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Abstract

Microfluidic “lab on a chip” devices are small devices that operate on small length scales on small volumes of fluid;
these devices find uses in a variety of applications. Designs for microfluidic chips are generally composed of stan-
dardized and often repeated components connected by long, thin, straight fluid channels. We propose a novel meshing
algorithm for use in simulating the linear incompressible stationary Stokes equations on geometry with these features,
which produces sparse symmetric positive indefinite systems with many repeated matrix blocks. We use a discretiza-
tion that is formally third order accurate for velocity and second order accurate for pressure in the L∞ norm. We also
propose a novel linear system solver based on cyclic reduction, reordered sparse Gaussian elimination, and operation
caching that is designed to efficiently solve systems with repeatedmatrix blocks. We demonstrate that the resulting fluid
solver is significantly faster than existing methods up to resolutions of a fewmillion degrees of freedom for microfluidic
problems.
Keywords: Microfluidics, Stokes flow, Cyclic reduction, Sparse direct solver

1. Introduction1

Fluid simulation plays an important role in engineering. These applications vary greatly in the type of fluid be-2

ing considered, the shape and size of the fluid domain, the number of phases, and in many other ways. This has led3

to the development of a wide variety of methods that try to be as flexible and general as possible, maximizing their4

applicability to a wide range of problems. This flexibility comes at a cost, as such methods are unable to take advan-5

tage of application-specific properties. In this work, we develop a method for simulating the stationary flow of fluids6

through channel-based microfluidic devices. The fluid domains for these devices generally consist of simple compo-7

nents connected by long, thin pipes. In this paper, we specifically develop a meshing algorithm that, when combined8

with a standard finite element discretization, converts the stationary Stokes flow problem into a linear algebra problem9

that is of a form that can be efficiently solved, and we propose an algorithm to solve this linear algebra problem very10

efficiently. We use a discretization that is formally third order accurate in L∞ for velocity and second order accurate11
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in L∞ for pressure. We demonstrate that the proposed algorithm achieves significant speedups on such problems at12

practical resolutions.13

Existing methods for microfluidic simulation. Numerical simulation of microfluidic devices presents few fundamental14

problems for existing methods, and software packages suitable for microfluidics applications are readily available.15

Indeed, numerical studies are typically carried out using an off-the-shelf software package such as OpenFOAM [1],16

COMSOL [2, 3], CFD-ACE+ [4], or Fluent [5] (See [6, 7] for an overview of existing tools). Although some of these17

software packages often have support specifically for microfluidic applications, they operate using general-purpose18

numerical methods and do not take advantage of the special properties of these devices. The high computational cost of19

these methods has led to significant interest in application-specific numerical methods. A particularly popular approach20

is the one-dimensional analysis model, which approximates the full fluid equations based on an analogy between flow21

of fluid through tubes and the flow of current through wires [8, 9, 10, 11]. This is a modeling approximation and will22

introduce systemic errors. See also [12] for a thorough introduction to these techniques. We take a different approach23

to obtaining faster simulation results; in contrast to the one-dimensional analysis model our method avoids systematic24

errors. Rather than relying on properties of these devices to approximate the physics, we instead use these properties25

to accelerate the solution of the full fluid equations.26

Properties of microfluidic devices. Microfluidic devices are devices that operate on fluids on small (microliter or nano-27

liter) scales to perform a variety of tasks, such as common laboratory tests. Microfluidic chips are generally constructed28

by laying out components that perform specific operations on fluid volumes. Examples of common microfluidic opera-29

tions are merging (combining different reagents together), mixing (forcing fluids through a serpentine flow to encourage30

the fluid to mix through molecular diffusion), delaying (holding fluid for a designated period of time to allow chemical31

reactions to complete), or forking (dividing a fluid flow among multiple directions for separate uses). These compo-32

nents are then connected with thin fluid channels to route fluid from one component to the next. A natural result of33

the way these devices are designed and constructed is that the geometry contains many duplicated copies of a rela-34

tively small number of distinct components. A relatively large fraction of the fluid domain consists of thin, straight35

(or occasionally circular) fluid channels. The global topology of the device is typically quite simple, usually planar36

and sometimes even lacking loops. Although the proposed algorithm is a general-purpose algorithm for single-phase37

Stokes flow, it is specifically designed and optimized around the particular features of the geometry of the fluid domain.38

It can be readily adapted to a variety of PDEs, including the Navier-Stokes equations, the Poisson equation, and the39

heat equation.40

1.1. Meshing strategies41

In this paper, we discretize the Stoke equations using the finite element method with tetrahedral (triangular) ele-42

ments. The effectiveness of the proposed algorithm relies on our meshes having special properties. The meshing of43

repeated components needs to be identical, and the mesh within pipes needs to be highly repetitive. We also require44
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a few simple additional properties of the mesh. These are fairly unusual properties to request from a general-purpose45

meshing algorithm, and we are aware of no algorithms that satisfy them. For these reasons, we construct our own sim-46

ple application-specific meshing algorithm. Our input geometry is assumed to be broken into components of known47

types. This allows us to naturally follow a decomposition/template-matching approach [13, 14].48

1.2. Existing sparse linear system solvers49

The most significant contribution of the proposed method is the special structure of the linear algebra problem and50

our algorithm for solving it. The general linear algebra problem we consider here is symmetric, indefinite, and sparse.51

Methods for solving these problems fall generally into direct and indirect methods.52

1.2.1. Direct solvers53

Direct methods for solving sparse linear systems of equations have been extensively studied [15]. These methods54

are mostly variations of Gaussian elimination and the related LU, Cholesky, and LDLT factorizations. Simply applying55

direct dense methods to sparse systems tends to quickly result in large amounts of fill-in. Effective direct solvers for56

sparse systems seek to strike a balance between reducing fill-in, utilizing available computational resources (SIMD,57

threading), and controlling memory usage. Our algorithm is a block-elimination algorithm that is designed around the58

specific properties of our fluid domains. It is designed to exploit commodity manycore hardware with significant SIMD59

processing resources. The bulk of the runtime is spent performing large numbers of simple block matrix operations,60

whichmake very efficient use of SIMD resources and can be scheduled in parallel across many threads. Our elimination61

algorithm is divided into four distinct stages and draws on ideas borrowed from a variety of other direct methods.62

Elimination ordering. Fill-in can be reduced by choosing a suitable elimination ordering [16], and many ordering63

strategies have been evaluated. Of these, two strategies are most relevant to our method. The first of these is the64

COLAMD algorithm [17], which is an approximation of the minimum degree ordering [18, 19]. Variations on the65

minimum degree ordering have been popular throughout the history of the development of sparse direct solvers, and66

we use the COLAMD ordering in the final stage of our elimination algorithm. Nested dissection [20, 21] has also67

received significant attention. Nested dissection is a recursive divide-and-conquer strategy where the domain is first68

divided in half by inserting a separator; this divides the domain into two independent problems, which may be solved in69

parallel. In a final step, the separators are eliminated, which requires a global solve. Separators play a similar role in our70

algorithm, where we use them for isolation, to expose parallelism, and to expose redundancy. Unlike with more general71

problems, where eliminating the final separator is often the most expensive step in the entire algorithm, our special72

domain-specific geometry means that separators are generally very small and can be eliminated relatively efficiently.73

Multifrontal methods. Permuting the rows and columns of the matrix before performing factorization suffices to re-74

duce fill-in, but the straightforward algorithm is not able to effectively utilize SIMD performance. This led to the75
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development of frontal methods [22, 23], which perform the elimination steps on a dense frontal matrix, which al-76

lows dense linear algebra (and efficient BLAS routines) to be used. These methods were replaced with multifrontal77

methods, which are based on the observation that elimination dependencies take the form of an elimination tree, and78

a new independent elimination front can be started from each leaf of the tree [24]. Since these fronts are independent,79

they may be eliminated in parallel [25, 26, 27, 28]. A process of amalgamation (also called supernodes) is used to80

eliminate multiple rows with similar sparsity patterns at the same time to exploit more efficient level-3 BLAS opera-81

tions [24, 29, 30]. Publicly available libraries implementing the multifrontal method are readily available, including82

MUMPS [28, 31, 32] and UMFPACK [33, 34, 35]. We compare the performance of the proposed method against both83

libraries in Section 6.6.84

Cyclic reduction. The proposed algorithm utilizes the idea of cyclic reduction, a variation on Gaussian elimination85

for tridiagonal systems where all odd rows are eliminated in parallel to expose opportunities for parallelism [36, 37].86

This reduces the problem size by approximately half, and it produces another tridiagonal system so the process can be87

repeated. As a serial algorithm, cyclic reduction requires about 2.7 times as many operations as the usual Gaussian88

elimination [38, 39]. The benefit of this method is that it exposes large numbers of operations that can be performed89

efficiently in parallel on a variety of architectures [40], especially on GPUs [41]. Cyclic reduction may also be for-90

mulated as a divide-and-conquer algorithm, with separate subproblems for even and odd variables [42]. Although our91

domains may have complex topology and do not lead to tridiagonal systems, many of the decisions that we make during92

meshing are designed to produce a tridiagonal block structure over significant portions of the matrix. This allows us93

to take advantage of cyclic reduction during a portion of our elimination phase.94

Relation to the proposed method. Although our method is neither a multifrontal method nor cyclic reduction, it has95

many similarities to these methods. Our block-elimination may be considered as an amalgamation strategy to increase96

opportunities for level 3 BLAS use. We plan out our computations during a planning stage, and we also make criti-97

cal use of the ability to begin elimination from many blocks in parallel. Since our blocks are large enough to make98

effective use of vector resources, we do not assemble fronts in the proposed method. This effectively breaks up large99

frontal calculations into similarly-sized pieces as was done in [31]. As in cyclic reduction, we have a tridiagonal block100

structure for significant portions of our matrix, and we eliminate them using a recursive even-odd strategy to maximize101

parallelism and (when possible) caching opportunities.102

1.3. Iterative methods103

Some of the most efficient algorithms known for solving large sparse linear systems are iterative. Of these, the104

Krylov methods are perhaps the most popular, with the conjugate gradient (CG) algorithm being the earliest, best105

known, and most understood [43]. CG assumes that the matrix Qis symmetric positive definite, but other Krylov106

schemes such as MINRES [44] or GMRES [45] may be used instead when the system is symmetric but indefinite.107

The convergence of Krylov methods depends on the conditioning of the system [46, 47], and a preconditioner is often108

4



required for rapid convergence [48]. One important class of efficient preconditioners is based on domain decomposi-109

tion [49, 50], which splits the domain into subdomains. The smaller (and cheaper) sub-problems provide rapid local110

convergence, and a coarsened problem is solved to improve global convergence. The most efficient preconditioners,111

however, are multigrid methods, which also use a coarsened problem to improve low-frequency convergence but use a112

smoother instead for high-frequency convergence; this coarsening process is repeated in a hierarchy for optimal O(n)113

convergence.114

Multigrid methods have become the standard for efficient large-scale preconditioners, especially for the elliptic115

problems [51, 52], though they can also be applied to the Stokes equations [53], theNavier-Stokes equations [54, 55, 56],116

the Euler equations [57], and fluid-structure interaction [58]. Multigrid parallelizes well and is well-suited to GPU117

implementation [59, 60] and heterogeneous environments [61]. Although multigrid is asymptotically optimal for large118

problems (even scaling to billions of degrees of freedom [62]), it is generally not the most efficient choice at medium119

or low resolutions, especially in domains with the small features typical of microfluidic designs. This work thus fills120

two important roles. (1) The proposed algorithm allows the incompressible stationary Stokes equations to be solved121

more efficiently on microfluidic problems at small and medium resolutions. (2) At high resolution, multigrid methods122

require a separate solver to solve the system at the coarsest resolution; the proposed algorithm may be used for this123

purpose. We have not pursued this strategy, but it may be a promising avenue for future work.124

Contributions and novelty. In this paper, we make the following novel contributions.125

• We propose a special solver for sparse symmetric indefinite systems of linear equations that have many repeated126

matrix blocks. This solver uses a combination of caching, cyclic reduction, and general sparse solver techniques127

to solve these linear systems very rapidly. The algorithm is designed to maximize the occurrence of repeated128

matrix blocks and duplicated linear algebra computations during Gaussian elimination. Duplicate block matri-129

ces and vectors are detected during a planning stage, avoiding the need to compute or store matrices that are130

equivalent.131

• We propose a meshing algorithm that can be combined with a standard finite element discretization for the132

incompressible stationary Stokes equations to produce linear systems in a form suitable for our new rapid solver.133

• We evaluate our solution method across different resolutions and core counts; we also compare its performance134

to existing solvers. The full Stokes algorithm is significantly faster than existing solvers at medium resolutions135

(around 1M degrees of freedom) on the types of geometry that typically occur in designs for microfluidic devices.136

The algorithm scales well to many cores.137
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2. Overview of algorithm138

2.1. Stokes equations139

Microfluidic devices operate at small length scales (feature width < 0.1mm) on small volumes of fluid (< 1�L)
traveling at slow speeds (< 1 cm s−1). At these scales, the Reynolds number is low (≪ 1), and Stokes flow becomes a
good approximation for the fluid flow (though not always [63]). Within the Stokes regime, the dynamics are dominated
by incompressibility and a balance of viscous and pressure forces. The momentum and continuity equations reduce to

∇ ⋅ � = 0, ∇ ⋅ u = 0, � = �(∇u + ∇uT ) − pI,

where � is the fluid stress, u is the fluid velocity, � is the dynamic viscosity, and p is the pressure. We consider a140

mixture of velocity (u = a) and traction (�n = b) boundary conditions, where n is the normal direction. The resulting141

meshing and discretization leads to a symmetric indefinite sparse linear system of equations for the unknowns u and p.142

Although we will limit our discussion to the incompressible stationary Stokes equations, most of the ideas are not143

specific to the Stokes equations. The proposed algorithm can be readily adapted to solve the linear systems that arise144

from the discretization of the Poisson equation, the heat equation, the incompressible unsteady Stokes equations, and145

the Navier-Stokes equations. Each of these problems results in one or more symmetric linear systems of equations146

whose sparsity and block structure are the same as the Stokes equations.147

2.2. Properties of microfluidic devices148

Although fluid domains may be very irregular and complex, this is not the case in some important applications.149

For example the plumbing in a typical building is composed almost entirely from pipes with standardized diameters,150

which meet at a relatively small number of standardized junctions (tee, elbow, cross, reducer, plug, valve, etc.). The151

advantages of designing the plumbing in buildings in this way are obvious; the standardized parts can be cheaply mass152

produced. As long as these pipes and standardized junctions are meshed and discretized in exactly the same way each153

time they occur, they will produce identical matrix blocks in the final system.154

Although microfluidic devices are fabricated entirely differently (typically by a process like CNC milling), in prac-155

tice the designs of these devices tend to closely resemble plumbing. These designs are dominated by standardized156

components (joints, mixers, delays) connected by straight (or less commonly circular) fixed-width channels. A typical157

chip is designed by first determining which components are required to perform the desired fluidic operations (combine158

two input fluids, mix them together thoroughly, let them react for a specified amount of time, etc.). Then, the com-159

ponents are connected by channels to route fluids from component to component in the proper sequence. The result160

is that, as with the plumbing example, one may mesh and discretize the fluid domain so that the final matrix contains161

many identical matrix blocks.162

6



original system scale row to solve for vector x2 eliminate x2 from other rows delete rows and columns
⎛

⎜

⎜

⎜

⎜

⎝

A1 B1
BT1 A2 B2

BT2 A3

⎞

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎝

x1
x2
x3

⎞

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎝

b1
b2
b3

⎞

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎝

A1 B1
MT
2 I M1

BT2 A3

⎞

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎝

x1
x2
x3

⎞

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎝

b1
u1
b3

⎞

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎝

S3 M3

MT
2 I M1

MT
3 S5

⎞

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎝

x1
x2
x3

⎞

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎝

u2
u1
u3

⎞

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎝

S3 M3

MT
3 S5

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

x1
x3

⎞

⎟

⎟

⎠

=
⎛

⎜

⎜

⎝

u2
u3

⎞

⎟

⎟

⎠

S1 = A−12

M1 = S1B2

M2 = B1S1

u1 = S1b2

M3 = −B1M1

S4 = BT2M1

S2 = B1MT
2

u2 = b1 − B1u1

u3 = b3 − BT2 u1

S3 = A1 − S2

S5 = A3 − S4

u4 = u1 −MT
2 x1 x2 = u4 −M1x3Task dependency:

Figure 1: Any row of a system can be eliminated, provided the diagonal block can be inverted. Elimination preserves system symmetry; the matrices
Ai and Si are symmetric. Each step of the elimination process requires a primitive linear algebra operation, which may be considered as a task. Even
on this very small example, opportunities for computing tasks in parallel emerge rapidly.
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Figure 2: Eliminating similar but independent rows benefits greatly from caching. In this case, the first elimination (red) generates 13 tasks, of which
6 are O(n3) matrix operations, where the blocks are n × n matrices. The second elimination (blue) generates only 6 tasks, all of which are much
cheaper O(n2) operations. Additional parallelism is introduced, including in the backsolve phase.

2.3. Elimination163

Gaussian elimination classically precedes by eliminating rows from a matrix one by one in a serial algorithm. One164

may begin by eliminating any row or block of rows (ignoring stability concerns) as shown in Figure 1. This effectively165

modifies neighboring rows of the matrix based on the sparsity pattern. The eliminated row may be removed from166

the system, though its entries will be required during the backsolve phase. This is equivalent to forming the Schur167

complement. If the original matrix is symmetric and the diagonal block is chosen as the pivot, the new matrix will also168

be symmetric, as can be seen in Figures 1 and 2.169

Observe that only the row being eliminated and its neighboring rows (based on the matrix sparsity pattern) are170

modified; rows that are not neighbors can thus be eliminated independently and in parallel. These are key observation171

that underlie the success of multifrontal methods [24]. If the two independent rows being eliminated contain identical172

matrix blocks, many of the calculations required to eliminate one of the rows can be reused when eliminating the other173
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row (See Figure 2).174

These observations suggest that significant performance improvements may be possible if one is able to create175

duplicated matrix blocks in the systemmatrix. Under general circumstances of irregular problem domains and irregular176

meshing, one would not expect duplicated matrix blocks to occur. The ability to benefit from caching relies on repeated177

geometry and meshing that takes advantage of it. As noted earlier, the geometry of microfluidic devices tends to be178

redundant; we just need to be careful to mesh and discretize these redundancies consistently.179

2.4. Pipes180

Long and thin channels (which we will generally refer to as pipes) are common in microfluidic devices; indeed, a181

significant fraction of the fluid domain may consist of pipes. Pipes are special for our purposes because they are very182

efficient to eliminate. Consider a long thin pipe, which is broken up into fixed-width slices. Each slice has identical183

geometry and is meshed and discretized identically. The resulting system matrix will be block tridiagonal. All of the184

blocks along the diagonal are identical, and all of the off-diagonal blocks are identical (up to transpose). The matrix185

follows the same pattern as in Figure 2.186

Observe that all odd rows may be eliminated independently for nearly the same cost as eliminating just one of the187

rows. The only calculations that cannot be reused are the much less expensive Qmatrix-vector multiplies and axpy188

operations that occur as part of the forward and backward triangular solves. Further, most of the matrices that are left189

behind after eliminating all of the odd rows are again identical (they all follow the (MT
3 ,S6,M3) pattern observed in190

the middle row at end end of Figure 2). Thus, the process can be repeated. This recursive even-odd elimination pattern191

is just cyclic reduction [42]. Ignoring vector operations, each recursive step requires a constant number of matrix192

operations. Since the number of recursive steps is logarithmic in the number of slices in the pipe, long pipes can be193

eliminated very efficiently. Moreover, caching is possible between pipes even when they have different lengths, as long194

as the pipe diameters and slice widths are the same. In practice, there are additional complications relating to scaling195

and orientation; these will be addressed in Section 3.9.196

2.5. Cross sections as blocks197

The process of meshing and discretizing our geometry into a linear system begins with a geometric definition of198

a block. These blocks divide the fluid domain into small regions whose discretizations will eventually become matrix199

blocks. Blocks should be redundant where possible to facilitate the formation of repeated matrix blocks; the choice of200

blocks will have significant performance implications.201

We have seen that a tridiagonal block matrix structure can be eliminated very efficiently and without fill-in using202

cyclic reduction. This suggests that the geometry should be sliced into cross sections that have only two neighboring203

cross sections as we do for pipes. This definition works for geometry that is topologically a pipe. For more irregular204

geometry like a tee junction, some blocks must have more than two neighbors, and some degree of fill-in is unavoidable.205

Instead, we seek to limit the propagation of fill-in through the matrix. We do this by inserting separators around206
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A B C D

Figure 3: Eliminating components will not fill in past separators. On the left we show an example domain, which consists of four components (three
arms and one joint) and is split into blocks marked by different colors. In (A) we show its corresponding system, where block matrices for separators
are marked by squares (◾ ◾ ◾), and other block matrices on the diagonal are marked by circles (⚫⚫⚫⚫⚫⚫). Non-zero off-diagonal block matrices
for connections are marked by *, colored by the connection’s parent block. In (B) we eliminate the bottom and top block (⚫⚫) inside the joint. This
introduces fill-ins (red circles ⚫) but they are all confined in the separators. In (C), we eliminate the remaining middle block (⚫) inside the joint.
Finally we eliminate all non-separators (⚫ ⚫ ⚫) to reach a system in (D). Note that before (D), eliminating a component does not cause fill-in in
other components.

irregular components. We eliminate the separators after all other blocks, effectively dividing the system into isolated207

matrices. Fill-in from any component is localized to the component itself and the separator blocks that bound it (See208

Figure 3). We can then define a (non-separator) block to be a cross section of geometry that has at most two neighboring209

non-separator blocks. In this way, we can use cyclic reduction to efficiently eliminate the blocks within components,210

which comprise the significant majority of blocks. At this point, only a relatively small number of separator blocks211

remain. They are eliminated last; fill-in during this stage may be significant, but it is limited by both the small number212

of blocks involved and the planar connectivity typically found in microfluidic devices.213

2.6. Reusable component214

Separators isolate components from each other, allowing them to be meshed and discretized independently. Du-215

plicated components need only be divided into blocks, meshed, and discretized once. In addition to saving time and216

space, this also ensures that duplicated components lead to duplicated blocks and duplicated block matrices. Reuse of217

computations occurs at the level of blocks, not components per se. For example, pipes of different lengths should be218

divided into blocks that are the same width so that calculations may be reused.219

Transforms can change the block matrices of a component, preventing immediate reuse. We can nevertheless reuse220

components by meshing and discretizing them in a canonical coordinate system and then assembling matrix blocks221

in the local coordinate system. This can be accomplished through row and column scaling on the final system, as we222

show in Section 3.9.223

2.7. Algorithm steps224

We close this overview with the algorithmic tasks that must be completed for the proposed algorithm along with225

forward references to the discussion of each step.226
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1. Identify canonical components (Section 3.3)227

2. Construct geometry blocks and identify canonical blocks (Section 3.4)228

3. Construct canonical block meshes (Section 3.5)229

4. Assign degrees of freedom to canonical blocks (Section 3.6)230

5. Assemble canonical matrices (Section 3.6)231

6. Assign global degrees of freedom (Section 3.7)232

7. Assemble the system matrix blocks (Section 3.8)233

8. Transform the right hand side (Section 3.9)234

9. Plan block elimination (Section 4.1)235

10. Execute jobs (Section 4.2)236

11. Transform the solution (Section 3.9)237

3. Discretization238

We are interested in discretizing the Stokes equations on thin and repetitive geometry. We adopt a standard finite239

element treatment and finite element pair for the Stokes equations, which we summarize here for completeness.240

3.1. Finite element formulation241

Our finite element discretization follows [64, 65]. We start directly with∇ ⋅�+f = 0, where � = �(∇u+∇uT )−pI,242

rather than simplifying to �∇2u + f = ∇p using the incompressibility condition. While this reduces the sparseness of243

our system, it simplifies the treatment of traction boundary conditions �n = b. We assume a single fluid phase, so that244

� is constant.245

Let w be a test function chosen from the same function space as the velocity u. Then, the weak form of the
momentum equation may be written as

0 = ∫Ω
w ⋅ (∇ ⋅ � + f) dV = ∫Ω

∇ ⋅ (w ⋅ �) − ∇w ∶ � + w ⋅ f dV = ∫)Ω
w ⋅ �n dA − ∫Ω

∇w ∶ � dV + ∫Ω
w ⋅ f dV

⟺ −∫)Ω
w ⋅ �n dA + ∫Ω

∇w ∶ � dV = ∫Ω
w ⋅ f dV

⟺ −∫)Ω
w ⋅ �n dA + ∫Ω

∇w ∶
(

�(∇u + ∇uT ) − pI
)

dV = ∫Ω
w ⋅ f dV ,

where f is the external force. LettingNi and Pi be bases for velocity and pressure,

u =
∑

i
Niui w =

∑

i
Niwi p =

∑

i
Pipi � =

∑

i
Piqi f =

∑

i
Nifi b =

∑

i
Nibi.

Noting the identities

∇(fc) = c∇fT (wzT ) ∶ (uvT ) = (wT u)(zT v) (wzT ) ∶ (vuT ) = wT (vzT )u
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and using the definitions

Dij = � ∫Ω
)Ni
)x

()Nj

)x

)T

dV tr(Dij) = � ∫Ω

(

)Ni
)x

)T )Nj

)x
dV Aij = tr(Dij)I + Dij ,

the integrals can be written as

∫Ω
�∇w ∶ (∇u + ∇uT ) dV = ∫Ω

�∇

(

∑

i
Niwi

)

∶
⎛

⎜

⎜

⎝

∇

(

∑

j
Njuj

)

+ ∇

(

∑

j
Njuj

)T
⎞

⎟

⎟

⎠

dV (1)

= ∫Ω
�

(

∑

i
wi
(

)Ni
)x

)T
)

∶

(

∑

j
uj
()Nj

)x

)T

+
∑

j

()Nj

)x

)

uTj

)

dV (2)

=
∑

ij ∫Ω
�

(

wi
(

)Ni
)x

)T
)

∶

(

uj
()Nj

)x

)T)

dV (3)

+
∑

ij ∫Ω
�

(

wi
(

)Ni
)x

)T
)

∶
(()Nj

)x

)

uTj

)

dV (4)

=
∑

ij
wTi uj

(

� ∫Ω

(

)Ni
)x

)T )Nj

)x
dV

)

+
∑

ij
wTi

(

� ∫Ω
)Ni
)x

()Nj

)x

)T

dV

)

uj (5)

=
∑

ij
wTi

(

tr(Dij)I + Dij
)

uj (6)

=
∑

ij
wTi Aijuj . (7)

Using the definitions

gij = −∫Ω
)Ni
)x

Pj dV kij = ∫Ω
NiNj dV mij = ∫)Ωn

NiNj dA

we have

∫Ω
∇w ∶ pI dV = ∫Ω

∇ ⋅ wp dV = ∫Ω

(

∑

i
wTi

)Ni
)x

)(

∑

j
Pjpj

)

dV (8)

=
∑

ij
wTi pj ∫Ω

)Ni
)x

Pj dV = −
∑

ij
wTi gijpj (9)

∫Ω
w ⋅ f dV = ∫Ω

(

∑

i
Niwi

)T(
∑

j
Njfj

)

dV (10)

=
∑

ij
wTi fj ∫Ω

NiNj dV =
∑

ij
wTi fjkij (11)

∫)Ω
w ⋅ �n dA = ∫)Ωn

w ⋅ b dA = ∫)Ωn

(

∑

i
Niwi

)T(
∑

j
Njbj

)

dA (12)

=
∑

ij
wTi bj ∫)Ωn

NiNj dA =
∑

ij
wTi bjmij . (13)
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For the incompressibility equation, we begin with ∇ ⋅ u = −l, where l is a source term that we include to simplify
analytic testing. Physically, l = 0 (See Section 6.2). Then, the weak form of the incompressibility equation is just

−∫Ω
�∇ ⋅ u dV = ∫Ω

�l dV . (14)

Substituting in our basis using the definition

ci = ∫Ω
Pil dV (15)

produces the integrals

∫Ω
�∇ ⋅ u dV =

∑

ij
qi

(

∫Ω
Pi
)Nj

)x
dV

)

uj = −
∑

ij
qigTjiuj (16)

∫Ω
�l dV =

∑

i
qi ∫Ω

Pil dV =
∑

i
qici. (17)

Let A, G, K, and M denote block matrices whose blocks are given by Aij , gij , kij , and mij . Similarly, let u, p, b, c,
and f be block vectors whose blocks are given by ui, pi, bi, ci, and fi. More precisely,

(A)id+�,jd+� = (Aij)�� (G)id+�,r = (gir)� (u)id+� = (ui)� (18)
(K)id+�,jd+� = kij��� (p)r = pr (f)id+� = (fi)� (19)
(M)id+�,qd+� = miq��� (c)r = cr (b)qd+� = (bq)� , (20)

where d is the spatial dimension (2 or 3), indices �, � are used for spatial indices, indices i, j are used for velocity sample
locations, index r is used for pressure sample locations, and index q is used for boundary velocity sample locations.
Then, we can express the full system as

⎛

⎜

⎜

⎝

A G

GT 0

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

u

p

⎞

⎟

⎟

⎠

=
⎛

⎜

⎜

⎝

Mb +Kf + d

c

⎞

⎟

⎟

⎠

, (21)

where d is a vector of velocity boundary conditions. This vector is obtained by eliminating velocity dofs associated246

with velocity boundary conditions from the system and moving them to the right hand side.247

3.2. Taylor-Hood element248

The choice of basis functions Ni and Pi plays an important role in the numerical stability of a discretization; the249

Stokes equations require a stable finite element pair to avoid serious numerical problems [66]. We adopt the (2,1)250

Taylor-Hood element (See Figure 4), which is known to be a stable pair for the Stokes equations [67]. This choice251

is not essential, and other elements may be preferred [68]. We have found this choice to provide a favorable tradeoff252

between discretization accuracy, implementation complexity, and numerical stability.253
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Figure 4: (2,1) Taylor-Hood elements for 2D and 3D. The filled circles (⚫) are velocity degrees of freedom and hollow circles (○) are pressure
degrees of freedom.

3.3. Component construction254

For the purposes of this work, we assume that the input geometry is already broken into labeled components. That255

is, we know what portions of the fluid domain are pipes, joints of various connectivities (bends, tees, crosses), mixers,256

etc. This design decision greatly simplifies the implementation of the algorithm, and it reflects the way in which these257

devices are constructed in practice.258

The first step in our meshing and discretization process is to transform each component into a canonical coordi-259

nate system (with respect to translations, rotations, and optionally scale). We refer to these as canonical components.260

This facilitates the identification of reused components; components are equivalent when their canonical components261

are the same. Only unique canonical components are represented explicitly. Components are represented as a pointer262

to a canonical component, a transformation, and connectivity information. The transformations will be used for as-263

sembling matrix blocks and transforming the right hand side and solution vectors, as described in Section 3.9. Only264

canonical components are passed forward to the later stages of the meshing and discretization process (block construc-265

tion, meshing, and integration). Connectivity information will be used to assemble the final matrix blocks and global266

system.267

The connectivity between components is important for matrix construction, since connections correspond to off-268

diagonal matrix blocks in the final system. We do this in terms of connections. Components have sockets, which are269

places along their boundary where they connect to neighboring components. A pipe has a socket at each end; a tee-270

junction has three sockets. Connections have a well-defined cross-sectional shape, which may differ from connection271

to connection; these are also canonicalized. Connections consist of (a) the two components that are being connected,272

(b) which socket of each component is involved, and (c) the canonicalized cross section shape.273

Wewill use the canonical cross section shapes later to ensure consistent mesh generation and discretization between274

components and blocks. In our 2D implementation, cross sections are line segments. In our 3D implementation, we275

assume rectangular cross sections between components with fixed depth but potentially different widths. This is con-276

sistent with how many microfluidic devices are manufactured, but other cross section shapes may be more appropriate277

in other contexts (e.g., circular for plumbing). The algorithm is not sensitive to the shapes of cross sections; our use of278

rectangular cross sections is purely for convenience.279
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3.4. Block construction280

The block construction phase has three primary goals: (a) divide canonical components into geometry blocks, (b)281

identify duplicated geometry blocks, and (c) construct a block-level connectivity graph from the component-level con-282

nectivity graph. Geometry blocks are small geometric regions of the fluid domain that will be meshed and discretized283

and will correspond to block matrices in the final global system. Geometry blocks are the level of granularity at which284

meshing and finite element integration are performed. Ideally, the domain will be divided into large numbers of small285

blocks, most of which are identical and have few neighbors.286

In our implementation, we used simple rules to divide components into blocks. Pipes are divided into cross sections287

(geometry blocks) of a fixed characteristic width ℎ (the triangle edge length). Since pipes may have any length, the288

last geometry block in a pipe may have an irregular width, which we limit to the range [ℎ2 , 3ℎ2 ]. This simple strategy289

ensures that all but one geometry block within each pipe will be identical, and these blocks will also be identical to290

the geometry blocks of other pipes with the same cross section. We divide irregular canonical components into strips291

of width approximately equal to ℎ; strips may run parallel or perpendicular to the pipe direction. Geometry blocks292

are constructed in a canonical frame to identify duplicates. As with canonical components, we perform all per-block293

operations on these canonical blocks. Each physical block stores a transform and a pointer to its canonical block.294

Once canonical components have been divided into geometry blocks, we must update our connectivity graph.295

Nodes of the graph are blocks, which store a transform and point to a canonical block. Edges of the graph represent296

connections between blocks. These connections store the same information as their component-wise counterparts:297

the blocks being connected, the socket of each block being connected, and the canonical cross section. Note that298

connections may involve many blocks.299

The interiors of geometry blocks are disjoint (they do not overlap). When the boundaries of two geometry blocks300

intersect, we call the blocks neighbors. Based on this, we divide geometry blocks into three types: regular blocks,301

irregular blocks, and separator blocks. Separator blocks occur at the boundaries of components; one of the blocks302

adjacent to each connection is designated as a separator block. In practice, one of these components will be a pipe (or303

at least pipe-like); we designate the outermost blocks of these pipes as the separator blocks. As many of the remaining304

blocks are classified as regular as possible, subject to the rule that regular blocks may have at most two neighboring305

regular blocks. The remaining blocks are classified as irregular blocks. We illustrate different types of geometry blocks306

in Figure 5. The three types of geometry blocks will be treated differently during the elimination stage of the algorithm.307

3.5. Canonical mesh construction308

Once we have divided our geometry into geometry blocks, we need to construct meshes on those blocks. We use309

tetrahedral meshes (triangle meshes in 2D). We divide the algorithm into two stages.310

Canonical cross section meshing. The first stage is to mesh the connections between blocks. We independently mesh311

each canonical cross section. Although the meshing of these cross sections can be performed arbitrarily, special con-312
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Figure 5: Illustration of terminology. In A and B we show two example domains, where components are enclosed in dotted lines. Components are
divided into smaller pieces called geometry blocks; most steps of the algorithm function at this level of granularity. Geometry blocks are classified
by their connectivity. Geometry blocks that are on the end of a pipe and touch another component are designated as separator blocks, or separators
(■). Non-separator geometry blocks with at most two non-separator neighbor blocks are called regular blocks (■). All remaining geometry blocks
have three or more non-separator neighbor blocks and are called irregular blocks (■). Between geometry blocks we might have full (■) or partial
(■) connections, shown in B and illustrated separately in C and D. We call the block adjacent to a connection either a full block or an edge-on block
based on the connection type, as shown in C and D. In B, we identify blocks with unique shapes as canonical blocks (■). Then we triangulate the
canonical blocks and assign the degrees of freedom. When two geometry blocks are next to each other, their canonical degrees of freedom will be
duplicated on their boundary, as shown in E. We resolve these to get the global degrees of freedom in F.

siderations are needed to make sure that the final meshes will be consistent. We achieve this by choosing an interface313

mesh that is reversible. That is to say that the interface mesh looks the same when viewed from either side.314

Canonical block meshing. Meshing the interfaces between blocks first based on canonical cross sections gives us a315

number of important benefits. The interface between blocks is fixed, so we can construct meshes for each block inde-316

pendently. Themesh for the geometry blockmust conform to the interface mesh, but its generation is otherwise flexible.317

Since canonical blocks share the same geometry and the same canonical cross sections (and thus the same interface318

meshes), we can also give them the same mesh. This allows us to construct meshes independently per canonical block.319

Since the number of canonical blocks is typically much less than the number of geometry blocks, we typically only320

need to construct and store a mesh for a small fraction of the total fluid domain. We refer to the meshes constructed321

for canonical blocks as canonical meshes.322

Meshing restrictions. Although the meshing strategies are generally flexible, we do impose a few extra requirements.323

We require that each element have at least one edge that is not on the boundary. This would be violated by a tetrahedron324

at a corner of the domain with three of its faces on the domain boundary; all six of the edges of this tetrahedron are on325

the boundary. Note that an edge that lies in the interior of a cross section between two blocks is not considered to be a326
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boundary edge. That is, it is on the boundary of the block but not on the boundary of the full fluid domain mesh. This327

topology restriction is needed to prevent a numerical nullspace in our final discretization [69]. The second requirement328

that we impose on block meshes is a connectivity requirement based on the assignment of cross section degrees of329

freedom to blocks; we address this in Section 3.7.330

3.6. Canonical block matrix assembly331

Once we have constructed our canonical meshes, we can begin the process of matrix assembly. The first step of our332

matrix assembly process is to compute the finite element integrals within each canonical mesh. We allocate degrees of333

freedom according to our Taylor-Hood finite element basis (See Section 3.2). We have a pressure degree of freedom at334

each vertex and co-located velocity degrees of freedom at each vertex and each edge of the mesh (See Figure 4). The335

Stokes equations are assembled into a symmetric indefinite linear system following the formulation in Section 3.1. We336

refer to these matrices as canonical block matrices.337

Canonical block matrix assembly may be performed independently per canonical mesh (i.e., per canonical block).338

Since many blocks often share the same canonical block, matrix assembly is typically only performed for a subset of339

blocks. Matrix assembly occurs in the configuration of the canonical blocks, not in the configuration of the actual340

blocks, which allows reuse of canonical blocks that differ in orientation. We represent our canonical block matrices341

as dense matrices; the number of degrees of freedom within each block should be kept small. See Section 5.2 for a342

discussion of block size and the use of dense matrix blocks. In practice, we delay canonical block matrix assembly343

until the execution stage. Matrices are assembled when they are first required to improve memory and cache usage.344

3.7. Global degrees of freedom assignment345

At this stage of the algorithm, we have a notion of canonical degrees of freedom, which are defined from the346

canonical mesh that we have computed for each canonical block. The canonical block matrices that we have assembled347

are indexed in terms of the canonical degrees of freedom. Canonical degrees of freedom do not correspond to physical348

degrees of freedom per se; canonical blocks are assembled in a reference coordinate system, and a single canonical349

block may correspond to many different geometry blocks within the fluid domain.350

Geometry blocks naturally inherit degrees of freedom from their canonical block; we refer to these degrees of351

freedom as geometry block degrees of freedom. Geometry block degrees of freedom do correspond to physical degrees352

of freedom, but a single physical degree of freedom may belong to more than one block. This occurs for all degrees of353

freedom which occur along the connections between blocks, as shown in Figure 5. Our task is to assign each physical354

degree of freedom to one of geometry blocks that contains it. When doing so, we must be careful to avoid numerical355

problems later in the algorithm (see the note on stability restrictions below and Section 5.1 for details). We will call356

these global block degrees of freedom; they exist in one-to-one correspondence with physical degrees of freedom.357

The degree of freedom mapping must be performed on geometry blocks and not canonical blocks. It is sometimes358

not possible to assign ownership of degrees of freedom to all instances of a canonical block in the same way. Blocks359
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that are not indexed the same way do not produce duplicated matrix blocks in the final system, so it is desirable for the360

mapping to be done the same way whenever possible.361

Boundary conditions. Boundary conditions affect the assignment of global block degrees of freedom. Velocity degrees362

of freedom are not allocated where velocity boundary conditions are being enforced; these velocity samples are instead363

moved to the right hand side. Pressure degrees of freedom are allocated where velocity boundary conditions are being364

enforced.365

Stability restrictions. In order to avoid breakdowns during the elimination process, we divide the degrees of freedom366

along each connection between two blocks evenly between the two blocks. The reasons for this are discussed in detail367

in Section 5.1.368

Connection types. When assigning parent/child at each connection (see below), it is helpful to distinguish between369

connections with one block on each side (full connection) and connections where a single block on one side of the370

connection touches multiple blocks on the other (partial connection). When a block occupies one entire side of a371

connection, we call the block a full block. Otherwise, the block is considered an edge-on block. Full connections have372

two full blocks. Partial connections have one full block and many edge-on blocks. We illustrate these concepts in373

Figure 5.374

Ownership convention. A simple convention in 2D to resolve ownership of degrees of freedom on connections is to375

walk around the perimeter of a geometry block in counterclockwise order. When you encounter a connection at which376

you are a full block, the half of the connection that you encounter first is the half owned by that block. The degrees of377

freedom on the other half are owned by the block or blocks on the other side of the connection. With this convention,378

both full blocks at a full connection agree on which half of the degrees of freedom are owned by each block. The379

only ambiguity is the degree of freedom in the middle (which may be at a vertex or an edge). We must establish a380

globally-consistent rule for the ownership of this middle degree of freedom. We refer to the block that owns the middle381

degree of freedom as the parent and the block that does not own it as the child. Note that a block may (and usually is)382

a child at one connection and a parent at another. We employ two rules:383

1. At partial connections, the full block is always the parent.384

2. Blocks that are full blocks with respect to exactly two connections are the parent of one connection and the child385

of the other.386

When the two rules come into conflict, the first rule wins. The purpose of these rules is to avoid creating matrix387

dependencies between non-neighbor blocks (See Section 3.7.1). The assignment is otherwise arbitrary.388
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Figure 6: Block meshing with different diagonal edge directions. The background colors indicate the territory of blocks. The colors on edges
and vertices indicate which block owns the degrees of freedom. The filled and hollowed circles are velocities and pressures respectively. The
triangulation on the left is able to separate non-adjacent blocks. However swapping the direction of the diagonal edges will allow the non-adjacent
blocks (blue and red blocks shown on the right) interact. The dashed triangle shows an element containing the blue and red vertices that would
introduce a non-zero matrix entry.

Triple junctions. At partial connections (P), there are degrees of freedom shared by three blocks. One of these blocks389

(A) is the full block with respect to the partial connection. The other two are edge-on blocks (B, C) with respect to this390

connection; they always connect to each other through a full connection (Q). The partial connection P takes precedence;391

block A owns the same degrees of freedom that it would if P were a full connection. If the degree of freedom is not392

owned by block A, we decide whether the degree of freedom belongs to block B or C by looking at connection Q.393

3.7.1. Spurious connectivity394

When we constructed geometry blocks, we did so in a way that ensured that most blocks only touch two neighbors.395

Geometry blocks were considered neighbors only if their boundaries intersected. With respect to degrees of freedom,396

however, the notion of connectivity is somewhat different. Two degrees of freedom are connected if they share an397

element; pairs of degrees of freedom belonging to the same element correspond to nonzero matrix entries. We want to398

make sure that the matrix notion of connectivity corresponds to the geometry notion. As shown in Figure 6, it may be399

possible for degrees of freedom of non-neighboring blocks to be connected if care is not taken. This occurs whenever400

an element of a geometry block has vertices belonging to two different blocks. (This also occurs at triple junctions, but401

in this case the blocks involved are already neighbors.) In the case of our simple triangulation strategy, this problem402

is avoided by (a) choosing the diagonal directions carefully and (b) preventing the block from being the child on both403

connections. In rare cases, spurious connectivity is still not eliminated; we resolve this by merging blocks.404

3.8. System assembly405

During canonical block matrix assembly, we perform finite element integration on each canonical block to compute406

canonical block matrices. This gives us a matrix and right hand side for each canonical block as in (21). We will denote407

the matrix for block a as Ba and the right hand side as ba. These quantities are indexed by canonical block degrees408
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of freedom. Observe that Ba is a symmetric matrix. We will ignore transformations in this section; we show how to409

include them Section 3.9.410

The global system that we must solve has matrix blocks that are indexed with global degrees of freedom. Global411

indices are unique (each degree of freedom belongs to exactly one global matrix block), while a single degree of412

freedom may exist within multiple canonical blocks. This means that integral contributions may have been calculated413

for a particular degree of freedom within multiple canonical blocks. These contributions must be added up while414

calculating global matrix blocks.415

We introduce index mapping matrices Pab to denote the correspondences between degrees of freedom in global416

blocks and canonical blocks. We define (Pab)ij = 1 if the global degree of freedom i within block a corresponds to417

the same degree of freedom as the canonical degree of freedom j within block b. (Pab)ij = 0 otherwise. Note that Paa418

is just the canonical-to-global index map for block a. Since all dofs in a global block exist inside the corresponding419

canonical block, PaaPTaa = I.420

Let Eab be the global matrix block corresponding to block-row a and block-column b. Let the corresponding right
hand side blocks be denoted as ha. These blocks can be computed from canonical matrix blocks as

Eab =
∑

c
PacBcPTbc ha =

∑

c
Pacbc ,

where c runs over adjacent blocks. If a and c are not neighboring blocks (they do not share any degrees of freedom),421

then Pac = 0.422

3.9. Transforms423

To introduce transforms into our matrix blocks, we must first determine how integrals transform over individual424

elements. We assume that all transforms are affine (per block).425

Element-wise transforms. Consider a single element. Aworld space coordinate x can be transformed from its canonical
space version x̂ by x = Fx̂ + c, where F is a constant transform matrix and c is a constant displacement. Note that
we are requiring that the transformation be affine, and we will later restrict it further to a composition of translations,
rotations, and uniform scale. Let J = det F. The basis functions in world space (without a hat) and in canonical space
(with a hat) and their derivatives are related by

Ni(x) = N̂i(x̂) = N̂i(F−1(x − c)) Pi(x) = P̂i(x̂) = P̂i(F−1(x − c))

)Ni
)x

(x) = F−T
)N̂i
)x̂

(F−1(x − c))
)Pi
)x
(x) = F−T

)P̂i
)x̂
(F−1(x − c)).

Our canonical matrix blocks Ba consist of viscosity blocks A and gradient blocks G, as in (21). The blocks A are
comprised of per-element blocks Aij = tr(Dij)I + Dij , which are defined in (1). The blocks G are comprised of
per-element vectors gij , which are defined in (8). These transform as

gij = JF−T ĝij Dij = JF−T D̂ijF−1.

19



The matrix Aij , however, does not generally transform in a simple way, unless F−TF−1 = I tr(F−TF−1). This is true
if our transform is comprised of a combination of rotation, uniform scale, and translation. This restriction is why we
were limited to transformations of this type when computing canonical blocks. With this assumption, we also have

Aij = JF−T ÂijF−1.

Blockwise transforms. Blocks are composed by combining element-wise Aij and gij into block-wise versions A and
G. We can express these in world space and canonical space matrices (for block a) as

Ba =
⎛

⎜

⎜

⎝

A G

GT 0

⎞

⎟

⎟

⎠

B̂a =
⎛

⎜

⎜

⎝

Â Ĝ

ĜT 0

⎞

⎟

⎟

⎠

Ba = HT
a B̂aHa,

where Ha is defined as

Ha =
√

J

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

F−1

⋱

F−1

1

⋱

1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

Observe thatHa applies thematrix transformF−1 to each co-located velocity degree of freedom and only scales pressure426

degrees of freedom. Since both pressure and viscosity blocks are scaled by J , this scaling is split between the row and427

column scaling. This allows us to use the same Ha on both sides. Note that Ha is indexed using canonical indexing.428

Note also that the index a refers to the block a of the fluid domain, not a canonical block. Canonical blocks do not have429

transformations associated with them. Rather, each block stores a pointer to a canonical block and the transformation430

of the block relative to its canonical block. The matrix Ha is used to transform from the canonical coordinate system431

into world space. Although Ha is defined using canonical indexing, we can define a globally-indexed version by432

Ha = PaaHaPTaa. This matrix has the same form as Ha, but it contains a different number of dofs.433

Global matrix blocks in canonical coordinates. We can define a canonical-space version Êaa of the world space block
Eaa, which is naturally defined according to Eaa = H

T
a ÊaaHa or Êaa = Ha

−T
EaaHa

−1. We can extend this to off-
diagonal blocks as

Êab = Ha
−T

EabHb
−1
.
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Then,

Eab =
∑

c
PacBcPTbc

Êab =
∑

c
Ha

−T
PacBcPTbcHb

−1

=
∑

c
Ha

−T
PacHT

c B̂cHcPTbcHb
−1

=
∑

c
PacB̂cP

T
bc

Pac = Ha
−T

PacHT
c .

This directly relates global matrix blocks in canonical coordinates with the canonical block matrices.434

Transformation invariance. The matrix Pac maps degrees of freedom (as Pac does) but also applies a transformation435

along the way. This transformation is
√

J−1a JcFTa F
−T
c for co-located velocity degrees of freedom and

√

J−1a Jc for436

pressure degrees of freedom. If two blocks are connected, then the relative orientation between the two blocks is437

fixed. If one block is rotated, scaled, or translated, then the connected block must be rotated, scaled, and translated438

by the same amount in order to remain connected. This would replace Fa → RFa and Fc → RFc , so that FTa F−Tc →439

FTaR
TR−TF−Tc = FTa F

−T
c is unchanged. Similarly, J−1a Jc = det(FTa F

−T
c )−1 must remain unchanged.440

Duplicated matrix blocks. Noting that Pac does not depend on block orientation suggests that Êab may be computed441

once for each canonical block, but this is not the case. We will have Êab = Êcd if (a) all of the blocks involved in442

the sum correspond to the same canonical blocks, (b) are connected through the same sockets, and (c) are indexed the443

same way in global indexing. For example, Êaa ≠ Êcc if blocks a and c are connected to different types of blocks, even444

though a and c have the same canonical block. Requirement (c) is actually somewhat stronger than is required, since445

not all indices of the blocks involved may participate in the computation of Êab. Nevertheless, we use rule (c) since it446

is easy to check during global degree of freedom assignment. Identifying copies of Êab that are the same is critical, as447

this the only form of redundancy that will be passed to the final linear system that must be solved.448

Transformed system. Consider a simple geometry consisting of three blocks (1, 2, and 3) connected in sequence. The
world-space global system that must be solved looks like

⎛

⎜

⎜

⎜

⎜

⎝

E11 E12
ET12 E22 E23

ET23 E33

⎞

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎝

x1
x2
x3

⎞

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎝

b1
b2
b3

⎞

⎟

⎟

⎟

⎟

⎠

,
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Here, xa are the degrees of freedom assigned to block a (including velocity and pressure). In general, the blocks Eab
will vary with the orientations of the blocks. We can replace these with canonical-space versions

⎛

⎜

⎜

⎜

⎜

⎝

H
T
1 Ê11H1 H

T
1 Ê12H2

H
T
2 Ê

T
12H1 H

T
2 Ê22H2 H

T
2 Ê23H3

H
T
3 Ê

T
23H2 H

T
3 Ê33H3

⎞

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎝

x1
x2
x3

⎞

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎝

b1
b2
b3

⎞

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎝

Ê11 Ê12
ÊT12 Ê22 Ê23
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⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎝

H1x1
H2x2
H3x3

⎞

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎝

H1
−T

b1
H2

−T
b2

H3
−T

b3

⎞

⎟

⎟

⎟

⎟

⎠

,

This amounts to solving for transformed degrees of freedom ya = Haxa with a canonical-spacematrix and a transformed449

right hand side. The solution is easily transformed back into world space with xa = Ha
−1
ya. Solving this canonical-450

space version of the problem is preferable since it will normally contain many more duplicate matrices than the global451

space version of the problem.452

As with canonical block matrix assembly, we delay the assembly of the global system matrix blocks until the task453

execution phase. These matrix blocks are assembled from canonical block matrices as they are needed.454

4. Elimination algorithm455

With our global system fully assembled, our next task is to solve the resulting linear system. The system is block456

sparse. Many of the blocks in the system are duplicates of other matrix blocks, possibly with transpose. The elimination457

algorithm proceeds in four phases.458

Regular blocks. Regular blocks, by definition, have at most two neighboring regular blocks. If all other blocks are459

removed, the global system decomposes into separate components (each geometric component corresponds to a con-460

nected component in the resulting matrix). Each of these connected components is tridiagonal and can be eliminated461

efficiently with cyclic reduction. We use this cyclic reduction order to eliminate all regular blocks from the global sys-462

tem. Note that regular blocks may have more than two neighbors in the global system due to the presence of irregular463

blocks and separators. Irregular blocks and separators result in fill-in during elimination, but they also bound this fill-in464

by preventing it from spreading outside of a component. The use of cyclic reduction exposes a large number of tasks465

that can be executed in parallel. In the presence of duplicate matrix blocks (especially pipes), it is also very effective466

at exposing caching opportunities. The vast majority of blocks are regular, so relatively few blocks remain after this467

stage of elimination.468

Irregular blocks. After regular blocks are eliminated, only irregular blocks and separators remain. Irregular blocks469

are eliminated next in arbitrary order. Eliminating irregular blocks creates fill-in, but separators bound the fill-in by470

preventing it from spreading to other components. As long as care is taken to ensure that the order of elimination is471
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the same every time the blocks in a component are eliminated (start cyclic reduction from the same side, and eliminate472

irregular blocks in the same order), nearly all of the computations involved in eliminating one copy of a component473

will coincide exactly with the computations needed to eliminate another copy.474

Separators I. Separators are eliminated in two phases. During the first phase, separators with at most two neighbors475

are eliminated in arbitrary order. These blocks are easy to detect, and their elimination never produces fill-in.476

Separators II. The remaining separators are eliminated from the system. We use COLAMD order [17] to reduce fill-in.477

This is the only elimination stage where the amount of fill-in produced is not readily bounded. This is compensated by478

the fact that only a small fraction of the original number of blocks remain in the system. The planar topology if typical479

microfluidic devices also tends to limit fill-in. After this stage, all rows of the system have been eliminated.480

4.1. Planning and optimization481

Each phase of elimination proceeds by repeated application of block-row elimination. Each row operation consists482

of a sequence of basic linear algebra operations (See Figures 1 and 2). The elimination stages are treated as planning483

stages; rather than performing the operations required, we instead treat each operation as a tasks. The dependency484

relationships between the tasks form a directed acyclic graph.485

Forward and backward substitution. The row elimination operation also emits tasks for both forward and backward486

substitution. Note that the operations that will be required for backward substitution are known during elimination487

stage, even though these tasks would not be able to execute until after the forward phase.488

Matrix and vector IDs. To facilitate handling duplicates, we store a sparse matrix of matrix IDs. Each essentially489

unique block matrix is assigned a unique ID. Two matrices are not considered essentially unique if they differ only by490

negation or transpose. We reserve a bit for negation and a bit for transpose to represent matrices that are essentially the491

same as another matrix. We reserve two special IDs to indicate a zero matrix and an identity matrix; since the block492

row and block column in which the matrix is stored uniquely identifies its dimensions, it is unnecessary to distinguish493

special matrices of different sizes. A similar ID scheme is applied to vectors.494

Caching. Each task consists of a simple linear algebra operation and produces an intermediate matrix or vector as495

output. Each of these intermediate quantities is assigned an ID. A simple hashing scheme is used to detect that an496

intermediate quantity is being computed twice. The hashing is aware of negation, transpose, associativity, and (for497

addition) commutativity. We do not include distributivity, as this would make the problem very difficult. This simple498

hashing scheme allows us to detect and eliminate duplicate calculations and simply reuse the results of the earlier499

computation. This simple idea is the basis for the majority of the performance benefits observed from the proposed500

algorithm.501
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Operation simplification. One benefit of representing identity and zero objects with special indices is that we are able502

to simplify or eliminate many operations during the planning stage. For example, during an elimination step a matrix-503

vector multiply by a zero vector simply results in the ID for the zero vector; no task is produced. Similarly, when504

a zero matrix is added to another matrix, the ID for the second matrix is returned without generating a task. These505

simplifications can be quite dramatic. For many problems, nearly all initial right hand side vectors are zero, and the vast506

majority of vector operations that occur during forward elimination will be optimized away. When it does not prevent507

caching opportunities, we merge tasks to correspond to BLAS operations. This allows us, for example, to merge some508

sequences of operations (A = B + C , B = −D, C = EF , E = GT ) into a single BLAS operation (A = −D + GTF ).509

This also allows us to use the same memory location for A and D. We use the Intel MKL-BLAS for our basic linear510

algebra and LAPACK for our matrix inverses (and final-block pseudo-inverse when required).511

Stability and pseudo-inverse for the last block. Our stability considerations ensure that our elimination procedure does512

not break down during elimination. That is, we will never be required to invert a matrix block that is singular. The513

one exception to this is the very last block. If the whole system contains a constant pressure nullspace due to the514

absence of traction boundary conditions, the last block to be inverted will be singular. We perform a pseudo-inverse on515

this singular block using the singular value decomposition, which we compute using the appropriate LAPACK gesvd516

routine. This is done at most once and does not affect performance.517

4.2. Task execution518

During the task execution phase, we perform all of the actual computations required for elimination. In addition,519

we also assemble the block matrices for the global system matrix when they are required by elimination calculations520

(See Sections 3.6 and 3.8). These tasks are both computationally intensive and memory intensive, and they benefit521

from the parallelism, load balancing, and memory management that we perform during task execution. In addition to522

a core computation, tasks are also responsible for allocating and assembling finite element matrices (if required and523

not already available), allocating space for their output (unless it shares space with an input), and freeing memory for524

intermediates that are no longer required.525

We assign a priority to each task equal to the length of the longest dependency chain starting at the task [70, 71, 72].526

The time required to complete the most expensive dependency chain places a lower bound on the time required to527

complete a set of tasks, even if unlimited processors are available to complete them. These priorities tend to encourage528

long dependency chains to be executed quickly. Indeed, favorable scaling to 16 cores is observed with the proposed529

method (See Section 6.4).530
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Figure 7: Here we show how different placements of degrees of freedom affect the elimination. The background colors indicate the territory of
blocks. The colors on edges and vertices indicate which block owns the degrees of freedom. The filled and hollowed circles are velocities and
pressures respectively. The left, bottom, and top sides are with velocity boundary conditions. On the left eliminating the red block would fail. This is
because the degrees of freedom on the edge (marked by dashed rectangle) are all owned by the green block, and the elimination of the red block can
be regarded as solving a smaller system with solely velocity boundary conditions (three from the original domain and right side being the effective
one). The constant pressure nullspace makes the system singular. We solve this by dividing the degrees of freedom between the adjacent blocks
(shown on the right).

5. Analysis531

5.1. Stability532

Being equivalent to un-pivoted Gaussian elimination on a permuted system [73], breakdowns (zeros on the diag-533

onal) and entry growth are in general possible [39]. Cyclic reduction has been extensively studied for the solution of534

the Poisson equation, which is symmetric and positive definite. It has been shown that cyclic reduction is stable for535

diagonally dominant and symmetric positive definite systems [42], where off-diagonal entries even tend to become536

smaller in subsequent iterations [36, 74]. Since our systems are symmetric indefinite, we must take care to avoid these537

problems.538

We place a restriction on block meshing (See Section 3.4) to avoid numerical nullspaces and elimination break-539

downs. Assignment of global degrees of freedom also plays an important role in preventing breakdowns. Consider540

the elimination of an individual row. As the first step we invert the row’s diagonal block matrix. This block is just a541

Stokes flow discretization of the corresponding geometry block with some effective boundary conditions. When the542

effective boundary conditions correspond to velocity boundary conditions, this discretization has the constant-pressure543

nullspace. This situation occurs when we assign all shared degrees of freedom to one of the neighboring blocks. We544

illustrate one example in Figure 7. Our solution to this problem is to split the shared degrees of freedom between the545

neighbor blocks.546

5.2. Scaling547

One of the limitations of the proposed method is its scaling with resolution. In the absence of caching opportunities,548

we will have n geometry blocks, each with m degrees of freedom. Let s be the number of separators (similar to the549
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number of components).550

Memory usage. Each block is dense and requires O(m2) storage, for O(m2n) overall storage. The first three phases of551

elimination create at most a constant amount of fill-in, so total memory use through the end of these phases is O(m2n).552

This leaves us with s ≪ n separators. During this phase, fill-in is possible. Based on the planar topology, the number553

of operations should grow as O(s1.5), which leads to O(m2s1.5) additional storage. Under refinement by a factor of k,554

n → kn, m → km (m → k2m in 3D), and s → s. This leads to O(k3) (2D) or O(k5) (3D) scaling in memory usage. In555

practice, actual memory requirements are significantly better than these predictions, since many blocks are duplicates556

and need not be stored. It is worth noting that the reduced memory usage may also indirectly improve performance by557

reducing memory bandwidth requirements, since many block matrices will be reused. Nevertheless, this is noticeably558

worse than the optimal scaling of O(k2) (2D) and O(k3) (3D). Indeed, memory is the limiting factor of our method in559

3D, where we start reaching our memory limitations at around 10M degrees of freedom on realistic geometry.560

Computational cost. Computational cost closely follows memory usage, except that operations on our blocks scale561

as O(m3). This gives us O(m3n + m3s1.5) computational cost. The factor of s1.5 accounts for fill-in during the final562

elimination step and follows the asymptotics of reordered sparse elimination for matrices with planar topology. This563

scales with resolution k as O(k4) in 2D and O(k7) in 3D, which compares poorly with optimal at O(k2) and O(k3).564

In practice, this scaling is not observed as long as channel is not too wide. Over the relevant range of resolutions, our565

tests suggest 2D scaling of O(ka) with a between 2.1 and 2.6 on suitable geometry and 3D scaling with a between 5.2566

and 5.4. (See Section 6.5 for details.) The proposed method is performance competitive with state-of-the-art methods567

even at around 1M degrees of freedom in both 2D and 3D. (See Section 6.6 for timing comparisons.)568

Impacts of cross section size. The proposed method scales poorly with block size. This suggests that blocks should569

have as few degrees of freedom as possible while satisfying connectivity requirements. The detrimental effects of large570

cross sections may be observed in the “wide” test case (in 2D and 3D), where a very wide cross section in a portion of571

the fluid domain causes global performance deterioration. (See Section 6.6.) The isolating effects of separator blocks572

and the independence of components means that components with large cross sections may be eliminated using an573

alternative sparse direct solver (such as MUMPS); the sparse LU or LDLT factorization may then be used in lieu574

of dense blocks for the component. This would allow the method to overcome the effects of such components while575

retaining the benefits in other regions. Observe that the caching benefits are retained; if the same large component is576

repeated in the device’s design, it need only be eliminated once.577

6. Numerical results578

6.1. Sample device geometries579

We use six different geometry templates for our numerical tests.580
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Figure 8: Domain of the test case “wide”. The blue dots (∙) indicate inflow ports, and the red dots (∙) indicate free surface outflow. On the right we
show the mesh inside the red box at resolution 8. The x and y coordinates of nodes are labeled with “X#” and “Y#” respectively. Their values can
be read from Table 1.

• “wide” is an example of a relatively simple microfluidic device. The device and its precise geometry are shown581

in Figure 8. This geometry includes a component with very large cross sections to illustrate the performance582

degradation that occurs in this case. Precise coordinates are provided in Table 1.583

• “grid20” is a large regular grid of pipes (See Figure 9). This example benefits heavily from the regularity of the584

geometry, resulting in lots of caching opportunities; this tends to accelerate the earlier elimination stages. On the585

other hand, it has a large number of separator blocks, which makes the final stage of elimination more expensive.586

Because of the large number of pipes, this example also has the highest degree of freedom count relative to the587

resolution of the pipes.588

• “rgrid0” and “rgrid1” were selected from a large database of grid-like automatically-generated microfluidic589

devices [75]. In that work, it was very expensive to solve the Stokes equations for the devices in this database.590

The geometry for these devices is shown in Figure 9.591

• “voronoi-s4” and “voronoi-s15” are randomly generated from Voronoi diagrams clipped to the circle centered592

at the origin with radius 0.5 (See Figure 10). In these tests all pipes are joined at different angles; this prevents593

“grid20” “rgrid0” “rgrid1”

Figure 9: Domains of grid-shaped tests. The blue dots (∙) indicate inflow ports, and the red dots (∙) indicate free surface outflow. For simplicity, we
draw each pipe as a filled stroke, by connecting the central vertices at the ends of the pipe. In “grid20” The coordinates for the bottom left and top
right vertices are (0, 0) and (0.95, 0.95) respectively. In tests “rgrid0” and “rgrid1” The coordinates of vertices are contained in a box with bottom
left corner (0, 0) and top right corner (1.575, 2.025). In all of these tests a uniform cross section of 0.0125 is used.
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X0 = 0.000 X1 = 0.050 X2 = 0.100 X3 = 0.175
X4 = 0.231 X5 = 0.288 X6 = 0.344 X7 = 0.400
X8 = 0.450 X9 = 0.525 X10 = 0.600 X11 = 0.675
X12 = 0.725 X13 = 0.750 X14 = 0.825 X15 = 0.881
X16 = 0.938 X17 = 0.994 X18 = 1.050 X19 = 1.100
Y0 = 0.088 Y1 = 0.056 Y2 = 0.050 Y3 = 0.000
Y4 = -0.019 Y5 = -0.050 Y6 = -0.056 Y7 = -0.075
Y8 = -0.088 Y9 = -0.131 Y10 = -0.150 Y11 = -0.200

Table 1: Coordinates for the test case “wide”.

any blocks (other than the pipes) from being cached. Precise coordinates are provided in Table 2.594

In each example, a fixed channel widthw is used for all pipes. In 3D tests, we extrude the domain along the z direction595

by w, which produces a square cross section for pipes. We use a characteristic block width of ℎ = w
r , where r is the596

resolution. That is, each pipe is r elements wide. At all inflow regions, we enforce velocity boundary conditions with597

a quadratic Poiseuille flow velocity profile in 2D. In 3D, the input velocity profile is quadratic in both the horizontal598

and vertical directions; the velocity is zero at the walls and greatest in the middle. We use flow rates of 0.005m2s−1599

(2D) or 0.005m3s−1 (3D) at all inflows on all non-analytic tests.600

6.2. Analytic convergence tests601

We begin by performing convergence tests on all of our devices. Since analytic solutions to the Stokes equations are602

known only for simple geometry setups, we instead use the method of manufactured solutions to perform our analytic603

tests [76]. In the method of manufactured solutions, one chooses arbitrary analytic velocity and pressure fields and604

then applies boundary conditions and body forces that make these fields the analytic solution. We choose velocity and605

A0 = (-0.231,0.050) A1 = (0.427,0.156) A2 = (0.142,0.476) A3 = (0.225,0.152)
A4 = (-0.048,0.173) A5 = (0.033,-0.342) A6 = (0.202,-0.363) A7 = (-0.109,0.321)
A8 = (-0.332,0.218) A9 = (-0.077,-0.045) A10 = (-0.377,-0.104) A11 = (0.440,-0.131)
A12 = (0.111,-0.004) A13 = (0.096,0.303) A14 = (-0.155,-0.268) A15 = (-0.471,0.062)
A16 = (0.252,-0.127) A17 = (0.007,-0.493)
B0 = (0.349,0.314) B1 = (0.417,-0.019) B2 = (0.058,0.210) B3 = (0.146,0.022)
B4 = (0.168,0.418) B5 = (-0.115,0.447) B6 = (-0.243,0.302) B7 = (-0.151,0.100)
B8 = (-0.089,-0.124) B9 = (0.278,-0.248) B10 = (-0.403,-0.035) B11 = (0.094,-0.435)
B12 = (-0.135,-0.348) B13 = (-0.314,-0.260) B14 = (0.085,-0.230)

Table 2: Coordinates for the test cases “voronoi-s4” and “voronoi-s15”.
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Figure 10: Domains of tests “voronoi-s4” (left) and “voronoi-s15” (right). The blue dots (∙) indicate inflow ports, and the red dots (∙) indicate free
surface outflow. The Voronoi cell centers are labeled by “A#” and “B#” in “voronoi-s4” and “voronoi-s15” respectively; they are listed in Table 2.

pressure fields that are combinations of trigonometry and polynomials and have oscillations on the length scale of about606

0.4, which is small enough to be well-resolved at all resolutions and yet high enough to exhibit significant nonlinearity.607

In all tests, we used the analytic fields below.608

Field 2D 3D

u(x)
⎛

⎜

⎜

⎝

sin(12x)y + cos(15y) + xy

cos(14x) cos(13y) + sin(16y)x + x2 − 1

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎝

sin(14x)y + cos(15y)z + xy

cos(14x) cos(16y) + sin(15y)x + x2 + yz − 1

sin(17z)y + cos(15x)z

⎞

⎟

⎟

⎟

⎟

⎠

p(x) sin(15x + 10y + 1) sin(15x + 14y + 1) + cos(16z)

609

Note that the velocity fields are not divergence free, do not follow the domain geometry, and do not satisfy the Stokes610

equations. Instead, we use a right hand side term for divergence (See Section 3.1), enforce velocity boundary conditions611

at all inflows and pipe walls, enforce traction boundary conditions at outflows, and use a forcing term to make the612

analytic solution satisfy the Stokes equations. This allows us to do very precise refinement studies even with our very613

irregular geometry. We use a viscosity of � = 1.614

We compute L∞ and L2 errors of computed pressures p and velocities u using

L∞p = max
i

|

|

p(xi) − p(xi)|| L2p =
√

1
Np

∑

i

(

p(xi) − p(xi)
)2

L∞u = max
j

‖

‖

‖

u(xj) − u(xj)
‖

‖

‖∞
L2u =

√

1
Nu

∑

j

‖

‖

‖

u(xj) − u(xj)
‖

‖

‖

2

2
,

where Np is the total number of pressure degrees of freedom, and Nu is the total number of vertices and edges with615

velocity degrees of freedom. We conduct the refinement study by changing the resolution r, which is the number of616

elements along the cross section of a pipe.617

The results of the refinement tests are shown in Figure 11 for 2D and Figure 12 for 3D. In all cases, we observe618

second order convergence in pressure and third order convergence in velocity in both L∞ and L2. This is the optimal619
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Figure 11: Analytic convergence tests for L∞ and L2 error measures in 2D. The markers indicate the computed errors. The solid lines are least
square regression lines used to compute the convergence rates. The convergence rates are shown in the legends. The resolution is the number of
elements across the width of a regular channel. We also run tests on a modified version of “voronoi-s4”, which contains velocity boundary conditions
only. In that case, the pseudo-inverse is used to eliminate the last block; these tests are indicated with “pinv.”
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Figure 12: Analytic convergence tests for L∞ and L2 error measures in 3D. The markers indicate the computed errors. The solid lines are least
square regression lines used to compute the convergence rates. The convergence rates are shown in the legends. The resolution is the number of
elements across the width of a regular channel. We also run tests on a modified version of “voronoi-s4”, which contains velocity boundary conditions
only. In that case, the pseudo-inverse is used to eliminate the last block; these tests are indicated with “pinv.”
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convergence order for the Taylor-Hood elements that we use in our discretization.620

In 3D, memory usage restricts the resolutions to r = 10. At this resolution, simulations contain on the order of621

10M degrees of freedom. (See Table 4 for precise numbers.)622

Nullspace. We repeat test “voronoi-s4” in both 2D and 3D with all traction boundary conditions replaced by velocity623

boundary conditions. These boundary conditions result in a constant pressure nullspace. This nullspace is handled as624

described in Section 4.1. The convergence results are shown alongside the original boundary conditions in Figures 11625

and 12 and are indicated by “pinv” in the legend. The pressure nullspace has no significant effect on the accuracy,626

convergence, or performance of the method.627

6.3. Convergence tests using real boundary conditions628

In the analytic convergence tests, we considered test cases with smooth velocity profiles and pressure profiles629

everywhere. Real flows around sharp corners, however, may have high velocity gradients in these regions. High630

velocity gradients are also observed at corners where a Poiseuille flow profile must conform to a traction-free outflow631

boundary condition. These gradients reduce the convergence order in L∞, especially with the regular element sizes632

used in this study. In all tests, inflow ports have a flow rate of 0.005md s−1 where d is the dimension. The viscosity633

is 8.9 × 10−4 kg m2−d s−1. We use the solution at a fine resolution (r = 60 for 2D and r = 16) as our reference to634

compute the error. The error is normalized by the maximum magnitude seen in the reference solution. The results of635

convergence tests for 2D and 3D are shown in Figure 13 and Figure 14. We show the distribution of errors and solution636

gradients in Figure 15.637

6.4. Parallel scaling638

In this section we run the tests “grid20”, “rgrid0” and “voronoi-s4” at fixed resolution (r = 16 in 2D, r = 6 in639

3D) with different numbers of cores (1-16) to evaluate how well the method scales with available cores. The physical640

properties are the same as in Section 6.3. Input parameters of the tests are shown in Table 3, and results are shown641

in Figure 16. A speedup of 9-13 times is observed in 3D when increasing cores from 1 to 16. In 2D, a more modest642

factor of 5-8 is observed instead. The reduced scaling in 2D is due to the lower computational cost of tasks in 2D (and643

thus scheduling overhead is relatively more expensive). Test “grid20” is more expensive since it is a larger test with644

more degrees of freedom. The numbers included in the plots are fit line slopes; a slope of s indicates runtime scaling645

as O(cs), where c is the number of cores. s = −1 is ideal.646

6.5. Scaling with refinement647

In this section, we evaluate the scaling of the method with resolution. We again run tests “grid20”, “rgrid0” and648

“voronoi-s4.” This time, we fix the core count at 16 and instead vary the resolution. Test parameters are shown in649

Table 4, and results are shown in Figure 17. The numbers in the plots represent the slope of the fit line. A slope of650

s indicates runtime O(rs), where r is the resolution. In 2D, observed scaling is O(r2.1) − O(r2.6); this compares very651
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Figure 13: Convergence tests with real boundary conditions for L∞ and L2 error measures in 2D. The markers indicate the computed errors. The
solid lines are least square regression lines used to compute the convergence rates. The convergence rates are shown in the legends. The resolution
is the number of elements across the width of a regular channel.

favorable with idealO(r2) and ismuch better than the predictedO(r5). In 3D, observed scaling isO(r5.2)−O(r5.4); this is652

significantly worse than the optimalO(r3) but also much better than the predictedO(r7). In each case, observed scaling653

is far better than one would predict based on the analysis of the algorithm in Section 5.2. Caching is certainly a major654

factor in the improved scaling, but this alone can only explain a factor of O( r
ln r ) improvement. (Optimal asymptotic655
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Figure 14: Convergence tests with real boundary conditions for L∞ and L2 error measures in 3D. The markers indicate the computed errors. The
solid lines are least square regression lines used to compute the convergence rates. The convergence rates are shown in the legends. The resolution
is the number of elements across the width of a regular channel.

improvement is obtained for a long pipe, which will have O(r) blocks. The number block operations required for the656

elimination procedure with caching scales with O(ln r) compared to O(r) without caching. The optimal asymptotic657

improvement is thus O( r
ln r ), which would be expected for geometry dominated by long pipes.) Improved exploitation658

of parallelism (SIMD, threading) and better utilization of available memory bandwidth (since larger matrix blocks659
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(a) Solution pressure (*) (b) Solution velocity magnitude in L2 (*)

(c) Pressure gradient in L2 (†) (d) Velocity gradient in Frobenius norm (†)

(e) Pressure error absolute value (†) (f) Velocity error in L2 (†)

(g) Pressure gradient (†) (h) Pressure error (†) (i) Velocity gradient (†) (j) Velocity error (†)
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Figure 15: Solutions (first row), gradients (second row) and errors (third row) for test “wide” at resolution 16. The solutions are in linear scale (*),
and the gradients and errors are in logarithmic scale (†). The solutions and gradients are normalized by the maximum values that are evaluated at
the center of each element. To compute the errors, we compare the results with the solution at resolution 32. The errors are also normalized by the
maximum velocity or pressure magnitude. The gradients and errors enclosed in the red rectangle are shown in the fourth row.

result in more FLOPS per byte of data) with larger problem sizes may also contribute to the improved performance.660

The near perfect scaling in 2D is quite surprising but very noticeable. The rather poor scaling in 3D is also quite661

clear. The resolutions for which 3D is manageable are adequate to produce results accurate to 1-3 decimal places662

(depending on the variable evaluated and the norm chosen), which is likely adequate for prototyping purposes. At663

higher resolutions, the method is best used as a coarse-grid solver for multigrid. The proposed method effectively664

performs an LU factorization; subsequent iterations require only the forward/backward substitution.665
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Name Resolution Total dofs Blocks Tasks Avg dofs/block
grid20 16 6.0 M 43080 174.0 K 140.2
rgrid0 16 2.0 M 14334 35.5 K 138.0
voronoi-s4 16 1.3 M 9798 34.7 K 136.2
grid20-3d 6 5.8 M 15470 108.0 K 373.3
rgrid0-3d 6 1.9 M 5281 14.9 K 358.5
voronoi-s4-3d 6 1.3 M 3582 13.8 K 354.5

Table 3: Parameters and task decomposition of parallel scaling tests.

6.6. Comparison with general direct sparse solvers666

In this section we compare our method with two direct solvers used for general sparse system: MUMPS[31, 32]667

and UMFPACK[34]. We use test cases “wide”, “grid20”, “rgrid0” and “voronoi-s4” in both 2D and 3D. We choose a668

resolution for each test so that there are around one million degrees of freedom. The parameters are listed in Table 5.669

We compare the methods based on runtime and also scaling with threads.670

MUMPS (version 5.2.1) uses MPI for parallelism. Each instance calls sequential LAPACK routines. We call671

MUMPS so that it is aware that our system is symmetric indefinite. (MUMPS also supports the shared memory par-672

allelism through OpenMP. We tried this setup with one MPI instance and let the LAPACK implementation spawn673

threads. This was not as efficient as the MPI approach, so we do not show these results here.)674

UMFPACK (version 5.7.8) supports threading through a parallel LAPACK implementation. In the setup of UMF-675

PACK, we specify the OpenMP threads number. The default parameters are used for the UMFPACK solver.676
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Figure 16: Total solution time as a function of the number of threads plotted on a logarithmic scale. We measure the total run time including
meshing, system construction, elimination, and backsolve. Regression lines are shown as dotted lines labeled with their slopes. The run time for 1
and 16 threads are shown on the left and right vertical axes.
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Name Resolution Total dofs Blocks Tasks Avg dofs/block
grid20 18 7.6 M 48602 187.0 K 157.2
grid20 36 30.9 M 98300 305.7 K 314.4
rgrid0 18 2.5 M 16134 42.8 K 154.9
rgrid0 36 10.1 M 32495 78.3 K 311.7
voronoi-s4 18 1.7 M 11041 38.6 K 153.1
voronoi-s4 36 6.8 M 22226 75.9 K 307.7
grid20-3d 4 1.5 M 9948 94.9 K 154.1
grid20-3d 10 29.7 M 26514 134.3 K 1118.4
rgrid0-3d 4 0.5 M 3438 10.1 K 145.2
rgrid0-3d 10 9.7 M 8855 23.3 K 1089.9
voronoi-s4-3d 4 0.3 M 2340 9.8 K 143.3
voronoi-s4-3d 10 6.5 M 6066 22.1 K 1066.4

Table 4: Parameters and task decomposition of scaling with refinement tests. Only the smallest and largest resolutions are shown.
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Figure 17: Scaling with refinement using our method (×), MUMPS (⚬), and UMFPACK (△). Different colors indicate the test cases (“grid20”,
“rgrid0”, or “voronoi-s4”). We run these tests in both 2D (left) and 3D (right). Some data points are missing for MUMPS and UMFPACK because
we run out of memory for those resolutions. The resolution refers to the number of edges that each pipe cross section has been divided into, so that
the triangles (or tetrahedra) have edge length ℎ = w

r , where w is the pipe width and r is the resolution. The dotted lines are least square regression
lines used to compute the increasing order. The orders for 2D (first entry) and 3D (second entry) are shown along with the corresponding legend
items. An order of s indicates a complexity of O(ns) as discussed in Section 5.2.
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Name Resolution Total dofs Blocks Tasks Avg dofs/block
wide 32 1.0 M 3036 16.0 K 314.4
grid20 8 1.5 M 20992 121.3 K 71.9
rgrid0 12 1.1 M 10702 27.2 K 103.9
voronoi-s4 16 1.3 M 9798 34.7 K 136.2
wide-3d 8 0.6 M 714 4.1 K 795.0
grid20-3d 4 1.5 M 9948 94.9 K 154.1
rgrid0-3d 6 1.9 M 5281 14.9 K 358.5
voronoi-s4-3d 6 1.3 M 3582 13.8 K 354.5

Table 5: Parameters and task decomposition for comparison tests with MUMPS, UMFPACK, and Krylov solvers. The resolutions are chosen so
that the total number of dofs is around one million.

For both MUMPS and UMFPACK, the total solving time is measured for symbolic analysis, numeric factorization,677

and final numeric solve steps. For both solvers, we solve the world space system, thus avoiding the extra transform678

passes on the solution and right hand side required for our method. The time required to set up the systems is excluded679

in all cases; only linear system solve time is being compared. Results are shown in Figure 18. We were surprised to680

observe that MUMPS and UMFPACK did not scale well with increasing core count. Our method is significantly faster681

on all tests except “wide.” The test case “wide” demonstrates a limitation of our method (See Section 7), though even682

in this example we eventually catch up with increasing numbers of cores.683

6.7. Comparison with iterative solver684

The family of Krylov subspace-based solvers is also commonly used for solving general sparse linear systems. In the685

case of symmetric indefinite matrices, MINRES is frequently used. The cost of Krylov solvers varies considerably, with686

system conditioning and the effectiveness and cost of the preconditioner being major factors. Rather than compare the687

cost of solving the system with particular choices of preconditioner, we instead compare the cost of solving the systems688

with our algorithm with the cost of performing one iteration of unpreconditioned MINRES. The cost of a MINRES689

iteration was estimated by running 10 iterations of MINRES on the linear system and taking the average. Our MINRES690

implementation uses MKL-BLAS for the vector operations and MKL’s sparse matrix-vector routines for the matrix-691

vector multiply. All of the MINRES linear algebra operations are threaded. We use the same set of tests and setup as692

in Section 6.6.693

The test results are shown in Figure 19. With the exception of the “wide” test, our method converges for the price of694

about 20 (in 2D) or 60 (in 3D) unpreconditioned Krylov iterations for a Stokes systems with approximately 1M degrees695

of freedom. On the “wide” test, our cost is equivalent to a bit less than 300 (in 2D) or 1000 (in 3D) unpreconditioned696

Krylov iterations. Unpreconditioned MINRES would make little progress on these problems in 60 iterations and does697
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Figure 18: Solving time of our method (“cached-elim”), our method without caching (“elim”), MUMPS, and UMFPACK with different number of
threads.

not even converge in 1000; a preconditioner should always be used on these problems. Preconditioners compete for698

time with the rest of the Krylov iteration. While effective preconditioners exist which can converge in fewer than 60699

iterations, doing so at the cost of 60 unpreconditioned iterations would be quite difficult. Nevertheless, fair comparisons700

with iterative methods are tricky. The cost of an iterative method depends on many factors, including the convergence701
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iteration observed in our reference MINRES solver.

tolerance (full convergence is usually not required), the condition number of the linear system, and the effectiveness702

and cost of the preconditioner. A good multigrid preconditioner can reduce the residual by an order of magnitude each703

iteration, but generally there is a trade-off between the effectiveness and cost of the preconditioner.704

7. Limitations and future work705

Although the proposed method can in principle be applied to arbitrary fluid problems, in practice it is only efficient706

for fluid domains that have special geometrical properties. Irregularities are well-tolerated, provided they are local and707

do not lead to blocks with excessive numbers of degrees of freedom. Geometry without repetitions (either in the form708

of repeated components or straight pipes) produces no caching opportunities and thus no speedup over existing solvers.709

Though sensitive to the geometry, the method is relatively flexible with respect to PDE (Navier-Stokes, Poisson, heat710

equation) and other discretization choices (finite volume, finite difference; triangles vs. quads).711
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Due to the need for repetitions in geometry to be passed on to the linear solver, some amount of special-purpose712

meshing is required. Pipes must be broken into geometry blocks directly, and canonical components and blocks must713

still be identified. One is still free to use existing meshing libraries for non-pipe components and for geometry blocks.714

If a component was meshed with a general purpose library, a simple breadth-first-search traversal of the mesh elements715

could be used to automatically generate geometry blocks and canonical meshes. The meshing algorithm employed716

uses uniformly-sized elements, which do not accurately capture the large velocity and pressure gradients that occur in717

isolated parts of the fluid domain. There is no fundamental reason that adaptivemesh generation could not be employed,718

and we leave this for future work.719

Although our algorithm remains quite efficient at interesting resolutions, the algorithm scales poorly with block720

matrix size. For high enough resolutions, the algorithm will eventually become slower than many competing methods,721

especially iterative methods. The algorithm, however, only scales poorly with respect to feature width (channel width).722

It scales very well with respect to channel length. As long as cross sections can be accurately resolved with at most a723

few hundred degrees of freedom (components should be not too much wider than pipes, unless they can be accurately724

resolved with larger elements), the algorithm will scale to devices of very high complexity (hundreds of components)725

and effectively unlimited total pipe length.726

There are many promising avenues for extending and improving the proposed method. The method may be coupled727

with multigrid to scale to higher resolutions or with other direct solvers to handle wide components more efficiently.728

Our implementation of the algorithm is quite simple and does not extend naturally to other problem domains besides our729

specific application, even though other domains exhibit similar geometrical features (e.g., plumbing). Our extension730

from 2D to 3D assumes that geometry is simply extruded, but we do not exploit this, such as by applying FFTs in this731

direction as is done in the FACR algorithm [77]. Such a method would improve the 3D scaling almost to the level of732

2D scaling both in terms of memory and computational complexity.733

8. Conclusions734

We have demonstrated how the Stokes equations can be meshed and discretized in microfluidic devices with thin735

and repetitive geometry. This leads to a linear algebra problem with repeated matrix blocks. We have also constructed736

an algorithm to efficiently solve linear equations with this structure. The algorithm is very efficient up to moderate737

resolutions and is competitive with existing methods over this range of resolutions. The proposed method is the most738

efficient algorithm we are aware of for solving the Stokes flow equations on microfluidic chips. Discretizations with739

around 1M degrees of freedom can be solved in about one second on a workstation with 16 cores.740
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