by two-dimensional DAMP.

Next, we combine A and B into a two-dimensional time series and feed it into the two-

dimensional DAMP to see if the results will be different. The Left-aMP generated by

two-dimensional DAMP is shown in Fig. 14. Note that compared with the Left-aMP

generated by the one-dimensional DAMP in Fig. 14, the two-dimensional Left-aMP

captures more anomalies with more “bumps” on its curve. All these bumps can be

interpreted intuitively. For example, when both square and sine waves are present, or

when one of the sine waves is noisier, they are recognized by the algorithm as a

potential anomaly and correspond to a bump in the Left-aMP. What is more, the

position of the highest point of Left-aMP in Fig. 14 corresponds to the coincidence of

two square waves, that is, Z. This is because if you look at the entire time series of A

Left-aMP for A and B

X

Y Z

A

B

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

and B, you will see that the square wave only appears at Z in both dimensions

simultaneously, which cannot be observed at other locations.

We have seen that we can create a synthetic dataset that has an anomaly that can be

discovered only by considering two time series simultaneously. However, can we

discover two-dimensional anomalies in real data? Surprisingly, we are not aware of any

such benchmark dataset. Most datasets in the space are synthetic, or are

multidimensional, but have anomalies that are so obvious that it suffices to examine

any single dimension [2][14]. However, we can explore energy grid data published by

a consortium of Texas A&M and USC in 2021 [38], and use out-of-band data to

evaluate the returned anomalies. Fig. 15.top shows three years of wind speed and

relative humidity data from the New York area between 2018 to 2020 [38].

Fig. 15 top) Three years of wind speed and relative humidity data for the New York area from [38].

bottom) The two corresponding top 2D discord in this dataset.

60

80

100

0.1

0.6

1.1

Jan 24th, 2019

Nov 23th, 2018

W
in

d
S

p
e

e
d

R
e
la

ti
v
e

 H
u
m

id
it
y

1/1/2018 31/12/2020Three years

Relative Humidity

Wind Speed

Eleven days

Fig. 15.bottom shows the results of our search on the one-dimensional data of wind

speed and relative humidity, respectively, and the anomalies identified by one-

dimensional DAMP are marked in red. First, for wind speed, the one-dimensional

DAMP reports the constant interval occurring on January 24, 2019, as an anomaly;

however, we do not find any reported climate anomaly in New York State on that date.

That is to say, although the algorithm finds an anomaly with a pattern that is different

from its context, it does not seem to noticeably affect people’s lives. As a result, we can

conclude that the wind speed anomaly is trivial. Second, for relative humidity, the one-

dimensional DAMP identifies the continuous peak occurring on November 23, 2018,

as an anomaly. Through a Google search, we found reports of heavy rainfall and

flooding that occurred in New York State on that day [22], which confirms that the

anomalies identified in the dimension of relative humidity are informative and that the

one-dimensional DAMP is effective.

Fig. 16 Top discord for two-dimensional DAMP.

However, if we combine wind speed and humidity and search in two dimensions, will

the algorithm give us more interesting results? To investigate this, we took wind speed

as dimension A and relative humidity as dimension B and re-executed this two-

dimensional data using multidimensional DAMP. The results are presented in Fig. 16.

Note that the two-dimensional DAMP reports a different date to either of the one-

dimensional DAMP runs, May 28, 2019. This means that both humidity and wind speed

in New York City showed anomalous patterns on this date. This anomaly is confirmed

by the news “A powerful thunderstorm slammed Staten Island Tuesday night, pounding

the borough with large hail, heavy rain and the threat of a tornado.” [29].

0

0.6

1.2

40

70

100 May 28th, 2019

R
e

la
ti
v
e

 H
u

m
id

it
y

W
in

d
S

p
e

e
d

Dimension A

Dimension B

Eleven days

Fig. 17 The scalability of 1D and 2D DAMP over increasingly large datasets. The cost to double the

number of dimensions considered is only slightly worse than double the time, suggesting that

multidimensional DAMP search inherits the efficiency of the 1D version.

We have demonstrated the utility of multidimensional DAMP. However, readers may

wonder if it will pay a large time overhead for it. To investigate this, we used the data

shown in Fig. 15.bottom (wind speed) and Fig. 16 and recorded the time cost of the

one-dimensional and two-dimensional algorithms for increasingly long subsets. The

experimental results are shown in Fig. 17. It can be seen that the time cost of a two-

dimensional DAMP is only a small constant ratio to the cost of a one-dimensional

DAMP, which suggests the good scalability for multidimensional DAMP.

6 EMPIRICAL EVALUATION

To ensure the reproducibility of our experiments, we have built a website [10]

containing all the data/code used in this work. All experiments were conducted on an

Intel® Core i7-9700CPU at 3.00GHz with 32 GB of main memory, unless otherwise

stated.

There are two things one normally needs to establish to validate an anomaly detection

algorithm.

• Effectiveness: Here we feel less of an obligation. As we noted in Section 2, there are

at least one hundred independent papers that have used discords to solve a real-world

problem and that have shown that discords are the only technique that seems to be

Ti
m

e
(s

ec
o

n
d

s)

1 million

Data Length

2D DAMP

1D DAMP

able to discover anomalies that are not visually obvious (Fig. 2, Fig. 3 and Fig. 4).

Nevertheless, for completeness we will show examples in Sections 6.1 and 6.2 that

further demonstrate the excellent effectiveness of discords in diverse domains, and

Section 6.3 and Section 6.4 offer comparisons to several deep learning-based

methods.

• Efficiency: As this is the main contribution of the paper, here we will attempt an

ambitious set of anomaly detection experiments in terms of both throughput and scale.

6.1 Energy Grid Dataset

Recently, a consortium from Texas A&M and USC released a large dataset on

decarbonized energy grids [38]. The dataset contains files representing three years of

measurements of various metrics in sixty-six electrical zones in the continental USA.

As Fig. 18 suggests, each file represents eleven measurements, ten of which are

measured (temperature, wind speed etc.), but one is computed from the first principles

of astronomy, the Solar Zenith Angle.

Fig. 18 top) Two examples of time series from [38]. Most, like temperature are measured, but Solar

Zenith Angle is computed. bottom) The two corresponding top discords in these datasets.

Feb 14th

2019

Unusually warm night

2020

Unusually cold day

1/1/2018 31/12/2020Three years

Feb 29th

5

10

15

20

25

C
e
ls

iu
s

40

180

S
o

la
r

Z
e

n
it
h

Solar Zenith Angle

Temperature

The total size of this dataset is 12 GB, representing 2,174 years of data with

1,142,668,098 datapoints. As such, we believe that it is the largest real dataset ever

searched for anomalies. This complete search took only 2.06 days.

As Fig. 18 shows, most of the anomalies discovered do have a semantic meaning that

can be traced. For example, a temperature trace from California had a discord that

reflected “Valentine’s Day Storm Slams California” [33]. Even the computed time

series reveals a strange anomaly echoing a biblical event. Joshua persuades God to stop

the sun from moving for a day “There has never been a day like it before or since

(Joshua 10:14)”. In our dataset there is a similarly unique day in which the sun

apparently does not move! The reader will readily appreciate the cause of this anomaly,

after noting it occurs on the 29th of February [34]. It is a classic leap year bug. Note that

we informed the Texas A&M and USC team of this bug, so presumably it will be fixed

in upcoming releases.

6.2 Machining Dataset

The example in Section 6.1 demonstrates the utility of anomaly detection in batch data

exploration. However, in some cases if we can do anomaly detection in real-time, we

may be able to perform an intervention to improve an outcome. For example, consider

the process of making parts using a CNC milling machine. Occasionally a problem

arises where an item being machined is not held correctly and it moves. This can cause

a milling machine to “crash” [8]. High-end CNC mills can cost over one million dollars,

and crashes resulting in more than $20,000 in damage are known. Many (but not all)

machining processes can be paused by an operator, so in principle it may be possible to

stop a machine before it crashes. However, with the speed at which these machines

operate, it is unlikely that the operators’ reflexes would be fast enough.

This suggests the question, could we monitor the process with telemetry, and pause the

process if we detected an anomaly? In order to test this, we recreated a common

scenario in Fig. 19.

Fig. 19 top) Vibration telemetry from a milling machine that was cutting cast iron, but then overshot

to start cutting the steel jaws of the vice. bottom) The Left-aMP discovers the transition.

A common CNC programming error is to give the wrong coordinates for a cutting pass,

and have the cutter overshoot the intended material to be machined, and inadvertently

attempt to remove material from the jaws of the vice. Because the jaws are typically

harder than the material they hold, and more resistant to cutting, two things can happen:

• The milling cutter itself will break. This is a $20 to $200 error.

• A much worse possibility is that the cutter will move the vice. If it happens to push it

into the path of later traversal, this could cause a head crash, which is a $2,000 to

$20,000 error.

As Fig. 19 shows, the aMP can detect the change of material, and this could be used to

sound an alarm, or pause the machining process until the operator can inspect this.

Note that before the true anomaly there are other areas with high discord scores. They

are when the milling cutter changes direction (from Climb milling to Conventional

milling). Under our proposed scheme these would have a small cost, the process would

pause until the operator visually confirms all is well, and hits continue.

6.3 Comparison to LSTM Deep Learning

Although dozens of competing deep learning anomaly detection (DLAD) algorithms

now exist, it is impossible to say which is the state-of-the-art. This is because, as Wu

and Keogh have demonstrated, the amount of mislabeling in the benchmark datasets

dwarfs the reported differences between algorithms [35]. It makes no sense to say that

algorithm A is 5% better than algorithm B, when up to 30% of the ground truth labels

are suspect.

To bypass this issue, here we will compare to just Telemanom. It is the most cited

anomaly detection paper of the last five years [14], and several independent papers have

also found it to be effective. The general idea of this work is to use LSTM to predict

future values, then detect anomalies based on the difference between predictions and

actual data. Can Telemanom detect the anomalies we consider in this work?

Three Minutes

Cutting Cast Iron… then SteelMilling Machine Vibration Sensor

Left aMP
Top-1 Discord

• ECG (Fig. 3) No. Given the same 500 datapoint prefix as training data, it fails to find

the anomaly. If we give it ten times as much training data (the first 5,000 datapoints),

it still fails.

• Bearing (Fig. 2): Yes. However, Telemanom took a total of (517.6 training + 700.4

testing) 1,218 seconds. This is two orders of magnitude slower than DAMP, which

took 16.1 seconds. More importantly, Telemanom is an order of magnitude slower

than real-time, precluding any possibility of online monitoring.

• Energy Grid (Section 6.1) Maybe. There are only objective labels for Solar Zenith

Angle (this anomaly was discovered with DAMP but confirmed with the data

creators). If Telemanom sees only the first week as training data (as DAMP did), then

it only learns that the Solar Zenith Angle can decrease over time, and it will flag as

anomalous anything that happens after the summer solstice. A solution to this problem

is to allow Telemanom to train on the full first year, then test on the subsequent years.

Then it may find the “Joshua” anomaly. However, this will take 59.1 hours, over 1,300

times slower than DAMP.

• Milling Data (Fig. 19) No. Actually, Telemanom can detect the same anomaly as

DAMP. But recall it can only start training when the first 5,000 datapoints arrive, and

it takes 411 seconds to train the model. However, 127 seconds after it begins training,

we encounter the anomaly, and about 21 seconds after that, the endmill snaps off.

Telemanom is just too slow to be useful here.

These comparisons suggest that the most cited deep learning anomaly detection

algorithm is not as accurate as DAMP, requires more training data, and is much slower.

6.4 Comparison on the KDD Cup 2021 datasets

To further see the limitations of deep learning time series anomaly detection, we can

compare DAMP to DLAD algorithms on publicly available benchmarks. Wu and

Keogh have shown that most benchmarks in this space are too trivial to be interesting,

and in any case are plagued by mislabeling and other problems [35]. Instead, we

consider the KDD Cup 2021 dataset consisting of 250 univariate time series [11]. This

archive was designed to be diverse, have a spectrum of difficulties ranging from easy

to essentially impossible, and has a detailed provenance for each of the 250 datasets,

giving us some confidence that the ground truth is correct. Moreover, the datasets

include a wide range of domains, including cardiology, industry, medicine, zoology,

weather, human behavior, etc. Table 9 shows the results.

Table 9: Accuracy and Time for Eight TSAD Methods

Method Accuracy Train and Test Time

USAD [2] 0.276 8.05 hours

LSTM-VAE [27] 0.198 23.6 hours

AE [2] 0.236 6.11 hours

Telemanom [14] Out of memory error on longer examples

NORMA [4] 0.474 17.8 minutes

SCRIMP (Full-MP) 0.416 24.5 minutes

DAMP (Left-MP) out-of-the-box 0.512 4.26 hours

DAMP (Left-MP) sharpened data 0.632 4.26 hours

Once again, these results show that DAMP is more accurate and faster than deep

learning-based methods. It is important to note that the results for DAMP are

completely free of any human intervention or tuning. We use four hardcoded lines of

Matlab (see [10]) to find the approximate period in each training dataset, and used that

as the value of m. Likewise, we simply hardcoded a single lookahead value for all 250

datasets. Further optimizing the former would improve accuracy and personalizing the

latter for each individual problem would improve the speed. However, we wanted to

show that even the most naïve out-of-the-box use of DAMP is highly competitive. As

an example of a small intervention that can further improve accuracy, if we run DAMP

on sharpened data (a single extra line of code, see [10] for details) the accuracy

improves to 0.632.

The left-discords of DAMP are significantly more accurate than the full-discords

computed by SCRIMP, because some anomalies have near “twin-freaks” that suppress

the distance of the anomaly to its nearest neighbor. Note that the time for SCRIMP and

NORMA here is relatively good, as there are 250 short time series. In Fig. 22 we will

see that for longer time series this advantage of SCRIMP/NORMA rapidly inverts.

We included a comparison to the recently published NORMA [4], which can be seen

as a sort of Matrix Profile that uses an automatically discovered subset of the training

data as the reference data. Here we used the original authors’ tools and suggestions to

set the parameters (we were able to make the results slightly better with our own

parameter settings [10]). The time for NORMA is apparently good, but it is important

to note the following:

• These datasets have tiny training data splits (they were deliberately made that

way, to allow the deep learning community to consider them in a tenable fashion

[11]). But as Fig. 23 shows the NORMA algorithm scales poorly for large

datasets.

• On these datasets, we can easily close all of the time gap by using either X-Lag-

Amnesic DAMP (Section 5.3.1) or Golden DAMP (Section 5.3.2), with only a

minimal decrease in accuracy. Indeed, the Golden DAMP algorithm essentially

subsumes NORMA as a special case.

• The results in Table 9 mask a unique timing advantage that DAMP has over not

only NORMA, but all other non-trivial anomaly detectors4. We believe that

DAMP is the only instantaneous TSAD in the literature. To see this, consider

the situation in Fig. 20.

Fig. 20 An excerpt from the 243_UCR_Anomaly_tilt12744mtabledataset. The task is to

exploit information in the training split, to detect the most significant anomaly in the test split.

When requested, DAMP can instantaneously begin to monitor. However, NORMA (and all

other TSAD algorithm), must have a period of inaction or “linger” while they build their

models.

4 Here we explain “non-trivial anomaly detector”. Simple rule-based conditionals such as: “if the time

series ever reports a value that is higher than any value you have seen

before, then flag anomaly” could be used as an anomaly detector, and could be instantaneously

instantiated. By non-trivial we mean any TSAD algorithm that examines each subsequence for any information

about shape, autocorrelation, Markov properties etc., and compares this information (in the most general sense),

to a model gleaned from training data. The reader will appreciate that this includes essentially all proposed anomaly

detectors in the literature.

…

…

…

…

Request to monitor happens here

DAMP begins to monitor instantaneously

NORMA begins model building here…
…and is ready to start monitoring here

Training data (excerpt):
40 seconds of wall-clock time

Test data (excerpt)

Linger = 13 seconds

243_UCR_Anomaly_tilt12744mtable

The figure shows a dataset from the KDD Cup 2021. The first forty seconds of

wall-clock time pass, and then we are invited to monitor for anomalies in the

remainder of the data. We define “linger” as the time a TSAD algorithm requires

to ingest the training data, build its model, and be ready to start monitoring. As

shown in Fig. 20, the linger for NORMA on this problem is thirteen seconds.

This means that any anomaly that occurs in the first thirteen seconds will not be

detected (or will only be detected post-mortem). Note that DAMP appears to be

unique among TSAD algorithms in having zero linger. In this example, the

linger of NORMA may not be too consequential (although it grows rapidly with

more training data, see Fig. 23). Perhaps the attending physician can wait with

the patient while the model is being built. However, recall our machining

example in Section 6.2. Here, if the linger is more than 127 seconds, the TSAD

algorithm would not be able to avoid the expensive head-crash.

Recall that Table 9 notes “Out of memory error on longer examples” for Telemanom [8].

There does not seem to be any simple way to fix this issue, so we did the following. We

sorted all the datasets from smallest to largest, and kept evaluating increasingly longer

datasets until the first failure. Telemanom failed at the 63rd smallest dataset

(114_UCR_Anomaly_CIMIS44AirTemperature2). On the first 62 datasets it correctly

found the anomaly on 29, giving an accuracy of 0.468. This took Telemanom 3.4

hours. When we run DAMP on just these 62 shorter datasets, it takes 64.9 seconds. In

general, the 62 shorter test cases are the easier ones (they certainly have a much higher

default rate), yet both flavors of DAMP are still significantly more accurate.

6.5 Threshold Learning for DAMP

Up to this point, we have experimentally demonstrated that DAMP can locate the most

anomalous subsequence. However, we have not shown how the algorithm makes a

binary decision thereafter to flag the subsequence as anomalous or not. For this purpose,

we simply need to learn a threshold. To demonstrate, consider the following experiment.

We created 200 random walk time series of length one million. As shown in Fig. 21.top,

into half of them we randomly inserted a subtle anomaly, a low amplitude random

section of length 950 (Why length 950? We found that if we used length 1,000 we got

perfect accuracy, which is uninteresting for this experiment. So, we tuned the value to

give an error rate of about 10%). In Fig. 21.left, we show the top-1 discord score (for m

= 1,024) for all 200 time series, divided into the two cases. This plot suggests that a

threshold of 36.0 is the optimal value to maximize the accuracy on future occurrences.

To test this, we created and tested an additional million examples, all of which are also

of length one million, classifying an actual anomaly as a true positive if the correct

location of the anomaly was discovered and the top-1 discord score was above the

threshold. Fig. 21.right shows the confusion matrix.

 Predicted

anomaly

Predicted

no-

anomaly

Actual

anomaly
57,987 6,013

Actual

no-

anomaly

5,502 58,498

Fig. 21 top) A sample random walk with an anomaly embedded. left) The distribution of top-1 discord

scores for the two cases of interest. right) The confusion matrix for this task.

We note in passing that this experiment (which took several days distributed across

commodity laptops and desktops), trained on time series with a total length of 200

million, and tested on time series with a total length of 128 billion. To the best of our

knowledge, this is the largest scale time series anomaly detection experiment ever

conducted. Could deep learning do this? We estimate that Telemanom [14] would take

about twelve years to do this, although in practice it gives out-of-memory errors.

6.6 Scalability Comparisons

To find out which elements of our proposed method contribute most to its efficiency,

we have performed an ablation study, in which various elements of DAMP were

progressively crippled. As a baseline, we also compare to SCRIMP [39]. This

0 1,000,000

34,000 38,000

Random Walk Time SeriesInjected

anomaly

Zoom in

32 34 36 38 40 42 44

Top-1 discord

score for no

anomaly case

Top-1 discord

score for

anomaly case

Threshold

comparison to SCRIMP is a little unfair, as it discovers motifs as well as discords.

However, it seems to be the most used discord discovery algorithm in recent years. Fig.

22 summarizes our findings.

Fig. 22 The CPU time vs time series length for various discord discovery algorithms. Note the Y-axis

is in log scale.

It is clear that each element we proposed does actually contribute to speed up, and that

DAMP is effectively linear in n.

As we earlier noted, most of the benchmark datasets are only hundreds to thousands of

datapoints long [35], and that seems to have set the limit of the ambition of most of the

community when it comes to scalability. However, a recent paper pushed that envelope

by considering a two million length ECG dataset [4]. In fact, these authors graciously

gave us the exact dataset they used, (which was in fact even longer than they considered

in [4]), and helped us create a perfectly commensurate experiment, as shown in Fig. 23.

A real-time video trace of this experiment is at [10].

Fig. 23 (Most of this figure is taken from [4] with permission, only the green elements are new). The

scalability of various algorithms on increasing large subsets of a long ECG trace. All algorithms except

DAMP are limited to the first 2M data points by [4]. Note that the Y-axis is logarithmic.

1

10

100

1,000

10,000

100,000

1,000,000

10,000,000

100,000,000

T
im

e
 (

s
e
c
o
n
d
s
)

(3.1 years)

(3.8 months)

(11.5 days)

(27.7 hours)

(2.7 hours)

(16.6 min)

(1.6 min)

0 8 millionData Length

Dashed lines are extrapolated

1000

4M 8M

Some datapoints are literally “off the chart”

Eight million datapoints, corresponding to

17.36 hours (85,056 heartbeats), processed in

22.3 seconds. This is 2,802 times faster than

real-time.

Note that of the many approaches considered, some time out (i.e., are not finished in a

four-hour cutoff) at length 500K. In contrast, DAMP can handle eight million

datapoints in just 22.3 seconds, this is over 358,000 Hz. In fact, DAMP is so fast, that

the time it reports for the 50K length trial is literally off the original chart, taking less

than one second.

As eight million datapoints are about the longest publicly available ECG, in Fig. 24 we

conclude this section by searching a single random walk time series of length 230.

Fig. 24 The time taken for DAMP to process a random walk time series of length 230 (just over one

billion). For context, we have labeled the size of two concrete tasks, processing a month of ECGs and

twenty-five years of sensor data.

6.7 Scalability and Stability of DAMP

One of Wu and Keogh’s criticisms of common benchmarks is unrealistic anomaly

density [35]. They noted that over 20% of the data is labeled anomalous in many

benchmarks, which poses a real problem for the evaluation. Suppose that an algorithm

has near perfect sensitivity, but it will randomly give out a false positive once in every

million datapoints (perhaps due to the numerical instability of streaming algorithms

[13]). Note that because most benchmarks in the literature only have a few thousand

datapoints, this issue would almost certainly not be observed during testing. However,

it clearly would be a problem for any real-world deployment. For example, for a

continuous processing system with telemetry reporting every second, this would give

us about thirty-one false positives a year.

To demonstrate DAMP does not have this issue, we did the following test. Recall the

subtle anomaly shown in the 100,000 datapoint MGAB dataset in Fig. 4. We can append

anomaly-free data from the same Mackey-Glass model (but free of the embedded

anomalies [31]) to make it one thousand times longer, i.e., a total length of 100 million.

When we search this with DAMP (m = 40), we count a trial successful if the top-1

discord is found in the first 100,000 datapoints (created by [31]), rather than from the

2300

1000

2000

3000

4000

27

T
im

e
 (

s
e

c
o
n

d
s
) (One hour)

One month of ECGs:
2,628,288sec @ 128Hz Twenty-five years

of barometer: 25*
31,536,000 @1hz

appended ninety-nine million nine hundred thousand datapoints. Each of the coauthors

of this work ran this experiment multiple times in the background of their desktops over

a week, and in total conducted over 16,000 such trials, finding a total of zero false

positives.

Note that this experiment required performing anomaly detection on time series with a

total length of 1.648 trillion datapoints, using off-the-shelf hardware. This is something

that would be inconceivable with any other anomaly detection method.

7 CONCLUSIONS AND FUTURE WORK

In this paper, we created the left-discord anomaly detection framework, generalizing

classic time series discords that previously only handled the batch case, to the online

case, and solving the twin-freak problem in the process. Further, we have introduced

DAMP, a fast and scalable algorithm to discover such discords. Experimental results

have demonstrated that our proposed left-discords outperform the current SOTA

methods, including the most cited deep learning methods in terms of accuracy.

Moreover, we have further demonstrated that DAMP is orders of magnitude faster and

more scalable than any method in the literature.

We believe that the throughput and scalability of DAMP will allow the community to

address datasets and applications that are currently out of reach, and that this will open

new challenges and research problems. Finally, we have made all our code and data

available to the community to confirm and build upon our work.

8 ACKNOWLEDGMENTS

This research was supported by NSF OIA-1757207, CNS-2008910 and RI-2104537,

the French National Research Agency (ANR-19-P3IA-0002), and NSF 2103976,

Mitsubishi, Visa and Toyota. We sincerely thank the authors of [4] for their help in

creating Fig. 23.

9 REFERENCES

[1] Aubet F-X, Zügner D, Gasthaus J (2021) Monte Carlo EM for Deep Time Series Anomaly Detection.

arXiv:211214436 [cs, stat]

[2] Audibert J, Marti S, Guyard F, Zuluaga MA (2021) From Univariate to Multivariate Time Series Anomaly

Detection with Non-Local Information. In: Lemaire V, Malinowski S, Bagnall A, et al. (eds) Advanced

Analytics and Learning on Temporal Data. Springer International Publishing, Cham, pp 186–194

[3] Batista GEAPA, Keogh EJ, Tataw OM, de Souza VMA (2014) CID: an efficient complexity-invariant distance

for time series. Data Min Knowl Disc 28:634–669. https://doi.org/10.1007/s10618-013-0312-3

https://doi.org/10.1007/s10618-013-0312-3

[4] Boniol P, Linardi M, Roncallo F, et al (2021) Unsupervised and scalable subsequence anomaly detection in

large data series. The VLDB Journal 30:909–931. https://doi.org/10.1007/s00778-021-00655-8

[5] Boniol P, Paparrizos J, Palpanas T, Franklin MJ (2021) SAND: streaming subsequence anomaly detection.

Proceedings of the VLDB Endowment 14:1717–1729

[6] Bu Y, Chen L, Fu AW-C, Liu D (2009) Efficient anomaly monitoring over moving object trajectory streams.

In: Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining

- KDD ’09. ACM Press, Paris, France, p 159

[7] Case Western Reserve University Bearing Data Center. [Online]. Available: https://csegroups.case.edu/

bearingdatacenter/home. Accessed: Nov. 15, 2021.

[8] CNC Crashes. Video. (15 Feb 2018). from https://youtu.be/t2tBtZCa7j4?t=205. Retrieved December 20, 2021.

[9] Daigavane A, Wagstaff KL, Doran G, et al (2022) Unsupervised detection of Saturn magnetic field boundary

crossings from plasma spectrometer data. Computers & Geosciences 161:105040

[10] DAMP (2022) https://sites.google.com/view/discord-aware-matrix-profile

[11] Dau HA, Bagnall A, Kamgar K, et al (2019) The UCR time series archive. IEEE/CAA J Autom Sinica 6:1293–

1305. https://doi.org/10.1109/JAS.2019.1911747

[12] Doshi K, Abudalou S, Yilmaz Y (2022) TiSAT: Time Series Anomaly Transformer. arXiv:220305167 [cs, eess,

stat]

[13] Higham NJ (2002) Accuracy and Stability of Numerical Algorithms (2 ed). ISBN: 978-0-89871-521-7

[14] Hundman K, Constantinou V, Laporte C, et al (2018) Detecting Spacecraft Anomalies Using LSTMs and

Nonparametric Dynamic Thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference

on Knowledge Discovery & Data Mining. ACM, London United Kingdom, pp 387–395

[15] Imani S, Madrid F, Ding W, et al (2020) Introducing time series snippets: a new primitive for summarizing

long time series. Data Min Knowl Disc 34:1713–1743. https://doi.org/10.1007/s10618-020-00702-y

[16] Keogh E (2021) Irrational Exuberance Why we should not believe 95% of papers on Time Series Anomaly

Detection. 7th SIGKDD Workshop on Mining and Learning from Time Series at SIGKDD 2021. Workshop

Keynote https://www.youtube.com/watch?v=Vg1p3DouX8w&t=324s

[17] Khansa HE, Gervet C and Brouillet A (2012) Prominent Discord Discovery with Matrix Profile : Application

to Climate Data Insight. 10th International Conference of Advanced Computer Science & Information

Technology (ACSIT 2022) May 21~22, 2022, Zurich, Switzerland

[18] Kirti R, Karadi R (2012) Cardiac tamponade: atypical presentations after cardiac surgery. Acute Medicine

11:93–96

[19] Mueen A, Zhu Y, Yeh M, et al (2017) The fastest similarity search algorithm for time series subsequences

under euclidean distance. url: www cs unm edu/~ mueen/FastestSimilaritySearch html. Accessed 24 Janurary,

2022

[20] Murray D, Liao J, Stankovic L, et al A data management platform for personalised real-time energy feedback.

[21] Nakamura T, Imamura M, Mercer R, Keogh E (2020) MERLIN: Parameter-Free Discovery of Arbitrary Length

Anomalies in Massive Time Series Archives. In: 2020 IEEE International Conference on Data Mining (ICDM).

IEEE, Sorrento, Italy, pp 1190–1195

[22] National Weather Service. January 24, 2019 Heavy Rain and Flooding. from

https://www.weather.gov/aly/24Jan19HeavyRainFlood. Retrieved May 1 2022.

[23] Neupane D, Seok J (2020) Bearing Fault Detection and Diagnosis Using Case Western Reserve University

Dataset With Deep Learning Approaches: A Review. IEEE Access 8:93155–93178.

https://doi.org/10.1109/ACCESS.2020.2990528

[24] Nilsson F (2022) Joint Human-Machine Exploration of Industrial Time Series Using the Matrix Profile.

Halmstad University, School of Information Technology, Halmstad Embedded and Intelligent Systems

Research (EIS), CAISR - Center for Applied Intelligent Systems Research.

[25] Palpanas T. Personal communication June 4th 2022.

[26] Paparrizos J, Kang Y, Boniol P, et al (2022) TSB-UAD: An End-to-End Benchmark Suite for Univariate Time-

Series Anomaly Detection. Proceedings of the VLDB Endowment (PVLDB) Journal

[27] Park D, Hoshi Y, Kemp CC (2018) A Multimodal Anomaly Detector for Robot-Assisted Feeding Using an

LSTM-Based Variational Autoencoder. IEEE Robot Autom Lett 3:1544–1551.

https://doi.org/10.1109/LRA.2018.2801475

[28] Park JY, Wilson E, Parker A, Nagy Z (2020) The good, the bad, and the ugly: Data-driven load profile discord

identification in a large building portfolio. Energy and Buildings 215:109892

[29] Silive.com. Wild storm pelts Staten Island with giant hail -- ‘threat of tornado has passed’ from

https://www.silive.com/news/2019/05/nws-issues-tornado-warning-for-staten-island.html. Retrieved May 1

2022.

[30] Su Y, Zhao Y, Niu C, et al (2019) Robust anomaly detection for multivariate time series through stochastic

recurrent neural network. pp 2828–2837

[31] Thill M, Konen W, Bäck T (2020) Time series encodings with temporal convolutional networks. Springer, pp

161–173

https://doi.org/10.1007/s10618-020-00702-y
https://kdd-milets.github.io/milets2021/

[32] Truong HT, Ta BP, Le QA, et al (2022) Light-weight federated learning-based anomaly detection for time-

series data in industrial control systems. Computers in Industry 140:103692.

https://doi.org/10.1016/j.compind.2022.103692

[33] Wastewater News. Valentine’s Day Storm Slams California, Pushing Water Agencies to the Edge. from

www.news.cornell.edu/Chronicle/00/5.18.00/wireless_class.html. Retrieved Dec 1 2021.

[34] Wikipedia. Leap year problem. from https://en.wikipedia.org/wiki/Leap_year_problem. Retrieved December

1, 2021.

[35] Wu R, Keogh E (2021) Current Time Series Anomaly Detection Benchmarks are Flawed and are Creating the

Illusion of Progress. IEEE Trans Knowl Data Eng 1–1. https://doi.org/10.1109/TKDE.2021.3112126

[36] Yeh C-CM, Zheng Y, Wang J, et al (2021) Error-bounded Approximate Time Series Joins using Compact

Dictionary Representations of Time Series. CoRR abs/2112.12965 (2021)

[37] Yeh C-CM, Zhu Y, Dau HA, et al (2019) Online amnestic dtw to allow real-time golden batch monitoring. pp

2604–2612

[38] Zheng X, Xu N, Trinh L, et al (2021) PSML: A Multi-scale Time-series Dataset for Machine Learning in

Decarbonized Energy Grids. arXiv preprint arXiv:211006324

[39] Zhu Y, Yeh C-CM, Zimmerman Z, et al (2018) Matrix profile XI: SCRIMP++: time series motif discovery at

interactive speeds. IEEE, pp 837–846

