
CrFuzz: Fuzzing Multi-purpose Programs through Input
Validation

Suhwan Song
Seoul National University

sshkeb96@snu.ac.kr

Chengyu Song
UC Riverside

csong@cs.ucr.edu

Yeongjin Jang
Oregon State University

yeongjin.jang@oregonstate.edu

Byoungyoung Lee∗
Seoul National University
byoungyoung@snu.ac.kr

ABSTRACT

Fuzz testing has been proved its effectiveness in discovering soft-
ware vulnerabilities. Empowered its randomness nature along with
a coverage-guiding feature, fuzzing has been identified a vast num-
ber of vulnerabilities in real-world programs. This paper begins
with an observation that the design of the current state-of-the-art
fuzzers is not well suited for a particular (but yet important) set of
software programs. Specifically, current fuzzers have limitations in
fuzzing programs serving multiple purposes, where each purpose
is controlled by extra options.

This paper proposes CrFuzz, which overcomes this limitation.
CrFuzz designs a clustering analysis to automatically predict if a
newly given input would be accepted or not by a target program.
Exploiting this prediction capability, CrFuzz is designed to effi-
ciently explore the programs with multiple purposes. We employed
CrFuzz for three state-of-the-art fuzzers, AFL, QSYM, and MOpt,
and CrFuzz-augmented versions have shown 19.3% and 5.68% bet-
ter path and edge coverage on average. More importantly, during
two weeks of long-running experiments, CrFuzz discovered 277
previously unknown vulnerabilities where 212 of those are already
confirmed and fixed by the respected vendors. We would like to
emphasize that many of these vulnerabilities were discoverd from
FFMpeg, ImageMagick, andGraphicsmagick, all of which are targets
of Google’s OSS-Fuzz project and thus heavily fuzzed for last three
years by far. Nevertheless, CrFuzz identified a remarkable number
of vulnerabilities, demonstrating its effectiveness of vulnerability
finding capability.

CCS CONCEPTS

• Security and privacy→ Software security engineering.

KEYWORDS

Fuzz testing; Coverage-guided fuzzing;

∗Corresponding author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7043-1/20/11. . . $15.00
https://doi.org/10.1145/3368089.3409769

ACM Reference Format:

Suhwan Song, Chengyu Song, Yeongjin Jang, and Byoungyoung Lee. 2020.
CrFuzz: Fuzzing Multi-purpose Programs through Input Validation. In
Proceedings of the 28th ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (ESEC/FSE ’20),
November 8–13, 2020, Virtual Event, USA.ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3368089.3409769

1 INTRODUCTION

The fuzz testing is a popular technique to discover software vul-
nerabilities. It keeps generating a random input and testing a tar-
get program if the program exhibits a violation behavior, such as
memory access violation or triggering safety assertions. One no-
table feature that most state-of-the-art fuzzers are employing today
is a coverage-guided fuzzing feature. Under the assumption that
more testing coverage would yield better vulnerability detection
capability, this feature keeps tracking of execution coverage at
runtime and provides coverage feedback to guide the fuzzing pro-
cedure (e.g., guiding how the fuzzer generates, mutates, or selects
an input). Indeed, fuzz testing has been proved its effectiveness
in discovering vulnerabilities in a vast number of real-world soft-
ware [2, 4, 6, 13, 24, 32, 39].

This research started with a research question whether current
state-of-the-art fuzzers are well designed for all different set of
target programs. In particular, we observe that current fuzzers are
not suited to fuzz programs taking various command line options,
which we call multi-purpose programs. Multi-purpose programs
serve multiple operational behaviors (e.g., in the case of FFmpeg,
it supports encoding/decoding with a large number of codecs as
well as many different filtering features), and the command line
option is used to specify which operational behavior would be
activated at runtime. Since current fuzzers are not designed to cater
this command line option, it is challenging to efficiently explore
various operational behaviors while switching the command line
options. This limitation stems from the fact that current fuzzers
are designed to handle a single-dimensional input space (which is
often a file input). As such, since command line options introduce
an additional input space, the coverage-guided features of current
fuzzers are not tailored to fuzz with such multi-dimensional input
space.

In this paper, we propose CrFuzz, a fuzzing technique to specifi-
cally designed to fuzz multi-purpose programs. The key component
of CrFuzz is a validity checker, which utilizes a machine learning
technique, particularly a clustering analysis. The validity checker
faithfully predicts if a newly provided input is a valid input (i.e., an

https://doi.org/10.1145/3368089.3409769
https://doi.org/10.1145/3368089.3409769

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Suhwan Song, Chengyu Song, Yeongjin Jang, and Byoungyoung Lee

File Input
Corpus

File Input
Queue

Mutation
Engine

Execution
Engine

Target
Binary

command option

save input if new coverage

Figure 1: The workflow of general coverage-guided fuzzers

File Input
Corpus

CMD
Selector

File Input
Queue

Mutation
Engine

Execution
Engine

Target
Binary

execute all command options
per one file input mutation

command option1

command option2

command option3

save input if new coverage

Figure 2: The workflow of naive multi-purpose program

fuzzer

input supposed to be accepted by a target program) or an invalid
input (i.e., an input rejected by the target program). Observing that
the coverage feedback used by current fuzzers is not suited for the
validity checker, CrFuzz designs new coverage feedback metric,
a validity pair, which efficiently captures the differences between
valid input execution and invalid input execution. Leveraging this
validity checker, CrFuzz develops a multi-purpose program fuzzer,
which efficiently explores many different operational behaviors.

To clearly show its effectiveness, we applied CrFuzz for three
popular state-of-the-art fuzzers, AFL, QSym, and MOpt. Accord-
ingly to our evaluation, CrFuzz has shown 19.3% and 5.68% better
path coverage and edge coverage, respectively. More importantly,
CrFuzz has shown outstanding performances in discovering new
vulnerabilities. CrFuzz discovered 277 new vulnerabilities from
popular programs (including FFmpeg, libtiff, GhostScript, libsixel,
Xfig, MuPDF, ImageMagick, Graphicsmagick) where 212 of those
are already been patched by the respected open source community.

2 BACKGROUND AND MOTIVATION

In this section, we first provide necessary background of this pa-
per (§2.1), particularly related to coverage-guided fuzzing and multi-
purpose programs. Then we describe the motivation behind this
paper—how to efficiently fuzz multi-purpose programs (§2.2).

2.1 Background

Coverage-Guided Fuzzing. A coverage-guided fuzzing technique
is arguably the most popular fuzzing technique to find vulnerabili-
ties. Similar to traditional fuzzers, it keeps generating or mutating
an input to execute a target program in hopes that such an input
may trigger a corner case of program’s logic. The key insight behind
the coverage-guided fuzzing is that it keeps tracking the execution
coverage of each input’s execution, and leverages the coverage to

mutate the input to be fuzzed next. In other words, its fuzzing pro-
cess is designed to favor the input which exhibits a new coverage,
such that the fuzzer can explore deep inside of program’s logic.

In general, coverage-guided fuzzers work in following steps
(depicted in Figure 1). First, it inserts the initial inputs (so called
seeds) to the file input queue (Step 1). Then it picks one input
from the file input queue (Step 2). After that, the fuzzer mutates
the selected input with pre-determined mutation methods (e.g., a
bit flip, performing arithmetic operations, replacing with specific
integer values, or splicing) (Step 3). Then the fuzzer runs a target
program with this mutated input (Step 4) while (i) checking if it
triggers exception and (ii) keeping track of the execution coverage.
If the mutated input visits the new coverage, that that input is
inserted to the file input queue (Step 5-a). Otherwise, the mutated
input will be dropped and ignored (Step 5-b). Then the fuzzer repeat
this fuzzing process by returning back to Step 2.

Parser Backend OutputFile Input

Terminate Terminate

(a) Single-purpose Program

Backend #1

Backend #2

Backend #3

Parser OutputFile Input

Command line
Option

Terminate Terminate

(b) Multi-purpose Program

Figure 3: A general program logic of single-purpose pro-

grams and multi-purpose programs.

Multi-Purpose Programs. In this paper, as described in Figure 3,
we categorize the programs into two types, single-purpose pro-
grams and multi-purpose programs, depending on whether a pro-
gram takes command line options or not to control its multiple
operational behaviors. In other words, whereas the single-purpose
program simply takes a file input and does not take a command
line option, the multi-purpose program takes both file input and
command line options. More specifically, the multi-purpose pro-
gram first attempts to parse the file input. If the given input file
is invalid, the program would be terminated as it is early rejected
by the parser. If valid, the program moves on to the processing
stage, performing one of backend operations as instructed by the
command line option.

We note that there are many multi-purpose programs as devel-
opers ship many different features within a single program binary.
The representative example of multi-purpose programs would be
FFmpeg, which is a popular video and audio converter and used
as a library by a vast number of video/audio tools. Since FFmpeg
provides many different features where each feature is being served
by an individual backend engine (from encoding/decoding engines,

CrFuzz: Fuzzing Multi-purpose Programs through Input Validation ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

File Input

V I V V I I I V V I V IC
o

m
m

an
d

 li
n

e
o

p
ti

o
n

Total Executions
2

1

V: Valid (File) Input
I: Invalid (File) Input

: CrFuzz Execution

: Early Rejected Execution

: Naive Execution

1

2

Mutate file input

Change command line

Figure 4: Input Space of Multi-purpose Program

dedicated backend engines for various video/audio to various filters
to be applied). Another example would be ImageMagick, a popular
image editor. It takes more than 100 different command line options
to control its behavior (such as converting gif to png format), which
activates various backend operations.

2.2 Motivation

Inefficient to Fuzz Multi-purpose Programs. We observe that
all currently known fuzzers (including AFL, QSYM, MOpt, etc.) are
not suitable to fuzz multi-purpose programs mainly due to the fact
it does not cater command line options. More specifically, current
fuzzers are designed to fuzz single-purpose programs, which simply
simply fixes a specific command line option when running a target
program. Hence, current fuzzers cannot explore various features
provided by backends, critically limiting its testing capability.

One may attempt to redesign the current fuzzers by enumerat-
ing all available command line options, but this redesign alone is
not sufficient. In order to clearly demonstrate this limitation, we
introduce a naive multi-purpose fuzzer, which exhaustively enu-
merates all available command line options and thus would be a
naive extension of current fuzzers.
ANaiveMulti-Purpose ProgramFuzzer. The key component of
a naive multi-purpose program fuzzer is an operation input selector
as shown in Figure 2. Using this selector, this fuzzer ensures to fuzz
all available command line options for each mutated input file. In
other words, for each mutated input file, it keeps executing a target
program for all available command line options.

However, we found that such an enumeration over all command
line options is inefficient. The problem is that if the mutated file
input is invalid and thus early rejected by the parser, it is meant to
be failed for all command line options. However, since this naive
multi-purpose program fuzzer is not aware of such early rejection
by the parser, it simply runs the target program with all command
line options, all of which do not result in any benefit in terms of
increasing the testing coverage.

We also observe that using a single command option shows
limited execution coverage compared to using various command
options. To clearly understand this, we have measured the edge cov-
erage while providing a different number of command options (Fig-
ure 5). As shown in the figure, the edge coverage is increased as
more command options are provide. In particular, comparing the
edge coverage between a single command option and 5 command

E
dg

e
C

ov
er

ag
e

0

200
0

400
0

600
0

ImageMagick Xfig MuPDF

1 cmd option 2 cmd options 3 cmd options 4 cmd options 5 cmd options

Figure 5: Measuring the edge coverage while changing the

number of specified command options

options, ImageMagick, fig2dev, and MuPDF show 53%, 154%, and 30%
more edge coverage, respectively.
Our Approach. In order to efficiently fuzz multi-purpose pro-
grams, our key idea behind CrFuzz is that we leverage a machine
learning technique to notice if an execution is terminated due to
the early rejection by the parser or not. Specifically, CrFuzz aims at
distinguishing following two cases: (i) when the execution is early
terminated by the parser (i.e., the provided file input to the target
program is invalid); and (ii) when the execution is proceeded to
one of backend engines (i.e., the provided file input is valid). To this
end, CrFuzz captures statistical differences in terms of execution
coverage because aforementioned two cases must have different
patterns in terms of execution coverage—i.e., a invalid file input
case should not cover any of backend engines while a valid file
input case should cover one of backend engines.

3 DESIGN

Now we describe the design of CrFuzz, an efficient multi-purpose
program fuzzer (Figure 6). The core component of CrFuzz is its
validity checker (§3.1), which performs a clustering analysis to
determine if a given input is valid or not. CrFuzz first converts an
execution feedback of an input into validity pair, a custom defined
metric to efficiently measure input validity, which is then used for
training the validity model.

CrFuzz leverages this validity checker while performing the
fuzzing both file inputs and command line options (§3.2). Instead
of enumerating all available command line options, CrFuzz first
checks if a provided input file is invalid (through the validity
checker) by executing the input file with one command line op-
tion. Then CrFuzz only attempts to enumerate other command line
options only if the input file is valid.

3.1 Learning and Testing Validity

The goal of the validity checker is to check if a given execution
feedback of an input is valid (i.e., the input is accepted by the parser
of a target program) or invalid (i.e., the input is rejected by the
parser). In order to check the validity, we leverage data mining
or machine learning approaches. More specifically, we employ a

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Suhwan Song, Chengyu Song, Yeongjin Jang, and Byoungyoung Lee

File Input
Corpus

CMD
Selector

File Input
Queue

Mutation
Engine

Execution
Engine

Target
Binary

check validity of file input

command option1

command option2

command option3

save input if new coverage

Validity
Checker

if invalid, skip other
command options

Figure 6: The overall workflow ofCrFuzz, an efficientmulti-

purpose program fuzzer

Given Input: 𝐶

2

5 Validity Pair

[2 , 5]

File Input

𝐶∩ 𝐶valid

𝐶− (𝐶 ∩ 𝐶invalid)

𝐶valid

𝐶invalid

Figure 7: An example snapshot of showing how the validity

pair is computed

⊗
Conversion

[𝑣1 , 𝑣2]

Invalid
dissimilarity

Valid
similarity

⊗
Conversion

[𝑣1 , 𝑣2]

Invalid
dissimilarity

Valid
similarity

Two dimension

High dimensionality

𝑣1

𝑣2

Clustering

Decision boundary

Branch coverage

𝑏1
𝑏2

𝑏n

.

..

Valid Input

Branch coverage

𝑏1
𝑏2

𝑏n

.

..

Invalid Input

Branch coverage

𝑏1
𝑏2

𝑏n

.

..

Valid Inputs

Reference Input Set

Branch coverage

𝑏1
𝑏2

𝑏n

.

..

Invalid Inputs

parsing
error

processing
phase

parsing
phase

valid cluster

invalid cluster

Figure 8: Overview of Validity Checker

cluster analysis (i.e., a unsupervised learning) such that each input
can be grouped into either valid or invalid.

It is worth noting that supervised learning is not a suitable ap-
proach for the validity checking. This is largely due to the fact
that it is difficult to obtain a large number of labeled data (i.e., a
set of inputs labeled as valid or invalid). To obtain a labeled data,
one would need perform a sophisticated program analysis on the
parser of a target program. However, this would be challenging
since the validity checking logic is hard-coded within the parser
and understanding such a hard-coded logic requires non-trivial
reverse-engineering efforts.

3.1.1 Validity Feature Selection. Coverage as a Cluster Feature.

In performing statistical data analysis, one important thing is to
select a good feature vector for the analysis. Particularly focusing
on the clustering problem that CrFuzz attempts to solve, a desired
feature vector would clearly distinguish two clusters, valid and
invalid (i.e., maximizing the distance between valid and invalid
clusters).

In this regard, coverage information of a corresponding input
(which is provided as an execution feedback) may seem to be a good
feature selection for CrFuzz. First, the coverage information is easy
to obtain, as most fuzzers today are coverage-guided fuzzers which
always produce the coverage information per execution. Second,
the coverage information would have clear differences depending
on whether target program’s parser accepts (i.e., valid) or rejects
(i.e., invalid). This is because accept/reject logic in the parser should
follow a different code path, so the input should result in clearly
different coverage information if accepted/rejected.
Limitation: Coverage as a Cluster Feature. However, we found
that using a coverage information as it is has critical limitation,
particularly with respect to clustering performance. This is due
to the fact that using a coverage as a feature vector results in an
extremely high dimension space, a well-known challenge in clus-
tering. In other words, if the input feature has high dimension, the
time complexity for clustering increases exponentially.

Specifically, if using the coverage, the number of dimension
would be either the number of basic blocks (in the case of code-
coverage guided fuzzers) or the number of edges (in the case of
path-coverage guided fuzzers), and typical programs have very
high number of basic blocks and edges. For instance, FFmpeg has
50k and 130k different basic blocks and edges, which is far beyond
the number of dimensions that CrFuzz can handle.
Our Solution: Validity Pair as a Cluster Feature. CrFuzz de-
fines a new metric, a validity pair, in order to overcome the limita-
tion of simply using the coverage. The insight behind the validity
pair is in using two reference coverages (which well represents
valid/invalid input’s coverage, respectively), thereby identifying
important dimensions for validity clustering.

More precisely, the validity pair is defined as two scalar values
(v1,v2), where

v1 = C − (C ∩Cinvalid) and
v2 = C ∩Cvalid.

Here, C represents the coverage of a given input, and Cvalid and
Cinvalid represent the reference coverage of a valid input and an
invalid input, respectively. In other words, v1 is designed to cap-
ture the coverage dissimilarity between the given input and the
reference invalid input; and v2 is to capture the coverage similarity
between the given input and the reference valid input (the example
is described in Figure 7).

This validity pair is a performance efficient metric for CrFuzz.
Compared to naively using the coverage metric as it is, the validity
pair only has two dimensions. Furthermore, it still captures the
valid/invalid characteristics of a given input. This is because if two
scalar values of a validity pair is higher, it implicates that the given
input is more likely to be similar to a valid input.

CrFuzz: Fuzzing Multi-purpose Programs through Input Validation ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

3.1.2 Learning Validity Cluster. CrFuzz learns the validity cluster-
ing model using the aforementioned validity pair as the base metric.
Specifically, CrFuzz performs k-means clustering, where k is two
to represent valid and invalid clusters, in following steps (each step
is described in Figure 8).
PreparingReference Inputs. CrFuzz prepares the reference cov-
erage of a valid input (i.e.,Cvalid) by manually collecting a reference
valid input and then obtaining the execution coverage of it. The ref-
erence valid input in CrFuzz implies a well-known good input that
is accepted by target program’s parser. Most programs provide a
sample working input, which demonstrates its basic features (i.e., a
sample video/audio file for FFmpeg and a sample PDF file for MuPDF),
and CrFuzz leverages such a sample working input. We note that it
is not necessary for CrFuzz to have these sample inputs completely
represent a valid behavior of the target program. Instead, it is suf-
ficient for CrFuzz to have sample inputs not to be early rejected
by the parsing logic, such that CrFuzz can distinguish whether a
certain input would be early rejected or not.

In addition, CrFuzz prepares a reference invalid input by gen-
erating a completely random input—i.e., the value of each input
byte as well as the size of the input is randomly determined. Since
this input is randomly generated, it is very unlikely to be accepted
by the target program’s parser. As such, its execution coverage
(i.e., Cinvalid) would be well representing target program’s early
rejection behavior.
Clustering using Validity Pairs. For each new input (i.e., an
input that is either generated or mutated for fuzzing), CrFuzz com-
putes a validity pair (i.e.,v1 andv2) based on the reference coverage
of valid and invalid inputs (i.e.,Cvalid andCinvalid). Then the validity
pair of each input is projected into a point in two dimensional eu-
clidean space so as to compare euclidean distance between inputs.
In other words, x-axis is represented with v1 (i.e., the coverage
dissimilarity from the reference invalid input) and y-axis is repre-
sented withv2 (i.e., the coverage similarity from the reference valid
input).

After that,CrFuzz performs a generick-means clusteringmethod.
First, CrFuzz randomly selects two points at random (where each
point represents each input) as initial centroids of two clusters.
Then all other points are assigned to their closest centroid, where
its distance measure is using the squared point-to-point euclidean
distance (step 1). Then it re-computes two centroids by computing
the average of all of each cluster’s points (step 2). After updating all
centroids, it re-assigns all points to their closest updated centroid,
and then re-updates each centroids again. The aforementioned step
1 and step 2 are repeated until meeting one of two termination con-
ditions. The first termination condition is that the sum of square
euclidean distances reaches to the minimum value. More specifi-
cally, the objective function to be minimized is defined as L, where x
is a data point, S0 and S1 are invalid and valid clusters, respectively,
and ci is centroid of Si .

L = argmin
S

k∑
i=1

∑
x j ∈Si

x j − ci
2

CrFuzz computes sum of the squared euclidean distances between
point and centroid of its cluster. Then CrFuzz repeats aforemen-
tioned process until this object function is minimized. The second

termination condition is that the number of iteration reaches to the
pre-defined maximum number. In our experiment, we used 100 as
the maximum number.

Once the k-means clustering analysis is terminated, CrFuzz
obtains two centroids. The centroid on the right-top side represents
the centroid of a valid cluster, and the other centroid on the left-
bottom side represents the centroid of an invalid cluster. This is
because as an input point is more close to the right-top side, it is
more likely indicating following two things: i) it is more dissimilar
from the reference invalid input (i.e., v1 is bigger than others) and
ii) it is more similar to the reference valid input (i.e., v2 is bigger
than others).
Incremental Clustering. CrFuzz supports an incremental clus-
tering in consideration of the inherent characteristic of fuzzing
procedure. More specifically, fuzzers keep generating new inputs
for testing, and such a new input can be kept being provided to
CrFuzz, which can improve the accuracy of CrFuzz’s cluster anal-
ysis. However, a downside of such an incremental clustering is
runtime performance. If CrFuzz keeps computing mean square
error (until it reaches the stable centroids) every time a new in-
put is generated, it would significantly slow down the runtime
performance of CrFuzz.

Therefore, CrFuzz attempts to strike a balance between cluster
analysis accuracy and its runtime performances through dynami-
cally adjusting the frequency of an incremental clustering analysis.
The key insight behind this is that inputs provided during the initial
phase are impacting the accuracy far more than the inputs provided
during the later phase. Thus, CrFuzz gradually decreases the fre-
quency of the incremental analysis—i.e., decreasing the frequency
as a factor of two, whenever the number of provided inputs are
doubled. For instance, If the number of provided inputs is less than
28, CrFuzz performs incremental clustering every time a new in-
put arrives. If the number of provided inputs is between 28 and
29, CrFuzz performs incremental clustering when every two new
inputs arrive.

3.1.3 Testing Validity. CrFuzz utilizes aforementioned a validity
model to check if a new input is valid or invalid. To be specific, it first
computes a validity pair of a new input, and computes euclidean
distances from valid and invalid centroids, respectively. Then it is
determined to be either valid or invalid if it is more close to valid
or invalid centroids, respectively.

3.2 Multi-purpose Program Fuzzing

CrFuzz utilizes validity checker to address the limitation of naive
multi-purpose program fuzzers. In particular, it executes all com-
mand options only if the provided file input is predicted to be a
valid file input. If not,CrFuzz stops fuzzing other command options,
which allows CrFuzz to significantly save the fuzzing time.

To better illustrate this, Figure 4 depicts the high level compari-
son between naive multi-purpose program fuzzing and CrFuzz’s
multi-purpose program fuzzing, particularly highlighting howCrFuzz
can efficiently handle various command options. In this figure, each
file input is fuzzed with all different command options (represented
as 1 in y-axis). After enumerating all command options, the fuzzer
generates (or mutates) another file input is fuzzed (represented as
2 in x-axis). In the case of the naive multi-purpose program fuzzer,

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Suhwan Song, Chengyu Song, Yeongjin Jang, and Byoungyoung Lee

it would execute all combinations (i.e., all boxes in the figure) as it
cannot notice if a provided input is valid or not. On the contrary,
CrFuzz’s multi-purpose program fuzzer can predict if a provided
input is valid or not (using the validity checker), so it does not need
to fuzz other command options if the provided input file is predicted
to be invalid. As a result, CrFuzz’s fuzzer only needs to execute
the gray boxes, which is significantly less than all the boxes that
the naive fuzzer should fuzz.

Algorithm 1 Algorithm of CrFuzz’s multi-purpose program
fuzzing loop
1: Qf = Qc = Cinvalid = Cvalid = 0;
2: load Qf and Qc with the provided valid file input(s) and cmd

options respectively;
3: compute Cinvalid and Cvalid;
4: while true do
5: f = DEQUEUE(Qf);
6: f ′ = MUTATE(f);
7: for c in Qc do

8: execute program with f ′ and c;
9: compute (v1,v2) of f ′;
10: if find new coverage then
11: Qf = ENQUEUE(f ′);
12: if find n new inputs then
13: perform incremental clustering;
14: if c is first cmd option then

15: VALIDITYCHECKER(v1,v2);
16: if f ′ is invalid then

17: break;

More specifically, we designed CrFuzz to skip over unnecessary
command options if the provided input is predicted to be invalid
(the detailed algorithm is described in Algorithm 1).

4 IMPLEMENTATION

We implemented CrFuzz, and applied it for three different state-
of-the-art fuzzers, AFL, QSYM, and MOpt. Since all these fuzzers
are not designed to support multi-purpose program fuzzing, we
first implemented a naive multi-purpose program fuzzer of these
as follows. In the case of AFL and MOpt, we first modified the fork
server of AFL and MOpt as its fork server routine is hardcoded for
a single command line option. Hence, we extended such a routine
to support multiple command line options. Then for each mutated
file input that AFL and MOpt are generating, we ensured that
all command line options are executed in order. In the case of
QSYM, we replaced two original AFL instances of QSYM into two
aforementioned native multi-purpose AFL fuzzer instances—the
original QSYM runs three instances in parallel, two AFL instances
and a single concolic execution instance.

We appliedCrFuzz to these naivemulti-purpose program fuzzers,
which we call AFL+CrFuzz for AFL, QSYM+CrFuzz for QSYM, and
MOpt+CrFuzz for MOpt, respectively. To be more specific, for each
fuzzer we first implemented the validity checker as described in §3.1,
which converts the coverage feedback into the validity pair and
performs the k-means clustering. Then we first run the mutated file
with one command line option, then check the input validity of an

Table 1: Fuzzer settings for evaluation

Fuzzers Setup
Instances Description

AFL [4] 1 AFL master and 2 AFL slaves -
AFL+CrFuzz 1 AFL+CrFuzz master and 2 AFL+CrFuzz slaves -
QSYM [3] 1 concolic executor; 1 AFL master and slave each using docker ([3])
QSYM+CrFuzz 1 concolic executor; 1 AFL+CrFuzz master and slave each using docker ([3])
MOpt [1] 1 MOpt master and 2 MOpt slaves option "-L 0"
MOpt+CrFuzz 1 MOpt+CrFuzz master and 2 MOpt+CrFuzz slaves option "-L 0"

execution through the validity checker. If predicted to be an invalid
input, CrFuzz augmented fuzzers stop fuzzing other command line
options but proceeding to fuzz another mutated file.

5 EVALUATION

Experimental Setup. In this evaluation, we performed an experi-
mentwithCrFuzz augmented fuzzers, AFL+CrFuzz, QSYM+CrFuzz,
and MOpt+CrFuzz, where its fuzzing instance configuration is
listed in Table 1. Under this configuration, we ran nine multi-
purpose programs (Graphicsmagick, MuPDF, Xpdf, ImageMagick, Xfig,
libsixel, libtiff, FFmpeg, GhostScript) for 48 CPU hours, and
then repeated the experiment for five times. All our experiments
were carried out a machine of Intel Xeon Gold 6140 with 32 CPU
cores and 512GB RAM, which runs Ubuntu 18.04 LTS.
Research Questions. In the following of this evaluation section,
we aim to answer following research questions:
RQ1. What is the accuracy of CrFuzz’s clustering analysis in its
validity checker?
RQ2. Does CrFuzz’s fuzzing approach truly improve the multi-
purpose program fuzzing capability, particularly with respect to
path and edge coverage?
RQ3. What are the new vulnerabilities that are discovered by
CrFuzz?

5.1 Accuracy of Validity Checker (RQ1)

As described in §3.1, CrFuzz leverages validity checking capabil-
ity for fuzzing. Since the validity checker performs the clustering
analysis, CrFuzz’s overall fuzzing performance relies on the accu-
racy of the clustering analysis. As such, this subsection analyzes
such accuracy of CrFuzz’s validity checker. In order to collect the
ground truth (i.e., a set of files labeled as either a valid or invalid
file), we manually analyzed the source code of following three tar-
get programs, including FFmpeg, libtiff, and Ghostscript. Then
we identified the termination routine due to both parsing issues
and non-parsing issues. We instrumented such termination routine
such that we can mark a label suggesting which input file is valid
or not.

Given these labeled files, we first plotted all data points (Figure 9)
for each program. When plotting, we projected each data point
according to the validity pair distance metric as described in §3.1.1.
In these figures, each red cross mark denotes an invalid input,
and each blue circle denotes a valid file. It can be observed that
overall red crosses are located closed to the bottom-left corner while
blue circles are located closed to the top-right corner. This overall
location pattern implies that the validity pair is an effective metric
capturing the execution differences between valid and invalid files.

CrFuzz: Fuzzing Multi-purpose Programs through Input Validation ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

Table 2: Accuracy of Validity Checker

Program Description Version Actual (total exec) Inferred (total exec)
rFP rFNInvalid Valid Invalid FN Valid FP

FFmpeg mp4 to mov 4.1 1.36M 203K 1.36M 3.96K 203K 3.10K 0.23% 1.95%
libtiff tiff to ps 4.1.0 64.3M 6.82M 63.7M 70.4K 7.36M 610K 0.95% 1.03%
GhostScript ps to pgm 9.51rc1 181K 66.9K 181K 27 67.1K 137 0.76% 0.20%

We acknowledge that the each plot shows some overlaps (i.e., it may
not seem straight-forward to draw a decision boundary bisecting
two labels), but we would like to emphasize the number of those
overlapped data points are relatively small compared to the number
of entire data points, which we further evaluate next.

In order to clearly evaluate the clustering accuracy, we measured
the false positive and false negatives of CrFuzz’s k-means clus-
tering. More precisely, we measured false positives (rFP) and false
negatives (rFN) as follows.

rFP = NFP/Ni ∗ 100 and
rFN = NFN/Nv ∗ 100.

In these two measures, NFP and NFN denote the number of false
positive and false negative in total executions.Ni andNv denote the
total number of executions with invalid and valid files, respectively.
The result of false positives and false negatives are shown in Table 2.
Overall rFP is always less than 1%. It is worth noting that if the false
positive occurs (i.e., an invalid file is predicted to be valid), CrFuzz
would not leverage the performance optimization of CrFuzz as it
would enumerate all command line options without much coverage
benefits. On the other hand, rFN is measured in the range from 0.2%
to 2%. If the false negative happens (i.e., a valid file is predicted to
be invalid), CrFuzz would stop trying more command line options
although it would be more likely beneficial to try more options with
respect to extend the execution coverage. Given these results on
rFP and rFN, although CrFuzz’s clustering analysis does not yield
perfect accuracy, we believe its result is good enough to significantly
augment the fuzzing capability for multi-purpose programs, which
we demonstrate in the next subsection.
Runtime Speed of Clustering Analysis. Over the entire 48
hours of fuzzing time, the validity checker used eight minutes
on average (i.e., three minutes for clustering and five minutes for
predicting the validity), which only account for 0.28% of entire
fuzzing time. Based on this result, we believe that the dimension
reduction with the validity pair (along with incremental learning
features) is efficient enough to fuzz multi-purpose programs.

5.2 Fuzzing Efficiency of CrFuzz (RQ2)

Naive Vs. CrFuzz-Augmented Frruzzers. Compared to a naive
multi-purpose program fuzzer, CrFuzz leverages the feedback from
the validity checker to accelerate the fuzzing performances. In
particular, we implemented both naive and CrFuzz versions for
three fuzzers, AFL, QSYM, and MOpt (described in §4). Using these
fuzzers, we ran nine multi-purpose programs for 48 CPU hours (re-
peated five times). Then we compared its average performance with
respect to path coverage and edge coverage as shown in Table 3
and Table 4, respectively. According to the result, AFL+CrFuzz,
QSYM+CrFuzz and MOpt+CrFuzz achieved better path and edge

(a) FFmpeg (b) libtiff (c) GhostScript

Figure 9: Plotted results of input files according to the valid-

ity pair distance metric (i.e., x-axis represents v1 and y-axis

represents v2). Each red cross represents an invalid file and

each blue dot represents a valid file.

coverage for all nine multi-purpose programs than the naive ver-
sion. On average, CrFuzz showed 19.3% better path coverage and
5.68% better edge coverage to that of the naive multi-purpose fuzzer,
demonstrating CrFuzz’s efficiency in exploring more testing cov-
erage for multi-purpose programs.
Efficiency While Varying Command Line Options. In order
to understand the fuzzing efficiency over the number of command
line options, we varied the number of command line options and
compared the fuzzing performance between the naive and CrFuzz-
augmented versions (Figure 10). For both version of fuzzers, as more
command line options are provided, its path and edge coverage
are extended as it enables to explore more features in the backend
engines. However, it is noticeable that CrFuzz augmented versions
are always show better performance, and such performance ad-
vantage gap is increased more as more command line options are
given (i.e., the gap between three and six command options). This
is because as more command line options are given, the search
space for command line options are doubled. Hence, naive multi-
purpose fuzzers would waste more of its fuzzing time on invalid
files with more command line options, while CrFuzz-augmented
multi-purpose fuzzers can save its fuzzing time by quickly dropping
such invalid files with the help from the validity checker.

5.3 New Vulnerabilities Found by CrFuzz

(RQ3)

Over the course of evaluating CrFuzz, we kept running CrFuzz-
augmented fuzzers for two weeks against nine multi-purpose pro-
grams to find new vulnerabilities. To summarize, CrFuzz found
277 new vulnerabilities in total, where 212 of those are already con-
firmed and accordingly fixed by the respective vendors as shown
in Table 5. We highlight that many target programs (particularly
Graphicsmagick, MuPDF, ImageMagick, libtiff, FFmpeg, and GhostScript)
are fuzzed by many security researchers due to its popularity and

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Suhwan Song, Chengyu Song, Yeongjin Jang, and Byoungyoung Lee

Table 3: Path coverage found in multi-purpose programs using three command line options

w/o and w/ CrFuzz in 48 CPU hours

Program
Path Coverage

AFL QSYM MOpt
Orig. +CrFuzz Orig. +CrFuzz Orig. +CrFuzz

FFmpeg 11,321 16,403 (+44.89%) 12,467 17,090 (+37.08%) 15,420 17,379 (+12.70%)
Graphicsmagick 5,938 7,263 +(22.31%) 4,256 5,703 (+34.01%) 6,644 7,130 (+7.31%)
MuPDF 2,069 2,147 (+3.74%) 2,124 2,241 (+5.53%) 2,426 2,448 (+0.91%)
Xpdf 2,957 3,408 (+15.23%) 2,376 2,502 (+5.32%) 2,308 4,015 (+73.96%)
ImageMagick 5,938 7,263 (+22.31%) 4,242 5,975 (+40.84%) 5,450 6,238 (+14.46%)
Xfig 4,261 4,787 (+12.33%) 3,208 3,537 (+10.27%) 4,158 5,390 (+29.63%)
libsixel 4,070 4,724 (+16.01%) 4,368 4,466 (+2.24%) 4,101 4,313 (+5.19%)
libtiff 5,071 5,350 (+5.50%) 4,183 5,036 (+20.38%) 4,924 6,228 (+26.48%)
GhostScript 2,591 2,962 (+14.32%) - - 2,564 3,150 (+22.85%)
Average +17.40% +19.46% +21.50%

Table 4: Edge coverage found in multi-purpose programs using three command line options

w/o and w/ CrFuzz in 48 CPU hours

Program
Edge Coverage

AFL QSYM MOpt
Orig. +CrFuzz Orig. +CrFuzz Orig. +CrFuzz

FFmpeg 41,652 46,685 (+12.08%) 41,866 47,759 (+14.08%) 46,620 49,949 (+7.14%)
Graphicsmagick 9,933 10,141 (+2.09%) 9,090 9,530 (+4.84%) 10,244 10,320 (+0.74%)
MuPDF 4,165 4,197 (+0.78%) 4,195 4,204 (+0.20%) 4,239 4,285 (+1.09%)
Xpdf 6,172 6,344 (+2.78%) 5,832 5,912 (+1.38%) 5,830 8,241 (+41.36%)
ImageMagick 11,971 13,454 (+12.39%) 11,715 12,128 (+3.53%) 11,024 12,380 (+12.30%)
Xfig 4,770 4,774 (+0.08%) 4,493 4,642 (+3.32%) 4,734 4,875 (+2.98%)
libsixel 5,043 5,271 (+4.51%) 5,452 5,578 (+2.31%) 5,041 5,257 (+ 4.28%)
libtiff 7,686 7,730 (+0.57%) 7,544 8,014 (+6.23%) 7,754 8,122 (+4.74%)
GhostScript 28,590 28,891 (+1.05%) - - 28,891 29,123 (+2.10%)
Average +4.04% +4.49% +8.53%

thus those are fuzzed for numerous CPU hours by far. More impor-
tantly, all of those (except GhostScript) are selected by Google’s
OSS-Fuzz project [2] and heavily fuzzed for last three years. How-
ever, in spite of such heavy fuzzing efforts towards these programs
CrFuzz discovered a striking number of new vulnerabilities, demon-
strating significantly better fuzzing capability of CrFuzz.

In the case of Graphicsmagick, it takes bmp image files as input
and convert it to other formatted files (such as vector image files like
pdf), which identified 3 new vulnerabilities. For mutool, we found
seven vulnerabilities when it resizes the pdf images. ImageMagick
provides over 100 command line options, and CrFuzz identified 42
vulnerabilities. Xfig takes fig files as input and converts it to 40
different formats. CrFuzz identified 14 vulnerabilities, all of which
found in backend engines. libsixel converts png files into sixel
files, and we identified multiple bugs from the command which
converts image colors. libtiff takes tiff files as input and convert
it to various levels of ps files (the default configuration is set to
be level 1), and CrFuzz identified the vulnerability which is only
activated when the level is 3. FFmpeg is a popular video image
decoder, which provides over 200 different command line options.

CrFuzz identified 153 different vulnerabilities, most of which are
identified from its backend engine.

6 RELATEDWORK

Advanced Fuzz Scheduling. AFLfast [10] and fair-fuzz [20]
change seed scheduling algorithm to prioritize rarely-exercised
branches for higher coverage. MOpt [25] uses a customized Particle
Swarm Optimization (PSO) algorithm to optimize the mutation
operation scheduler. Cerebro [23] utilizes various factors such as
code complexity, coverage, and execution time to improve seed
scheduling strategy. AFLGO [11] and Hawkeye [12] leverage seed
scheduling to guide the fuzzer towards target locations of program
based on distance metrics.
SolvingHard Constraints. To overcome the limitation of solving
hard constraints such as magic bytes, various approaches have been
suggested. For example, Steelix [22] and Laf-intel [5] split magic
bytes to make them as weak constraint with extra implemetation.
Vuzzer [30], Angora [13] and Matryoshka [14] use taint-analysis to
help the fuzzer solve constraints through control- and data-flow in-
formation. REDQUEEN [8] utilizes program-state analysis to solve
magic bytes and checksum without taint or symbolic execution.

CrFuzz: Fuzzing Multi-purpose Programs through Input Validation ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

Table 5: Newly Discovered Vulnerabilities by CrFuzz

Program Version Vulnerability Type Found Fixed

FFmpeg

stack-buffer-overflow 1 1
heap-buffer-overflow 23 18
heap-use-after-free 4 0
memory leak 23 19
assertion 1 1
invalid free 1 1
segmentation fault 8 6

4.1 division by zero 19 3
4.2 signed integer overflow 18 9

outside the range of representable 6 2
out-of-bound 2 2
left shift of negative value 33 29
left shift cannot be represented in type int 7 6
null pointer passed as argument 5 4
load of null pointer 1 1
pointer index expression overflowed 1 1

GhostScript 9.51rc1

global-buffer-overflow 6 6
stack-buffer-overflow 3 2
heap-buffer-overflow 24 21
heap-use-after-free 3 2
memory leak 1 1
segmentation fault 7 5
division by zero 5 4

libtiff 4.1.0 heap-buffer-overflow 1 0

libsixel 1.8.3 heap-buffer-overflow 6 6
1.8.4 memory leak 2 2

Xfig 3.2.7b

global-buffer-overflow 6 6
stack-buffer-overflow 3 3
heap-buffer-overflow 2 2
segmentation fault 3 3

MuPDF 1.15.0
heap-buffer-overflow 3 1
heap-use-after-free 2 0
assertion 2 0

ImageMagick

heap-buffer-overflow 6 6
heap-use-after-free 2 2
memory leak 4 4

7.0.8-68 division by zero 6 6
7.0.9-0 signed integer overflow 5 5

outside the range of representable 16 16
shift exponent is too large 1 1
unsigned offset overflowed 2 2

Graphicsmagick 1.3.34 heap-buffer-overflow 2 2
assertion 1 1

Total 277 212

T-Fuzz [28] removes sanitiy checks in the programs to bypass the
hard constraints. Hybrid fuzzers [15, 16, 32, 35, 39, 40] leverage a
concolic executor to solve the hard constraints. For example, QSYM

[39] and Intriguer [16] optimize symbolic emulation for a fast con-
colic executor. Savior [15] guides the concolic executor towards the
bug in the program.

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Suhwan Song, Chengyu Song, Yeongjin Jang, and Byoungyoung Lee

(a) AFL

(b) QSYM

(c) MOpt

Figure 10: Path and Edge Coverage test using three and six

command-line options. The x-axis reprents the hour, and y-

axis represent the coverage: the y-axis of top graphs repre-

sents the path coverage, and y-axis of bottom graphs repre-

sents the edge coverage.

Input-Aware Fuzzing. Profuzzer [38] infers the input type of
each byte to enhance the mutation efficiency by probing changes of
program behaviors (edge coverage change). By doing so, it improves
the mutation strategy to generate semantically-valid input to find
deep bugs. Recent studies [7, 9, 27, 34] guide the fuzzer to generate

highly-structured inputs by using coverage-feedback. For example,
Nautilus leverages grammar specification to better generate and
mutate the test inputs with coverage guidance. In constrast, Gri-
moire leverages coverage-feedback to synthesize highly-structured
inputs without any form of human interaction.
Improving Fitness Function. CollAFL [17] and InsTrim [19]
enhance the way of coverage instrumentation to achieve more ac-
curate and lightweight coverage information. TortoiseFuzz [36] and
Ankou [26] propose new coverage evaluation techinques for better
seed scheduling. Some studies [21, 29, 37] have focused on detect-
ing algorithmic complexity vulnerabilities based on new coverage
metrics such as resource usage or execution path length.
Learning-based Fuzzing. Recent studies use learning techniques
to help the fuzzers to increase the coverage and find bugs. Learn&fuzz
[18] uses RNN (Recurrent Neural Network) to generate valid highly-
structured inputs. Skyfire [33] learns a probabilistic contextsensi-
tive grammar (PCSG) from highly-structured inputs to generate
well-distributed seeds. Angora [13] uses taint analysis and gradient
descent to solve the hard constraints. In this approach, the taint
analysis tells the position of magic bytes to the fuzzer, and then
gradient descent shows how to mutate that position of bytes to
solve the constraint. NEUZZ [31] uses deep-learning to synthesize
the program behaviors to improve the coverage. FuzzGuard [41],
which is used in directed-guided fuzzing, uses deep-learning to
filter out unreachable input without executing it.

7 CONCLUSION

This paper proposed CrFuzz, an efficient multi-purpose program
fuzzer. It implements a clustering analysis to predict if a new input
file would be accepted by a target program or not. Utilizing this
clustering analysis, it redesigns current state-of-the-art-fuzzers,
including AFL, QSYM, and MOpt to efficiently fuzz multi-purpose
program. According to the evaluation, CrFuzz-augmented fuzzers
have shown reasonable better coverage as well as uncovering 277
new vulnerabilities in various software programs.

8 ACKNOWLEDGMENT

We thank anonymous reviewers for their insightful comments,
which significantly improved the final version of this paper. This
work was partially supported by Agency for Defense Development
(ADD) in South Korea (No. UE191003ED) and by the National Re-
search Foundation (NRF) of South Korea grant funded by the Korean
government (MSIT) (No. 2019R1C1C1006095).

REFERENCES

[1] Mopt source code. https://github.com/puppet-meteor/MOpt-AFL.
[2] Oss-fuzz - continuous fuzzing of open source software. https://github.com/

google/oss-fuzz.
[3] Qsym source code. https://github.com/sslab-gatech/qsym.
[4] American fuzzy lop. http://lcamtuf.coredump.cx/afl/.
[5] Circumventing fuzzing roadblocks with compiler transformations.

https://lafintel.wordpress.com/2016/08/15/circumventing-fuzzing-roadblocks-
with-compiler-transformations/.

[6] syzkaller is an unsupervised coverage-guided kernel fuzzer. https://github.com/
google/syzkaller.

[7] C. Aschermann, T. Frassetto, T. Holz, P. Jauernig, A.-R. Sadeghi, and D. Teuchert.
Nautilus: Fishing for deep bugs with grammars. In Proceedings of the 2019 Annual

https://github.com/puppet-meteor/MOpt-AFL
https://github.com/google/oss-fuzz
https://github.com/google/oss-fuzz
https://github.com/sslab-gatech/qsym
http://lcamtuf.coredump.cx/afl/
https://lafintel.wordpress.com/2016/08/15/circumventing-fuzzing-roadblocks-with-compiler-transformations/
https://lafintel.wordpress.com/2016/08/15/circumventing-fuzzing-roadblocks-with-compiler-transformations/
https://github.com/google/syzkaller
https://github.com/google/syzkaller

CrFuzz: Fuzzing Multi-purpose Programs through Input Validation ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

Network and Distributed System Security Symposium (NDSS), San Diego, CA, Feb.
2019.

[8] C. Aschermann, S. Schumilo, T. Blazytko, R. Gawlik, and T. Holz. Redqueen:
Fuzzing with input-to-state correspondence. In Proceedings of the 2019 Annual
Network and Distributed System Security Symposium (NDSS), San Diego, CA, Feb.
2019.

[9] T. Blazytko, M. Bishop, C. Aschermann, J. Cappos, M. Schlögel, N. Korshun,
A. Abbasi, M. Schweighauser, S. Schinzel, S. Schumilo, et al. {GRIMOIRE}:
Synthesizing structure while fuzzing. In Proceedings of the 28th USENIX Security
Symposium (Security), SANTA CLARA, CA, Aug. 2019.

[10] M. Böhme, V.-T. Pham, and A. Roychoudhury. Coverage-based greybox fuzzing
as markov chain. In Proceedings of the 23rd ACM Conference on Computer and
Communications Security (CCS), Vienna, Austria, Oct. 2016.

[11] M. Böhme, V.-T. Pham, M.-D. Nguyen, and A. Roychoudhury. Directed greybox
fuzzing. In Proceedings of the 24th ACM Conference on Computer and Communi-
cations Security (CCS), Dallas, TX, Oct.–Nov. 2017.

[12] H. Chen, Y. Xue, Y. Li, B. Chen, X. Xie, X. Wu, and Y. Liu. Hawkeye: Towards a
desired directed grey-box fuzzer. In Proceedings of the 25th ACM Conference on
Computer and Communications Security (CCS), Toronto, Canada, Oct. 2018.

[13] P. Chen and H. Chen. Angora: Efficient fuzzing by principled search. In Pro-
ceedings of the 39th IEEE Symposium on Security and Privacy (Oakland), SAN
FRANCISCO, CA, May 2018.

[14] P. Chen, J. Liu, and H. Chen. Matryoshka: fuzzing deeply nested branches. In
Proceedings of the 26th ACMConference on Computer and Communications Security
(CCS), London, UK, Nov. 2019.

[15] Y. Chen, P. Li, J. Xu, S. Guo, R. Zhou, Y. Zhang, T. Wei, and L. Lu. Savior: Towards
bug-driven hybrid testing. In Proceedings of the 41st IEEE Symposium on Security
and Privacy (Oakland), SAN FRANCISCO, CA, May 2020.

[16] M. Cho, S. Kim, and T. Kwon. Intriguer: Field-level constraint solving for hybrid
fuzzing. In Proceedings of the 26th ACM Conference on Computer and Communi-
cations Security (CCS), London, UK, Nov. 2019.

[17] S. Gan, C. Zhang, X. Qin, X. Tu, K. Li, Z. Pei, and Z. Chen. Collafl: Path sensitive
fuzzing. In Proceedings of the 39th IEEE Symposium on Security and Privacy
(Oakland), SAN FRANCISCO, CA, May 2018.

[18] P. Godefroid, H. Peleg, and R. Singh. Learn&fuzz: Machine learning for input
fuzzing. In Proceedings of the 32nd IEEE/ACM International Conference on Auto-
mated Software Engineering (ASE), Urbana-Champaign IL, Sept. 2017.

[19] C.-C. Hsu, C.-Y. Wu, H.-C. Hsiao, and S.-K. Huang. Instrim: Lightweight in-
strumentation for coverage-guided fuzzing. In Proceedings of the 2018 Annual
Network and Distributed System Security Symposium (NDSS), San Diego, CA, Feb.
2018.

[20] C. Lemieux and K. Sen. Fairfuzz: A targeted mutation strategy for increasing
greybox fuzz testing coverage. In Proceedings of the 33rd IEEE/ACM International
Conference on Automated Software Engineering (ASE), Montpellier, France, Sept.
2018.

[21] C. Lemieux, R. Padhye, K. Sen, and D. Song. Perffuzz: Automatically generat-
ing pathological inputs. In Proceedings of the 27th International Symposium on
Software Testing and Analysis (ISSTA), Amsterdam, The Netherlands, July 2018.

[22] Y. Li, B. Chen, M. Chandramohan, S.-W. Lin, Y. Liu, and A. Tiu. Steelix: program-
state based binary fuzzing. In Proceedings of the 25th ACM SIGSOFT Symposium
on the Foundations of Software Engineering (FSE), Paderborn, Germany, Sept. 2017.

[23] Y. Li, Y. Xue, H. Chen, X. Wu, C. Zhang, X. Xie, H. Wang, and Y. Liu. Cerebro:
context-aware adaptive fuzzing for effective vulnerability detection. In Proceed-
ings of the 24th European Software Engineering Conference (ESEC) / 27st ACM
SIGSOFT Symposium on the Foundations of Software Engineering (FSE), Tallinn,
Estonia, Aug. 2019.

[24] libfuzzer. libfuzzer. https://llvm.org/docs/LibFuzzer.html.
[25] C. Lyu, S. Ji, C. Zhang, Y. Li,W.-H. Lee, Y. Song, and R. Beyah. {MOPT}: Optimized

mutation scheduling for fuzzers. In Proceedings of the 28th USENIX Security
Symposium (Security), SANTA CLARA, CA, Aug. 2019.

[26] V. J. Manès, S. Kim, and S. K. Cha. Ankou: Guiding grey-box fuzzing towards
combinatorial difference. May 2020.

[27] R. Padhye, C. Lemieux, K. Sen, M. Papadakis, and Y. Le Traon. Semantic fuzzing
with zest. In Proceedings of the 28th International Symposium on Software Testing
and Analysis (ISSTA), San Jose, CA, July 2014.

[28] H. Peng, Y. Shoshitaishvili, and M. Payer. T-fuzz: fuzzing by program transforma-
tion. In Proceedings of the 39th IEEE Symposium on Security and Privacy (Oakland),
SAN FRANCISCO, CA, May 2018.

[29] T. Petsios, J. Zhao, A. D. Keromytis, and S. Jana. Slowfuzz: Automated domain-
independent detection of algorithmic complexity vulnerabilities. In Proceedings
of the 24th ACM Conference on Computer and Communications Security (CCS),
Dallas, TX, Oct.–Nov. 2017.

[30] S. Rawat, V. Jain, A. Kumar, L. Cojocar, C. Giuffrida, and H. Bos. Vuzzer:
Application-aware evolutionary fuzzing. In Proceedings of the 2017 Annual
Network and Distributed System Security Symposium (NDSS), San Diego, CA,
Feb.–Mar. 2017.

[31] D. She, K. Pei, D. Epstein, J. Yang, B. Ray, and S. Jana. Neuzz: Efficient fuzzing
with neural program smoothing. In Proceedings of the 40th IEEE Symposium on
Security and Privacy (Oakland), SAN FRANCISCO, CA, May 2019.

[32] N. Stephens, J. Grosen, C. Salls, A. Dutcher, R.Wang, J. Corbetta, Y. Shoshitaishvili,
C. Kruegel, and G. Vigna. Driller: Augmenting fuzzing through selective symbolic
execution. In Proceedings of the 2016 Annual Network and Distributed System
Security Symposium (NDSS), San Diego, CA, Feb. 2016.

[33] J. Wang, B. Chen, L. Wei, and Y. Liu. Skyfire: Data-driven seed generation for
fuzzing. In Proceedings of the 38th IEEE Symposium on Security and Privacy
(Oakland), San Jose, CA, May 2017.

[34] J. Wang, B. Chen, L. Wei, and Y. Liu. Superion: Grammar-aware greybox fuzzing.
In Proceedings of the 41st International Conference on Software Engineering (ICSE),
QC, Canada, May 2019.

[35] M. Wang, J. Liang, Y. Chen, Y. Jiang, X. Jiao, H. Liu, X. Zhao, and J. Sun. Safl:
increasing and accelerating testing coverage with symbolic execution and guided
fuzzing. In Proceedings of the 40th International Conference on Software Engineering
(ICSE), Gothenburg, Sweden, May 2018.

[36] Y. Wang, X. Jia, Y. Liu, K. Zeng, T. Bao, D. Wu, and P. Su. Not all coverage
measurements are equal: Fuzzing by coverage accounting for input prioritization.
May 2020.

[37] J. Wei, J. Chen, Y. Feng, K. Ferles, and I. Dillig. Singularity: Pattern fuzzing for
worst case complexity. In Proceedings of the 23th European Software Engineering
Conference (ESEC) / 26st ACM SIGSOFT Symposium on the Foundations of Software
Engineering (FSE), Lake Buena Vista, Florida, Nov. 2018.

[38] W. You, X. Wang, S. Ma, J. Huang, X. Zhang, X. Wang, and B. Liang. Profuzzer:
On-the-fly input type probing for better zero-day vulnerability discovery. In
Proceedings of the 40th IEEE Symposium on Security and Privacy (Oakland), SAN
FRANCISCO, CA, May 2019.

[39] I. Yun, S. Lee, M. Xu, Y. Jang, and T. Kim. {QSYM}: A practical concolic execution
engine tailored for hybrid fuzzing. In Proceedings of the 27th USENIX Security
Symposium (Security), BALTIMORE, MD, Aug. 2018.

[40] L. Zhao, Y. Duan, H. Yin, and J. Xuan. Send hardest problemsmyway: Probabilistic
path prioritization for hybrid fuzzing. In Proceedings of the 2019 Annual Network
and Distributed System Security Symposium (NDSS), San Diego, CA, Feb. 2019.

[41] P. Zong, T. Lv, D. Wang, Z. Deng, R. Liang, and K. Chen. Fuzzguard: Filtering
out unreachable inputs in directed grey-box fuzzing through deep learning. Aug.
2020.

https://llvm.org/docs/LibFuzzer.html

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Background
	2.2 Motivation

	3 Design
	3.1 Learning and Testing Validity
	3.2 Multi-purpose Program Fuzzing

	4 Implementation
	5 Evaluation
	5.1 Accuracy of Validity Checker (RQ1)
	5.2 Fuzzing Efficiency of CrFuzz (RQ2)
	5.3 New Vulnerabilities Found by CrFuzz (RQ3)

	6 Related work
	7 Conclusion
	8 Acknowledgment
	References

