Midterm 2

Name: 1D: Section:

Problem 1 2 3 4 5) 6 7 8 9 total

Score

You have 50 minutes to complete this midterm. You must show your work to receive
credit. This exam contains 9 questions worth a total of 60 points.

. e*
Problem 1 (10 points): Evaluate: /mdx
e’ du x -
/mdxz/m (u:e,du:e dl’)
2
:/(tseg—% (u = tanv, du = sec’ v dv)
an’ v
_/secQUdv
N sect v

= /cos2 vdv

1
_ / + cos(2v) o
2
= 1'U + E sin(2v) + C

2 4
_1 +1 i +C
—2v 2smvcosv
1t Ly tanv
=—tan " u
2 2sec? v
1 U
= —tan"! — 4+ C
gt a Ty T
1 X
:—tan’lex—i—e——i—C’

2 2(e2 + 1)



Problem 2 (10 points): Derive a recurrence relation that allows the integral

/ sec" xdr to be evaluated once the integral / sec" %z dx is known. You may

assume n > 2.

This is done with integration by parts with
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Problem 4 (10 points): Find the arclength of y = 22 in the interval = € [-1,1].
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The trig integral was evaluated using the recurrence derived earlier on the midterm.



Problem 5 (4 points): Determine (with justification) the convergence or

divergence of the series E e " sin®(n?).
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This series converges since 0 < e sin?(n?) < e




Problem 6 (4 points): Determine (with justification) the convergence or
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Problem 7 (4 points): Determine (with justification) the convergence or
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divergence of the series Z
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This series diverges since

is a divergent p-series.



Problem 8 (4 points): Determine (with justification) the convergence or
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divergence of the series E —.
€
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This series diverges because the terms do not converge to zero. In fact, as n — oo, we have
e% — 00. Determining this requires knowing that n! grows faster than e”. One way to see
this is to note that
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Problem 9 (4 points)' Determine (with justification) the convergence
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This series converges, since
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