Practical course on computing
derivatives in code

Craig Schroeder

SIGGRAPH 2019



Outline

0 Basics

@ Motivation

@ Don’t do this
@ Chain rule

@ Tensors

Q Practical considerations
Q Differentiating matrix factorizations

O Automatic differentiation



Outline

0 Basics

@ Motivation

@ Don’t do this
@ Chain rule

@ Tensors

Q Practical considerations
Q Differentiating matrix factorizations

Q Automatic differentiation



Motivation - numerical optimization

Minimize: f(x)



Motivation - numerical optimization

Minimize: f(x)
Numerical optimization uses gradients

X<« x-aVf Gradient descent



Motivation - numerical optimization

Minimize: f(x)
Numerical optimization uses gradients
X<« x-aVf Gradient descent

More efficient methods need second derivatives

02f 7
X « X — ( ) Vv f Newton’s method
0x0x



Motivation - physical forces

potential energy: ¢(x)
¢

X

force: f = -

Required for conservative forces.
Forces are often formulated via energy.



Motivation - constitutive models

energy density: ¥ (F)
%

stress: P = —

OF

Note that F and P are matrices.



Implicit methods require derivatives

Backward Euler, trapezoid rule
Solved with Newton’s method

Second derivatives:
ﬁ . 0%¢ oP ~ 0%
ox  OxOx OF OFOF




Functions can be very complex

From a graphics paper:



Functions can be very complex

From a graphics paper:

b (2-%)-(y-x) _ (x-y)-(z-y)
G062 " TGy
 (y-2z) (x-=z _ @) xy-x)

oG] ‘lenxy-o] &%

1
Ei=—(aly 2"+ Blx-z|* +1lx-y[*)

1
EGZWH(X_Z)X(Y_Z)HZ E:CL'Ed-i-b'Ea



Functions can be very complex

From a graphics paper:

b (2-%)-(y-x) _ (x-y)-(z-y)
G062 " TGy
 (y-2z) (x-=z _ @) xy-x)

oG] ‘lenxy-o] &%

1
Eq= ﬁ(OZHy—Z\P +Blx -z +7x-y|?)
1
EGZWH(X_Z)X(Y_Z)HZ E:CL'Ed-i-b'Ea

. OE OE OE O0°E 0O%E 0%E
Need: 35, 5y 927 9xox’ oxdy’ - - 202




Functions can be very complex

From a graphics paper:

b (2-%)-(y-x) _ (x-y)-(z-y)
G062 " TGy
 (y-2z) (x-=z _ @) xy-x)

oG] ‘lenxy-o] &%

1
Ei=—(aly 2"+ Blx-z|* +1lx-y[*)

1
EGZWH(X_Z)X(Y_Z)HZ E:CL'Ed-i-b'Ea

. OE O0E 0E 0’E 0°E 0’E . /
Need. Ox ! W’ Oz OxOx’ 9xdy’ """ 020z (Ubed h[&pl@)



It may be hard to know it is right

Sometimes the only symptom is slow convergence.



With the right ideas, we can do this

This course will show you how.



Outline

0 Basics

@ Motivation
@ Don’t do this
@ Chain rule

@ Tensors

Q Practical considerations
Q Differentiating matrix factorizations

Q Automatic differentiation



Don’t avoid the problem

It is tempting to give up on the task.

The task normally falls to a student or intern.



What not to do - finite differences

f(x+h) - f(x-h)

HOPEESSLS




What not to do - finite differences

f(x+h) - f(x-h)
2h

f'(x) =

@ Only approximate



What not to do - finite differences

f(x+h) - f(x-h)
2h

f'(x) =

@ Only approximate
e May break numerical optimization routines



What not to do - finite differences

f(x+h) - f(x-h)
2h

f'(x) =

@ Only approximate

e May break numerical optimization routines
e Catastrophic cancellation



What not to do - finite differences

f(x+h) - f(x-h)
2h

f'(x) =

@ Only approximate

e May break numerical optimization routines
e Catastrophic cancellation

e Expensive for gradients/Hessians



What not to do - Maple/Mathematica

Pros:
e Compute derivatives automatically

e Can generate code automatically.



How bad can it really be?

Modest example: f(u,v) = |u(u-v)? - VHUHBHQ



How bad can it really be?

Modest example: f(u,v) = |u(u-v)? - VHUHBHQ

What I did in Maple:
@ Compute Hessian H = flf—afu
e Simplify
@ Generate C code for just Hyy.

e Simplify the code



This 1s the result

tl =

t13 = t12 * t12; t19 = ul * vl; t24

t41
t73

v2 * v2; t4 = vl *x vl; t6 = til

* t1; t8 = t1 / 10; t9 = v3 * v3; t10 = t9 / 10; ti12 =

= t12 * u2; t31 = t9 / 5; t33 = u3d * u3; t35 = 3 * ti;
ul *x ul; t42 = t4 *x t4; t46 = 3 * t9; tb2 = u3 * v3; t61 = 0.8 *x ul * u3 *x vl *x v3;
t33 * t33; t77 = t33 * u3; t88 = t4l * ul; t94 = t41l * t41;

t100 = sqrt(t4l + t12 + t33); t102 = t4 / 5;

H11

-60 / t100 * (t100 * (t13 * (t4 * (-t1 / 5 - 0.1) - t6 / 30 - t8 - t10)

- 0.4 % t24 * v2 * (u3 * (t4 + t1 / 3) * v3 + (t4 + t1) * t19)

t12 * (£33 * (t4 * (-t1 - t9 - 1) / 5+ t1l * (-t9 - 1) / 5 - t31)

0.4 * u3 * (t4 + t35) * v3 * t19 - (t42 + t4 * (6 * t1 + 3) + t35 + t46) * t41 / 5)
4. / 3 *x u2 * (t33 * (0.3 * t4 + t10) + t61 + t4 * t41) * v2 * (t19 + t52)

t73 * (t4 * (-t31 - 0.1) - t8 - (t9 + 3) * t9 / 30)

0.4 * t77 * (t4 + t9) * v3 * t19 - t33 * (t42 + t4 * (6 * t9 + 3) + t35

t46) * t41 / 5 - 4. / 3 % v3 * t4 x vl * u3 * t88 - (t42 + t4 + tl1l + t9) * t94 / 2)
(u2 * v2 + t19 + t52) * (t13 * (102 + t8) + 0.8 * t24 * v2 * (t19 + t52 / 4)

t12 * (£33 * (0.4 * t4 + t8 + t10) + t61 + 1.1 * (t4 + 2. / 11 * t1) * t41)

u2 * (t88 * vi + 0.4 * t4l * t52 + 0.8 * ul * vl * t33 + v3 * t77 / 5) * v2

t73 * (t102 + t10) + 0.8 * v3 * ul * vl * t77 + 1.1 * t33 * t41 *x (t4 + 2. / 11 * t9)
t88 * v3 * u3d * vl + t4 x t94));

u2 *x u2;



This 1s the result

tl =

t41
t73

v2 * v2; t4 = vl *x vl; t6 = til
t13 = t12 * t12; t19 = ul * vi; t24

* t1; t8 = t1 / 10; t9 = v3 * v3; t10 = t9 / 10; ti12 =

= t12 * u2; t31 = t9 / 5; t33 = u3d * u3; t35 = 3 * ti;
ul *x ul; t42 = t4 *x t4; t46 = 3 * t9; tb2 = u3 * v3; t61 = 0.8 *x ul * u3 *x vl *x v3;
t33 * t33; t77 = t33 * u3; t88 = t4l * ul; t94 = t41l * t41;

t100 = sqrt(t4l + t12 + t33); t102 = t4 / 5;

H11

-60 / t100 * (t100 * (t13 * (t4 * (-t1 / 5 - 0.1) - t6 / 30 - t8 - t10)

- 0.4 % t24 * v2 * (u3 * (t4 + t1 / 3) * v3 + (t4 + t1) * t19)

t12 * (£33 * (t4 * (-t1 - t9 - 1) / 5+ t1l * (-t9 - 1) / 5 - t31)

0.4 * u3 * (t4 + t35) * v3 * t19 - (t42 + t4 * (6 * t1 + 3) + t35 + t46) * t41 / 5)
4. / 3 *x u2 * (t33 * (0.3 * t4 + t10) + t61 + t4 * t41) * v2 * (t19 + t52)

t73 * (t4 * (-t31 - 0.1) - t8 - (t9 + 3) * t9 / 30)

0.4 * t77 * (t4 + t9) * v3 * t19 - t33 * (t42 + t4 * (6 * t9 + 3) + t35

t46) * t41 / 5 - 4. / 3 % v3 * t4 x vl * u3 * t88 - (t42 + t4 + tl1l + t9) * t94 / 2)
(u2 * v2 + t19 + t52) * (t13 * (102 + t8) + 0.8 * t24 * v2 * (t19 + t52 / 4)

t12 * (£33 * (0.4 * t4 + t8 + t10) + t61 + 1.1 * (t4 + 2. / 11 * t1) * t41)

u2 * (t88 * vi + 0.4 * t4l * t52 + 0.8 * ul * vl * t33 + v3 * t77 / 5) * v2

t73 * (t102 + t10) + 0.8 * v3 * ul * vl * t77 + 1.1 * t33 * t41 *x (t4 + 2. / 11 * t9)
t88 * v3 * u3d * vl + t4 x t94));

This is only Hi;.

u2 *x u2;



This 1s the result

tl =v2 *x v2; t4 = vl * vl; t6 = t1 * tl; t8 = t1 / 10; t9 = v3 * v3; t10 = t9 / 10; t12 = u2 * u2;
t13 = t12 * t12; t19 = ul * vi; t24 = t12 * u2; t31 = t9 / 5; t33 = u3 * u3; t35 = 3 * ti;
t41 = ul *x ul; t42 = t4 * t4; t46 = 3 *x t9; tb2 = u3d * v3; t61 = 0.8 * ul *x u3 * vi * v3;
t73 = t33 * t33; t77 = t33 * u3; t88 = t41l x ul; t94 = t41 * t4l;
t100 = sqrt(t4l + t12 + t33); t102 = t4 / 5;
H11 = -60 / t100 * (t100 * (t13 * (t4 * (-t1 / 5 - 0.1) - t6 / 30 - t8 - t10)

- 0.4 % t24 * v2 * (u3 * (t4 + t1 / 3) * v3 + (t4 + t1) * t19)

+ t12 * (33 * (t4 * (-t1 - t9 - 1) / 5+ t1 *x (-t9 - 1) / 5 - t31)

- 0.4 *x ud * (t4 + t35) * v3 * t19 - (t42 + t4 * (6 * t1 + 3) + t35 + t46) * t41 / 5)

- 4. / 3 % u2 * (t33 * (0.3 * t4 + t10) + t61 + t4 * t41) * v2 * (t19 + t52)

+ t73 * (t4 * (-t31 - 0.1) - t8 - (t9 + 3) * t9 / 30)

- 0.4 % t77 * (t4 + t9) * v3 * t19 - t33 * (t42 + t4 * (6 * t9 + 3) + t35
t46) * t41 / 5 - 4. / 3 % v3 * t4 x vl * u3 * t88 - (t42 + t4 + tl1l + t9) * t94 / 2)
(u2 * v2 + t19 + t52) * (t13 * (102 + t8) + 0.8 * t24 * v2 * (t19 + t52 / 4)
t12 * (£33 * (0.4 * t4 + t8 + t10) + t61 + 1.1 * (t4 + 2. / 11 * t1) * t41)
u2 * (t88 * vi + 0.4 * t4l * t52 + 0.8 * ul * vl * t33 + v3 * t77 / 5) * v2
t73 * (t102 + t10) + 0.8 * v3 * ul * vl * t77 + 1.1 * t33 * t41 *x (t4 + 2. / 11 * t9)
t88 * v3 * u3d * vl + t4 x t94));

This is only HH. Also need ng, ng, H227 Hgg, and H33.



Outline

0 Basics

@ Motivation
@ Don’t do this
@ Chain rule

@ Tensors

Q Practical considerations
Q Differentiating matrix factorizations

Q Automatic differentiation



The chain rule in computation

Original: a = f(g(x))
Derivative: a' = f'(g(x))g'(x)



The chain rule in computation

Original: a = f(g(x))
Derivative: a' = f'(g(x))g'(x)

Example: a = Va2 +1

Pieces: g =a*+1, f = /g



The chain rule in computation

Original: a = f(g(x))

Derivative: a’ = f'(g(x))g'(x)

Example: a = Va2 +1

Pieces: g =a*+1, f = /g

Derivative: ¢’ = 2z, f' = 2q_ (Note: reuse f)
Recall: 7v/7 = 5~



The chain rule is the key
Example: f(z) = (23 + V1 + 22)2



The chain rule is the key
Example: f(z) = (23 + V1 + 22)2

Step 1: break it into small pieces.



The chain rule is the key
Example: f(z) = (23 + V1 + 22)2

Step 1: break it into small pieces.

a=1+2> b=2® c=+va d=b+c f=d



The chain rule is the key
Example: f(z) = (23 + V1 + 22)2

Step 1: break it into small pieces.
a=1+2> b=2® c=+va d=b+c f=d

Step 2: compute the derivative of each step



The chain rule is the key
Example: f(z) = (23 + V1 + 22)2

Step 1: break it into small pieces.
a=1+2> b=2° c=va d=b+c f=d°

Step 2: compute the derivative of each step

al

a =2x b =3zx* =—
2c

d=+c f=2dd

Note the use of the chain rule.



This 1s good code

a=1+2> b=2 c=+a d=b+c f=d°
/

a =2z b = 322 c’:;— d=b+c f'=2dd
c



Second derivatives are easy, too

a=1+2* b=z c=va d=b+c =d
!/
a'=2x b =3z c’:;— d=t+c f=2dd
C
o ol Al
al/:2 b”:6$ C//: a’c ac d//:bl/+cll f//:2(d/)2+2dd//



This works for more complex stuft

Earlier example: f(u,v) = ||ju(u-v)? - VHuH3“2



This works for more complex stuft
Barlier example: f(u,v) = [u(u-v)2 - v|u?|*
Step 1:

a=u-v b=|u ¢ = a? d="0
w =cu-dv f=|wl|?



This works for more complex stuft

Earlier example: f(u,v) = ||ju(u-v)? - VHuH3“2

Step 1:
a=u-v b=|u ¢ = a? d="0
w =cu-dv f=|wl|?
Step 2:
L 2
Ay =V b, = — c, = 2aa, d, = 3b°b,

b
w, = cl+ucl —vdl fu=2w-w,



But wait, we needed second derivatives

The first few are not too bad.

a=u-v b=|u c=a? d="b
Ay =V b, :% C, = 2aay, d, = 3b%b,

1
Gyy =0 buy = E(I ~bybl) ¢y = 20,0l d,, = 6bb,bL + 307Dy,



Complication: tensors

wW=cu-dv
w, =cl +ucl —vdl
Wy, = 17
W 1S a vector.

W, 1S a matrix.
W, 1S a rank-3 tensor.



Complication: tensors

W =cu-dv f=|w|?
wu:cI+ucg—Vd5 fu=2w-wy,
Wy, = (17 fuw =2W - Wy, + 2W5Wu
—

Z
W 1S a vector.

W, 1S a matrix.
W, 1S a rank-3 tensor.
Note the usage of w,.



Complication: tensors

W =cu-dv f=|w|?
wu:cI+ucg—Vd5 fu=2w-wy,
Wy, = (17 fuw =2W - Wy, + 2W5Wu
—

Z
W 1S a vector.

W, 1S a matrix.
W, 1S a rank-3 tensor.
Note the usage of w,,. Only need matrix z.



Clever idea: avoid computing Wy,

Compute z = w - wy,, instead of w,,,. z is a matrix.



Clever idea: avoid computing Wy,

Compute z = w - wy,, instead of w,,,. z is a matrix.

T

z=(u-wW)cy +c,w! +wel + (v-w)dy,

fuu =22z + 2W5Wu



Clever idea: avoid computing Wy,

Compute z = w - wy,, instead of w,,,. z is a matrix.

T

z=(u-wW)cy +c,w! +wel + (v-w)dy,

fuu =22z + 2W5Wu

This is all of H = f,,, not just Hy;.



Outline

0 Basics

@ Motivation
@ Don’t do this
@ Chain rule

@ Tensors

Q Practical considerations
Q Differentiating matrix factorizations

Q Automatic differentiation



Tensor index notation solves two problems

@ Deal with tensors
o Gradient of matrix: wy,

0
Rank-4 t ;. —
e Ran ensor 5F



Tensor index notation solves two problems

@ Deal with tensors
o Gradient of matrix: wy,

0
Rank-4 t R
e Ran ensor 5F

e Forgotten derivative rules
o V(u-v)

° V(fu)
e V-(uxv)



Refer to objects by their components

Scalar: a — a
Vector: u — u;
Matrix: A - A;;
Rank-3 tensor: B;jy,

Rank-4 tensor: Cjjp



Summeation convention

Dot product: a=u-v = Zu,;vi.
i

Indices that occur twice in a term are implicitly summed.

Index notation: a = u;v;.



Summeation convention

Dot product: a=u-v = Zu,;vi.
i

Indices that occur twice in a term are implicitly summed.
Index notation: a = u;v;.

Index names do not matter. a = w;v; = upvE = w,0,.



vector notation calculation index notation



vector notation calculation index notation

A = U_VT Az‘k = U; VL Aik = U; Vg



vector notation calculation index notation
A = U_VT Az‘k = U; VL Aik = UV

a=uu-v CLZZU@UZ' a = u;v;
i



vector notation calculation index notation
A = U_VT Az‘k = U; VL Aik = UV

a=uu-v CLZZU@UZ' a = u;v;

(2
v=Au Ui = Z Aigug v; = Ay,
k



vector notation

A =uv’
a=u-Vv
v =Au
A =BC

calculation

A = uvy,
a= Z U;V;

(2
vi = ), Aiguy,
k

Air = ) BirCi
k

index notation

Aik, = U0y
a = U;v;
v; = Ay,
Ajr = Bi;,Cy,



vector notation
A =uv’

a=u-Vv

calculation

A = uvy,

a=) uv;

7
v; = Z Ajug
k

Air =) BixChy
2

Az’r = Z BMCM
k

index notation

Arik‘ = U;VE
a = U;v;
v; = A/,;;{;uk
Ajr = Bi;,Cy,
Ajr = By,iCy,y



vector notation calculation index notation
A = U_VT Az‘k = U; VL Aik = UV

a=u-v a=Zu/iU¢ a = uv;
v =Au U = zl: Ay, v; = Aigug
A =BC A= iBika,,. A = BiCy,
A=BI'C A, = Z ByiCrhr A = ByiChr

a=tr(A) = Z Al a=A;



Subtleties

Careful about indices: w;u;v; # wju;v;



Subtleties

Careful about indices: w;u;v; # wju;v;

Multiplication commutes: A;; By, = Bi, A



Subtleties

Careful about indices: w;u;v; # wju;v;
Multiplication commutes: A;. By, = By, A

(u-v)?is (wv;)(u,v,), not (uv;)(uv;).



Special tensors - identity matrix

Kronecker delta

1 1=k
Ok = :
0 72+k

Oik = Ok

OikUk = U;



Special tensors - cross product

Permutation tensor

Eikr =

(1 123,231,312

~1 132,213,321

kO otherwise

u =V X W becomes u; = €5, VW, .

Cikr = €rik = €kri

Cikr = —

Eirk



Derivatives in index notation

Differentiation denoted with a comma

_of _0f
I = 0x, Fors = 0x,0%,
w . = 8u, T 82%5
"o, B O, 0




Derivatives in index notation

Differentiation denoted with a comma

of 0°f
f,/r = (91} f,rs = 833'748335
Wi = Uirs = 5 o
T O, 0 Oz, 0x,
Special case: z;, = Oy = Dy

ox,




Derivatives in index notation

Differentiation denoted with a comma

of 0 f
f,/r = aiL’r f,rs = (9513'7485(35
Wi = Uirs = 5 o
T Oz, 0 Oz, 0w,
Special case: x;, = Oy = Dy
T Oz,

Constants: 0, =0, €jpr 5 =0




gradient

of

oz,

fr



gradient

divergence

of
ox,
ou,

Z ox,

r

fr



gradient

divergence

curl

of
ox,
ou,

Z ox,

r

fr

Eikr U



gradient

divergence

curl

Laplacian

af
oz,
ou,

Z ox,

r

0% f
Z: Ox,0x,

fr

€ikr Uk,



gradient

divergence

curl

Laplacian

vector Laplacian




Scalar derivative rules apply

Components are scalars, so scalar rules apply.



Scalar derivative rules apply

Components are scalars, so scalar rules apply.

Vector: V(u-w) =7
Index: (uw;), = u;,w; + ww; ,



Scalar derivative rules apply

Components are scalars, so scalar rules apply.

Vector: V(u-w) =7
Index: (ww;), = u;,w; + ww;,, = Vulw+Vwlu



Scalar derivative rules apply

Components are scalars, so scalar rules apply.

Vector: V(u-w) =7
Index: (ww;), = u;,w; + ww;,, = Vulw+Vwlu

Vector: V- (uxw) =7
Index: (eirurWr),s = €ikrlk,sWr + EikrUpWr 5



Unfinished business

Recall: u; s = d;5 V; =0

w,=cl +ucl —vdl

u_



Unfinished business

Recall: u; s = d;5 V; =0

w,=cl +ucl —vdl

u_

UJiﬂﬂ = CdZT + ’U,Z'C77= - U/l'd’r



Unfinished business

Recall: u; s = d;5 V; =0

w,=cl +ucl —vdl
UJiﬂﬂ = Cdzr + ’U,Z'C77= - U/l'd’r

Wi rs = C,sdir + UiCrs + Ui sCr — Uz'd,rs



Unfinished business

Recall: u; s = d;5 V; =0

w,=cl +ucl —vdl
Wiy = Cjp + UiCr = Vid
Wi rs = C,sdir + UiCrs + U; sCr — Uz'd,rs

W;W; rs = wic,s(;ir + WU Crs + wicsisc,r - wivz’d,rs



Unfinished business

Recall: u; s = d;5 V; =0

w,=cl +ucl —vdl
Wiy = Cjp + UiCr = Vid
Wi rs = C,sdir + UiCrs + U; sCr — Uz'd,rs
WiWy s = wic,séir + WiUiCrs + wicsisc,r - wivid,rs

WiWi rs =WyrC s + (wiui)c,rs + CrWs — (wivi)d,rs



Unfinished business

Recall: u; s = d;5 V; =0

w,=cl +ucl —vdl
Wiy = Cjp + UiCr = Vid
Wi rs = C,sdir +UCrs + U sCr — Uz'd,rs
WiWy s = wic,s(;ir + WiUiCrs + widz’sc,r - wivid,rs
WiW; s = WrCs + (Withi)Crs + € rws — (WiV;)d s

Z=W- Wy, =Wc. + (W-u)cy, + W — (W-v)dy,



Derivatives in many variables at once

E.g., f(u,w). Need g—{l and g—v{/



Derivatives in many variables at once

E.g., f(u,w). Need g—{l and g—v{/

Work out f,. Do not assume f, = (%’; or f, = 88157 ;




Derivatives in many variables at once

E.g., f(u,w). Need g—{l and g—v{/

Work out f,. Do not assume f, = (%’; or f, = 88157 ;

Make two copies of the code:
For g—{;, let u;, =9, and w;, =0

For g—v{,, let u;r = 0 and w;, = 04



Derivatives in many variables at once

E.g., f(u,w). Need g—{l and g—v{/

Work out f,. Do not assume f, = (%’; or f, = 88157 ;

Make two copies of the code:
For g—{l, let u;, =9, and w;, =0

For g—v{,, let u;r = 0 and w;, = 04

Simplify after it works.



Different indices for different variables

r for x
a fory
_of
fir = ox,
0
f,a = —f

= o



Parenthesis for derivative by matrix

oY
aFrs

w,(rs) =



Parenthesis for derivative by matrix

oy
w,(rs) - aFm
Ek,(rs) = 0 Oks




Outline

Q Basics

° Practical considerations
@ Modes of differentiation
@ Testing
@ Implicit differentiation

o Differentiating matrix factorizations

Q Automatic differentiation



Outline

e Practical considerations
@ Modes of differentiation



Forward mode differentiation

Input:
Output: vy
Calculations: a = a(z), b=0b(a), c=c(b), vy = y(c)



Forward mode differentiation
Input:

Output: vy
Calculations: a = a(z), b=0b(a), c=c(b), vy = y(c)

0b 0bda dc 0cdb 0dy dydc
Or 0adr Or 0bor Or 9dcd




Forward mode differentiation
Input:

Output: vy
Calculations: a = a(z), b=0b(a), c=c(b), vy = y(c)

db  9bda dc _@81) Oy Oyoc Note: 8_
dr  0adr Or 0bdr Or 0cd 0




Forward mode differentiation

Input:
Output: vy
Calculations: a = a(z), b=0b(a), c=c(b), vy = y(c)

ob 9bda dc Ocdb 9dy 9Oydc
dr dadr dr Obdr dr dcd
Actual computation:
oy 6’](80(868@))

9r  9c\ob\dad

0
Note: —
oea



Reverse mode differentiation

Input:
Output: vy
Calculations: a = a(z), b=0b(a), c=c(b), vy = y(c)

Oy _Oyodc Oy _0yodb Oy Oyda . . 0y
ob  9cdb da 0Obda Or 0Oad 0
Actual computation:
dy ((0y0c\0db\da
or ((5’0%)8@)8




Cost

Sizes: x > RS, a—-R3 b—->R3 y—>R!



Cost
Sizes: x >R, a— R? b—- R3? y - R!

dy 0Oy (8b8a)
Ox  Ob \0ad
——

S—— —
13 356, (54+)

Forward: 54 + 18




Cost
Sizes: x >R, a— R? b—- R3? y - R!

Oy = 0y (8b 8a) Forward: 54 + 18

Ox Ob \Had
M — —
X3 3x6; (54+)

dy (Oydb) da .

D (8b 8a) 5 Reverse: 9 + 18
\ ) ——

1x3; (9%) 36



Efficiency of forward vs reverse modes

e Calculating g—i

e Forward is cheaper if x <y
e Fasier to write



Efficiency of forward vs reverse modes

e Calculating g—i
e Forward is cheaper if x <y
e Fasier to write
@ Reverse is cheaper if z >y
e Optimization: Minimize F(x)
Forces: ¢(x)

Stresses: ¥(F)
Backpropagation (machine learning)

®© 6 ¢



Mixed mode differentiation
Input:

Output: vy
Calculations: a = a(z), b=0b(a), c=c(b), vy = y(c)

dc  0cOb dy 9dydc dy 0yda
da dbda  da dcda  Odr dad
Actual computation:
01 oy Oy (Oc b\ \ Oa
Oz (86((% aa))a_




Optimal ordering

e Optimal Jacobian accumulation
@ NP-complete

@ Dynamic programming heuristic



Outline

e Practical considerations

@ Testing



If you cannot test it, don’t write it

How do we know it is right?



If you cannot test it, don’t write it

How do we know it is right?

Wrong answer?



If you cannot test it, don’t write it

How do we know it is right?
Wrong answer?

Disappointing results?



If you cannot test it, don’t write it

How do we know it is right?
Wrong answer?
Disappointing results?

Slow convergence?



If you cannot test it, don’t write it

How do we know it is right?
Wrong answer?
Disappointing results?

Slow convergence?

Poor stability?



If you cannot test it, don’t write it

How do we know it is right?
Wrong answer?
Disappointing results?

Slow convergence?

Poor stability?

How do you debug that?



Testing scalars with definition

Test derivatives against definition!



Testing scalars with definition

Test derivatives against definition!

2(z+Azx) - 2(z)

Ay 2'(x) = O(Ax)




Testing scalars with definition

Test derivatives against definition!
2(z+Azx) - 2(z)
Ax
How small should Az be?

2'(x) = O(Ax)




Testing scalars with definition

Test derivatives against definition!
2(z+Azx) - 2(z)
Ax
How small should Az be?

2'(x) = O(Ax)

How small is O(Ax)?



Testing scalars with definition

Test derivatives against definition!
2(z+Azx) - 2(z)
Ax
How small should Az be?

2'(x) = O(Ax)

How small is O(Ax)?

Refinement test?



Use a second-order test instead

2(z+Az)-2(z) Z(z+Ax)+2(z)

_ 2
Az 2 - O(A7)




Use a second-order test instead

2(z+Az)-2(z) Z(z+Ax)+2(z)
Az 9

Choose Az ~ €l/3 ~ 1075 €~ D x 10-16

= O(Ax?)



Use a second-order test instead

2(z+Az)-2(z) Z(z+Ax)+2(z)
Az 9

Choose Az ~ €l/3 ~ 1075 €~ D x 10-16

= O(Ax?)

Fail error: O(1)



Use a second-order test instead

2(z+Az)-2(z) Z(z+Ax)+2(z)
Az 9

Choose Az ~ €l/3 ~ 1075 €~ D x 10-16

= O(Ax?)

Fail error: O(1)

Pass error: O(€2/3) ~ 10710



Use a second-order test instead

2(z+Az)-2(z) Z(z+Ax)+2(z)
Az 9

Choose Az ~ €l/3 ~ 1075 €~ D x 10-16

= O(Ax?)

Fail error: O(1)
Pass error: O(€2/3) ~ 10710

Vector Azx?



Non-scalar second-order derivative test

“Multiply through” by Ax

Vz(x + Ax) + Vz(x)
2

2(x + Ax) — 2(x) - -Ax = 0(5%)

|Axoo <6



Non-scalar second-order derivative test

“Multiply through” by Ax

Vz(x + Ax) + Vz(x)
2

2(x + Ax) — 2(x) - -Ax = 0(5%)
|Axeo <0

Fail is small: O(d)



Non-scalar second-order derivative test

2(x+Ax) —2(x)  Vz(x+Ax) + Vz(x)
J 26

| Ax[leo <6

- Ax = O(6?)



Non-scalar second-order derivative test

2(x+Ax) —2(x)  Vz(x+Ax) + Vz(x)
J 26

| Ax[leo <6

- Ax = O(6?)

Fail error: O(1)

Pass error: O(0?)



Did it pass?

Introduce an error.



Did it pass?

Introduce an error.

See what a failing score looks like.



Testing Hessians

Test first derivatives.

Test second derivatives against first derivatives.



Incremental testing

Choose random xg, x1; small Ax =z — 2.



Incremental testing

Choose random xg, x1; small Ax =z — 2.

. / / N /
Compute at zo: ao, ay, bo, by, co, ¢, do, dyy, - - -
Compute at z1: ay,al, by, by, c1. ¢, di,dy, ...



Incremental testing

Choose random xg, x1; small Ax =z — 2.

5 !/ / J !/
Compute at zo: ao, ay, bo, by, co, ¢, do, dyy, - - -
Compute at z1: ay,al, by, by, c1. ¢, di,dy, ...

Diff test on each intermediate independently.
al_ao—a,1+a6:O(A$2) bl—bo_b’1+b6
r1— g 2 1 — To 2

O(Az?) di — do — d +dy

T — To 2 T — To 2

= O(Az?)

i X o N}
C1 — Cp B Cy + Co B

= O(Az?)



Very general strategy

o !/ / / !/
Compute at zo: ag, ay, bo, by, co, ¢, do, dyy, - - -

Compute at z1: ai,al, by, by, c1,c),dy,dy, ...

@ Test any partial

80 C1 —
o N

da a; — ap



Optimize incrementally

@ Choose ordering

e Get it working
@ Incremental optimization

e Slight change
o Test
e Repeat



Outline

e Practical considerations

@ Implicit differentiation



Implicit functions

Given z, compute y from f(z,y) = 0.



Implicit functions

Given z, compute y from f(z,y) = 0.

Compute 4 from z’.



Implicit differentiation

Equation:  f(x,y) =0



Implicit differentiation

Equation:  f(x,y) =0

Differentiate:  f.(x,y)x"+ f,(z,y)y" =0



Implicit differentiation

Equation:  f(x,y) =0
Differentiate:  f.(x,y)x"+ f,(z,y)y" =0

x' fy
Solve: 1 = -
Jy




Rule derivation: vector magnitude



Rule derivation: matrix inverse



Differentiating the algorithm

Differentiate the function,
not the algorithm used to compute it.



Differentiating elementary functions

Differentiate sin x as cosx
@ Don't diff the Taylor series

e Use analytic formulas
@ Oscillatory approximations

e Accurate value
e Wrong derivative



Differentiating matrix inverse

Use (A1) =-A-TA’A-L.
e Don’t diff Gaussian elimination

@ Discontinuous (pivoting)



Differentiating roots of polynomials

e Use implicit differentiation
@ Don't diff bisection

e How could you?



Outline

e Differentiating matrix factorizations



Singular value defines principle stretches

Singular value decomposition: F = UXVT



Singular value defines principle stretches

Singular value decomposition: F = UXVT

01
Singular values: X = 09
03



Singular value defines principle stretches

Singular value decomposition: F = UXVT

01
Singular values: X = 09
03

Naturally separates deformation into
rotations: U, V
stretching: X



Stretching takes energy

W(F) = ()



Stretching takes energy

W(F) = ()

Popular model in graphics (co-rotated):

62 = n (o1 3 Do)
k k



Stretching takes energy

W(F) = ()

Popular model in graphics (co-rotated):

k

6) =S on -1+ 5 Sl -1)

Its derivatives are sometimes “simplified.”



Here is where it gets tough

We must differentiate this: P = g—;ﬁ



Here is where it gets tough

We must differentiate this: P = g—;ﬁ

oP 0%
OF OFOF

Twice:



Here is where it gets tough

We must differentiate this: P = (9_¢
OF
Twice: o = 82¢
" OF  OFOF’

And we can do this.



Things are simpler in diagonal space

Quantity Diagonal Relationship Properties

F T, F=-UxV! diagonal



Things are simpler in diagonal space

Quantity Diagonal Relationship Properties
F T, F=-UxV! diagonal
P = o P P =UPV” diagonal

OF



Things are simpler in diagonal space

Quantity Diagonal Relationship Properties
F T, F=-UxV! diagonal
) ) )
P-= a—;f P P=UPV’ diagonal
oP 2 A
T=_— T T?[fjk/ = U[/II'LUkTTNLTI/T'H‘/;j’IL‘/;A‘ Sparse

OF



Strategy

e Compute diagonal space quantity

A~

o P. T



Strategy

e Compute diagonal space quantity

o P, T
e Transform to original
o P. T



Formula for B

Notes:



Formula for P
]5;/ = 1&1

Notes:

@ no summation implied



Formula for P

Pi=1,
Notes:
@ no summation implied
. O
@ Y, = 4

7/1/ -
(90',;



Formula for P

Pii =1,
Notes:
@ no summation implied
- O
Q QA@ =

o Pis diagonal



Formula for T

Hessian term:



Formula for T

Hessian term:

Tiikk = Y ik
Cross terms (7 # k):
% - w,k ¢ 7 ¢ k
Qi = bt =
O, — 0L o, + 0
2 a;r + bk ~ Qi b k
ik = — Z Tirri = — Z



Formula for T

Hessian term:

Cross terms (7 # k):

A A

w,z - w,k ¢ 7 w k

aj = bij. =
O, — 0L o, + 0
= air + bk & a;r — bk
hik = 5 Tikki = —5

A

Note: aix = aki, bik = ki, Tikik = Thiki, Likki = Thiik



Robustness notes: a;;.

Notes:
° z@ symimetric in oy,
@ 0; — o), implies 1@7 — 1@;{;
@ limit exists

@ compute analytically



Robustness notes: b;;.

i+

o, t+ 0

bir,

Notes:
@ might be unbounded

@ clamp it




See course notes for formulas for ...

e Matrices that diagonalize as
o A=UAVT (generalizes P rule)
o A=UAU?
o A=VAVT
e Figenvalue decomposition
e S=UAUT
e S is symmetric



Outline

Q Basics

Q Practical considerations
Q Differentiating matrix factorizations

0 Automatic differentiation



Automatic differentiation

e Automate the differentiation process



Automatic differentiation

e Automate the differentiation process
e Not symbolic differentiation

e Do not rearrange
e Do not simplify
e Avoids mess



Automatic differentiation

e Automate the differentiation process
e Not symbolic differentiation

e Do not rearrange
e Do not simplify
e Avoids mess

e Many ways - lets explore some



Replace scalar with special type

@ Store value and derivative
e Compute both together

@ Overload operators and functions



Sample implementation

struct Diff_TT

{
double x, dx;

+s

Diff _TT operator+ (Diff_TT a, Diff_TT b)
{

return {a.x + b.x, a.dx + b.dx};

}

Diff _TT operator* (Diff_TT a, Diff_TT b)
{

return {a.x*b.x, a.dx*b.x + a.x*b.dx};

+



Compile-time autodift is great

@ Intuitive

e Hasy to implement
e Fasy to use

e Write code for value
e Derivative for free

e Easy for compiler to optimize
e Everything inlines



Extends to vectors, matrices

@ Diff VT: u’

@ Diff MT: A’

. of
@ Diff TV: —
0x

e Diff VV: —
ox



Extends to Hessians

struct Hess_TT

{
double x, dx, ddx;

+s

Hess_TT operator+ (Hess_TT a, Hess_TT b)
{

return {a.x+b.x, a.dx+b.dx, a.ddx+b.ddx};

}

Hess_TT operator* (Hess_TT a, Hess_TT b)
{
return {a.x*b.x, a.dx*b.x + a.x*b.dx,
a.ddx*b.x + 2*a.dx*b.dx + a.x*b.ddx};



Does not scale well

e Forward mode
@ Scales poorly for many inputs



Does not scale well

e Forward mode
@ Scales poorly for many inputs
e optimization: f(x)



Does not scale well

e Forward mode
@ Scales poorly for many inputs

e optimization: f(x)
o force: ¢(x)



Does not scale well

e Forward mode

@ Scales poorly for many inputs
e optimization: f(x)
o force: ¢(x)
o stress: Y(F)



Reverse mode compile time autodift

@ Reverse mode is tough
o Compute derivatives in reverse order

@ Need to record the code



Reverse mode via expression templates

Result of: 2 = 322 + cosy

Has type:

Add<Scale<Square<Var<0>>>,6Cos<Var<1i>>>

Reverse order traversal by recursion



Runtime

@ Record operations in a list
o Walk the list to differentiate
@ Forward and reverse mode

@ Can handle variable input size



Not as efficient

@ List construction
@ Memory allocation
e No inlining

@ No compiler optimization



Code generation

@ Separate program
e Input: function code

e Output: derivative code



Very flexible

@ Forward mode
@ Reverse mode

@ Mixed mode



Offline - take your time

@ Run once
@ Speed does not matter

e Optimize the results



Differentiate the function

e Autodiff may trace into functions

@ exp, tgamma, sph_bessel
e Differentiates the algorithm

@ Overload functions
e Differentiates the function



Automatic differentiation has uses

@ Prototyping

@ Debugging

e Infrequently executed code
°

Expect 2x slowdown

e Better for code-gen
e Worse for dynamic

@ No numerical robustness



Autodiff is a community

@ http://www.autodiff.org/
@ Software tools
@ Libraries

@ Reading lists


http://www.autodiff.org/

Manual derivatives are possible

I hope this course has shown you how.

(Questions?



	Basics
	Motivation
	Don't do this
	Chain rule
	Tensors

	Practical considerations
	Modes of differentiation
	Testing
	Implicit differentiation

	Differentiating matrix factorizations
	Automatic differentiation

