
Math 142-1, Final

Solutions

Problem 1

A 2D particle’s location x obeys the equation of motion

mẍ = − x

‖x‖2 .

Find the kinetic energy KE, potential energy φ, and total energy E of the system.

d

dt
(x · x) = 2x · ẋ

d

dt
(ẋ · ẋ) = 2ẋ · ẍ

0 = mẍ+
x

‖x‖2

0 = mẍ · ẋ+
x · ẋ
‖x‖2

0 =
1

2
m

d

dt
(ẋ · ẋ) + 1

2

1

x · x
d

dt
(x · x)

E =
1

2
m‖ẋ‖2 + ln ‖x‖

KE =
1

2
m‖ẋ‖2

φ = ln ‖x‖
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Problem 2

A wheel with total mass m (evenly distributed throughout) and radius r

spins freely and without friction about its center. One end of a spring is
attached to the wheel at a distance of s from the center of the wheel. The
other end of the spring is fixed to a point d below the wheel’s center. Find
the equations of motion for the wheel, parameterized by the polar angle θ

of the spring’s attachment point. Your answer should be an ODE of the
general form θ̈ = f(θ, θ̇, t). Hint: formulating energy first is easier.

d

rθ

s

I will start with kinetic energy. A chunk of the wheel at location x =

(

R cos(φ+ θ)
R sin(φ+ θ)

)

will have velocity

v = Rθ′
(

− sin(φ+ θ)
cos(φ+ θ)

)

. The chunk has mass ρ∆A, where ρ = m
πr2

. Then, KE = 1

2
m‖v‖2 = m∆A

2πr2
R2(θ′)2.

In polar, ∆A = RdφdR.

KE =

∫ r

0

∫ 2π

0

( m

2πr2
R2(θ′)2

)

RdφdR

=

(
∫ r

0

R3 dR

)(
∫ 2π

0

dφ

)

( m

2πr2
(θ′)2

)

=
r4

4
(2π)

( m

2πr2
(θ′)2

)

=
mr2

4
(θ′)2

Next, I need potential energy.

L =
√

(s cos θ)2 + (s sin θ + d)2 =
√

s2 + d2 + 2sd sin θ

PE =
1

2
k(L− ℓ)2 =

1

2
k
(

√

s2 + d2 + 2sd sin θ − ℓ
)2

I can not assemble these to get the energy and use conservation of energy to get the ODE.

E =
mr2

4
(θ′)2 +

1

2
k
(

√

s2 + d2 + 2sd sin θ − ℓ
)2

0 = Ė

=
mr2

2
θ′θ′′ + k

(√
s2 + d2 + 2sd sin θ − ℓ

)

2
√
s2 + d2 + 2sd sin θ

(2sd cos θ)θ′

=
mr2

2
θ′θ′′ + ksd cos θ

(

1− ℓ√
s2 + d2 + 2sd sin θ

)

θ′

0 =
mr2

2
θ′′ + ksd cos θ

(

1− ℓ√
s2 + d2 + 2sd sin θ

)

θ′′ =
2ksd

mr2
cos θ

(

ℓ√
s2 + d2 + 2sd sin θ

− 1

)
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Problem 3

Solve the PDE for f(x, y, t), subject to f(x, y, 0) = g(x, y):

ft(x, y, t)− yfx(x, y, t) + xfy(x, y, t) = 1.

This is a method of characteristics problem. Let x(t) and y(t) be the trajectory of a characteristic.

d

dt
f(x(t), y(t), t) = ft(x, y, t) + x′fx(x, y, t) + y′fy(x, y, t)

= ft(x, y, t)− yfx(x, y, t) + xfy(x, y, t) where x′ = −y and y′ = x

= 1

Next, solve for x and y subject to x(0) = x0 and y(0) = y0.

x′ = −y

y′ = x

x′′ = −y′ = −x

x = c0 cos t+ c1 sin t

x(0) = c0 = x0

y = −x′

= c0 sin t− c1 cos t

y(0) = −c1 = y0

x = x0 cos t− y0 sin t

y = x0 sin t+ y0 cos t

x cos t+ y sin t = x0 cos t cos t− y0 sin t cos t+ x0 sin t sin t+ y0 cos t sin t = x0

x sin t− y cos t = x0 cos t sin t− y0 sin t sin t− x0 sin t cos t− y0 cos t cos t = −y0

x0 = x cos t+ y sin t

y0 = −x sin t+ y cos t

d

dt
f(x(t), y(t), t) = 1

f(x(t), y(t), t) = f(x(0), y(0), 0) + t

= g(x0, y0) + t

= g(x cos t+ y sin t,−x sin t+ y cos t) + t
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Problem 4

Sketch the phase plane for the ODE ẍ + x(x2 + 1)−2 = 0. Your sketch should include representative
trajectories with arrows, including trajectories through unstable equilibria (if any). Mark all stable (“•”)
and unstable (“◦”) equilibria.

0 = ẍ+
x

(x2 + 1)2

0 = ẍẋ+
xẋ

(x2 + 1)2

E =
1

2
ẋ2 − 1

2(x2 + 1)

Plotting the energy first will help with the phase plane.

Equilibria can be found by letting ẋ = ẍ = 0 in the equation of motion, which produces only the solution
x = 0. Since the energy has a minimum here, this equilibrium is stable.
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Problem 5

An idea gas is contained within a box with a moveable top. This wall is
able to move up or down. Assume the walls are well-insulated. Assume that
a constant fraction α of the total energy of the gas is translational energy.
A mass m sits on top of the moveable ceiling, allowing it to move up and
down by compressing the gas under the force of gravity, confining the gas to a
w×w×x(t) volume. Let x(t) = x0 be the height of the gas volume when the
mass experiences no net force. Find the equations of motion for the block.
You do not need to solve them. (Hint: this related to one of the problems
you did in groupwork.)

m

gas x(t)

w

We need a relationship between the height of the ceiling and the force that the gas applies on the ceiling.
We saw in groupwork that PV γ = const, with γ = 1 + 2

3
α, which provides the necessary relationship.

A = w2

c1 = PV γ

=
F

A
(Ax)γ

F = c1A(Ax)
−γ

mẍ = c1w
2(w2x)−γ −mg

mẍ = c1w
2−2γx−γ −mg

mẍ = c2x
−γ −mg

0 = c2x
−γ
0 −mg

c2 = mgx
γ
0

mẍ = mg
((x0

x

)γ

− 1
)

ẍ = g
((x0

x

)γ

− 1
)

5



Problem 6

A light bottle is filled with gas under high pressure. A plug on the bottom is removed,
opening up a hole for gas to escape. When this occurs, the bottle flies into the air like a
rocket. Explain how this result would be predicted using our gas model. The stationary
bottle has no momentum or energy, but after the plug is removed and the bottle goes flying,
it does. You should explain where the momentum and energy come from and how they get
there. You do not need to do any detailed calculations. (A simple argument like “the gas
goes down, so the bottle must go up to conserve momentum” would should show that the
bottle must rise, but it does not tell us why or how this occurs. The goal of this exercise is
to work out what is going on at the level of the particles to provide an explanation not only
for what must occur but also why and how.) Be sure your explanation correctly accounts
for these observations: (1) this experiment will also work in a vacuum (2) the bottle will
not go flying if the plug is not removed and (3) the temperature and energy of a gas in a
uniformly translating sealed bottle does not change over time.

When particles bounce off the top, they push the bottle up. When they bounce off the bottom, they
push the bottle back down. In the absence of a hole, these will cancel each other out. When there is a hole,
some of the gas particles that would normally have bounced off the plug instead escape through the hole. As
a result, more momentum is deposited at the top wall than at the bottom, causing the bottle to get upward
momentum. (Momentum is conserved; the momentum of the gas rushing out the hole is equal to the upward
momentum of the bottle and the gas it contains.)

In fact, the situation is actually slightly more complicated than this. (Indeed, if the above explanation
was all there was to it, the bottle would be unable to gain energy.) The reason for this is related to why a
moving wall can cause gas to gain or lose energy. A particle bouncing off a wall that is moving away will be
moving slower when it recoils. A particle bouncing off a wall that is moving towards it will be moving faster
afterwards. As the bottle moves up, it causes particles that are moving upwards to be going a little faster
and the particles moving downwards to be moving a bit slower. On its own, this effect actually causes the
gas particles to have a little more energy than they would have if the bottle was not moving (if I want to
make a 10 kg gas container move, I have to give it kinetic energy. If that container is holding 0.1 kg of gas,
I have to give that gas kinetic energy, too.)

The missing piece is that the particles that escape the hole are the particles that are moving slower.
Particles normally deposit energy at the top wall and get it back at the bottom wall. Particles that escape
deposit their energy at the top wall but never get it back. That energy is used to accelerate the bottle
and the other gas in the bottle. Since the gas that escapes has less kinetic energy, it is colder than it was
originally. This is the source of the energy.
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Problem 7

An initially piecewise constant density profile leads to two shocks and no rarefactions. Show that the
shocks must eventually merge and the resulting shock moves with a velocity that is between the velocities

of the original shocks. You may assume û(ρ) = umax

(

1− ρ
ρmax

)

. (If you are able to solve this problem

without assuming any particular traffic following model, you will get extra credit equal in value to one
problem on this exam.)

Two shocks and no rarefactions implies three regions of constant density in increasing order. Let them
be ρ0 < ρ1 < ρ2. Let u0 = u(ρ0), u1 = u(ρ1), and u2 = u(ρ2). Then, u0 > u1 > u2.

Recall that a shock’s velocity is between that of the characteristic velocities q′(ρ) of the densities on
either side. To see this, note that by the mean value theorem we have

q′(ρs) =
q(ρ0)− q(ρ1)

ρ0 − ρ1
= s01

for some ρ0 < ρs < ρ1. We required q′(ρ) to be decreasing, from which it follows that q′(ρ0) > q′(ρs) =
s01 > q′(ρ1).

From q′(ρ0) > s01 > q′(ρ1) > s12 > q′(ρ2), we have s01 > s12, which implies that the left shock moves
faster than the right shock and will therefore eventually catch up with it.

The speeds of the shocks are:

s01 =
q(ρ0)− q(ρ1)

ρ0 − ρ1

s12 =
q(ρ1)− q(ρ2)

ρ1 − ρ2

s02 =
q(ρ0)− q(ρ2)

ρ0 − ρ2

A = ρ1 − ρ0

B = ρ2 − ρ1

(A+B)s02 = As01 +Bs12

s02 =
A

A+B
s01 +

B

A+B
s12

λ =
A

A+B
0 < λ < 1

s02 = λs01 + (1− λ)s12

We can see that s02 is interpolated between s01 and s12 and is thus between them.
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Problem 8

Determine the density of traffic on a semi-infinite road (x ≥ 0) for all future times subject to the initial
density profile ρ(x, 0) = 1

6
ρmax (for x ≥ 0) and boundary conditions q(0, t) = 2

9
ρmaxumax (for t ≥ 0).

Assume û(ρ) = umax

(

1− ρ
ρmax

)

.

t

x

ρ = 1

3
ρmax ρ = 1

6
ρmax

ρ = ρmax

2

(

1− x
umaxt

)

û(ρ) = umax

(

1− ρ

ρmax

)

q̂(ρ) = umaxρ

(

1− ρ

ρmax

)

q̂′(ρ) = umax

(

1− 2ρ

ρmax

)

The initial conditions have characteristics (green) of velocity q′
(

1

6
ρmax

)

= 2

3
umax.

Since the boundary condition is

q =
2

9
ρmaxumax = umaxρ

(

1− ρ

ρmax

)

ρ

ρmax

(

1− ρ

ρmax

)

− 2

9
= 0

−
(

ρ

ρmax

)2

+
ρ

ρmax

− 2

9
= 0

−
(

ρ

ρmax

− 1

3

)(

ρ

ρmax

− 2

3

)

= 0
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the density must look like ρ = 1

3
ρmax or ρ = 2

3
ρmax. The characteristics (red) must be entering the domain

(otherwise the boundary condition would not affect the answer!), which means the boundary condition must
look like ρ = 1

3
ρmax, which corresponds to characteristic velocity q′

(

1

3
ρmax

)

= 1

3
umax.

This leaves a gap (blue) with no characteristics, which means we have a rarefaction. Let the rarefaction

density be ρ(x, t). The characteristic speed is q̂′(ρ) = umax

(

1− 2ρ
ρmax

)

.

x = q̂′(ρ)t

= umax

(

1− 2ρ

ρmax

)

t

umax

(

1− 2ρ

ρmax

)

=
x

t

2ρ

ρmax

= 1− x

umaxt

ρ(x, t) =
ρmax

2

(

1− x

umaxt

)

Finally, we must put these together into the solution based on the region we are in.

ρ(x, t) =















1

3
ρmax x < 1

3
umaxt

ρmax

2

(

1− x
umaxt

)

1

3
umaxt < x < 2

3
umaxt

1

6
ρmax

2

3
umaxt < x
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Problem 9

A physical system is observed to have the following properties:

• There is exactly one equilibrium (at x = 0); the equilibrium is unstable

• For sufficiently large |x|, the system exhibits decay (energy is lost)

Construct a model (an ODE) for a 1D system which has these properties. (Hint: no linear ODE satisfies
both properties; the damping coeffient can depend on x.)

Consider a model of the form ẍ+ cẋ+ kx = 0. If c > 0 and k > 0, then this model predicts decay. That
satisfies the second requirement, but it also has a stable equilibrium. On the other hand, if c < 0 and k > 0,
the equilibrium will be unstable. But in this case, energy grows for large |x|, too. We really need c to depend
on x. That suggests a model of the form ẍ+ (ax2 − b)ẋ+ kx = 0, which has the desired properties.
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Problem 10

SI units are a system of units that were chosen more or less arbitrarily to
be convenient for everyday use. An alternative approach to constructing
units is to select units where fundamental constants of nature become
one. To fix units for distance (m), time (s), mass (kg), charge (C), and
temperature (K), one must choose five fundamental constants. Planck
units are a system of units designed to be purely non-arbitrary. Planck
units are obtained by setting the gravitational constant (G), the reduced
Planck constant (h̄), the speed of light (c), the Coulomb constant (ke),
and the Boltzmann constant (k) to be one. In these units, E = mc2 can
be simply written as E = m, and the entropy of a black hole is S = A

4
,

where A is its area. How must the relationship between the entropy of
a black and its area be written if SI units are used instead?

Quantity Units
c ms−1

G kg−1 m3 s−2

h̄ kg m2 s−1

ke kgm3 s−2 C−2

k kgm2 s−2 K−1

E kgm2 s−2

m kg

S kgm2 s−2 K−1

A m2

S = cjGnh̄pkqek
rA

4

[S] = [cj ][Gn][h̄p][kqe ][k
r][A]

kgm2 s−2 K−1 = (ms−1)j(kg−1 m3 s−2)n(kgm2 s−1)p(kgm3 s−2 C−2)q(kgm2 s−2 K−1)r(m2)

kgm2 s−2 K−1 = kg−n+p+q+r mj+3n+2p+3q+2r+2 s−j−2n−p−2q−2r C−2q K−r

1 = −n+ p+ q + r

2 = j + 3n+ 2p+ 3q + 2r + 2

−2 = −j − 2n− p− 2q − 2r

0 = −2q

−1 = −r

Immediately, q = 0 and r = 1. Eliminating n with the first equation we get n = p and

−2 = j + 5p

0 = −j − 3p

Adding these equations we get −2 = 2p, so p = −1 and j = 3. Substituting back we get n = −1.

S =
c3kA

4Gh̄
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