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Motivation - numerical optimization

Minimize: f(x)
Numerical optimization uses gradients
X<« x-aVf Gradient descent

More efficient methods need second derivatives

02f 7
X « X — ( ) Vv f Newton’s method
0x0x



Motivation - physical forces

potential energy: ¢(x)
¢

X

force: f = -

Required for conservative forces.
Forces are often formulated via energy.



Motivation - constitutive models

energy density: ¥ (F)
%

stress: P = —

OF

Note that F and P are matrices.



Implicit methods require derivatives

Backward Euler, trapezoid rule
Solved with Newton’s method

Second derivatives:
ﬁ . 0%¢ oP ~ 0%
ox  OxOx OF OFOF
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Functions can be very complex

From a graphics paper:

b (2-%)-(y-x) _ (x-y)-(z-y)
G062 " TGy
 (y-2z) (x-=z _ @) xy-x)

oG] ‘lenxy-o] &%

1
Ei=—(aly 2"+ Blx-z|* +1lx-y[*)

1
EGZWH(X_Z)X(Y_Z)HZ E:CL'Ed-i-b'Ea

. OE O0E 0E 0’E 0°E 0’E . /
Need. Ox ! W’ Oz OxOx’ 9xdy’ """ 020z (Ubed h[&pl@)



It may be hard to know it is right

Sometimes the only symptom is slow convergence.



With the right ideas, we can do this

This course will show you how.
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Don’t avoid the problem

It is tempting to give up on the task.

The task normally falls to a student or intern.



What not to do - finite differences

f(x+h) - f(x-h)

HOPEESSLS
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What not to do - finite differences

f(x+h) - f(x-h)
2h

f'(x) =

@ Only approximate

e May break numerical optimization routines
e Catastrophic cancellation

e Expensive for gradients/Hessians



What not to do - Maple/Mathematica

Pros:
e Compute derivatives automatically

e Can generate code automatically.



How bad can it really be?

Modest example: f(u,v) = |u(u-v)? - VHUHBHQ



How bad can it really be?

Modest example: f(u,v) = |u(u-v)? - VHUHBHQ

What I did in Maple:
@ Compute Hessian H = flf—afu
e Simplify
@ Generate C code for just Hyy.

e Simplify the code



This 1s the result

tl =

t13 = t12 * t12; t19 = ul * vl; t24

t41
t73

v2 * v2; t4 = vl *x vl; t6 = til

* t1; t8 = t1 / 10; t9 = v3 * v3; t10 = t9 / 10; ti12 =

= t12 * u2; t31 = t9 / 5; t33 = u3d * u3; t35 = 3 * ti;
ul *x ul; t42 = t4 *x t4; t46 = 3 * t9; tb2 = u3 * v3; t61 = 0.8 *x ul * u3 *x vl *x v3;
t33 * t33; t77 = t33 * u3; t88 = t4l * ul; t94 = t41l * t41;

t100 = sqrt(t4l + t12 + t33); t102 = t4 / 5;

H11

-60 / t100 * (t100 * (t13 * (t4 * (-t1 / 5 - 0.1) - t6 / 30 - t8 - t10)

- 0.4 % t24 * v2 * (u3 * (t4 + t1 / 3) * v3 + (t4 + t1) * t19)

t12 * (£33 * (t4 * (-t1 - t9 - 1) / 5+ t1l * (-t9 - 1) / 5 - t31)

0.4 * u3 * (t4 + t35) * v3 * t19 - (t42 + t4 * (6 * t1 + 3) + t35 + t46) * t41 / 5)
4. / 3 *x u2 * (t33 * (0.3 * t4 + t10) + t61 + t4 * t41) * v2 * (t19 + t52)

t73 * (t4 * (-t31 - 0.1) - t8 - (t9 + 3) * t9 / 30)

0.4 * t77 * (t4 + t9) * v3 * t19 - t33 * (t42 + t4 * (6 * t9 + 3) + t35

t46) * t41 / 5 - 4. / 3 % v3 * t4 x vl * u3 * t88 - (t42 + t4 + tl1l + t9) * t94 / 2)
(u2 * v2 + t19 + t52) * (t13 * (102 + t8) + 0.8 * t24 * v2 * (t19 + t52 / 4)

t12 * (£33 * (0.4 * t4 + t8 + t10) + t61 + 1.1 * (t4 + 2. / 11 * t1) * t41)

u2 * (t88 * vi + 0.4 * t4l * t52 + 0.8 * ul * vl * t33 + v3 * t77 / 5) * v2

t73 * (t102 + t10) + 0.8 * v3 * ul * vl * t77 + 1.1 * t33 * t41 *x (t4 + 2. / 11 * t9)
t88 * v3 * u3d * vl + t4 x t94));

u2 *x u2;



This 1s the result

tl =

t41
t73

v2 * v2; t4 = vl *x vl; t6 = til
t13 = t12 * t12; t19 = ul * vi; t24

* t1; t8 = t1 / 10; t9 = v3 * v3; t10 = t9 / 10; ti12 =

= t12 * u2; t31 = t9 / 5; t33 = u3d * u3; t35 = 3 * ti;
ul *x ul; t42 = t4 *x t4; t46 = 3 * t9; tb2 = u3 * v3; t61 = 0.8 *x ul * u3 *x vl *x v3;
t33 * t33; t77 = t33 * u3; t88 = t4l * ul; t94 = t41l * t41;

t100 = sqrt(t4l + t12 + t33); t102 = t4 / 5;

H11

-60 / t100 * (t100 * (t13 * (t4 * (-t1 / 5 - 0.1) - t6 / 30 - t8 - t10)
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0.4 * t77 * (t4 + t9) * v3 * t19 - t33 * (t42 + t4 * (6 * t9 + 3) + t35

t46) * t41 / 5 - 4. / 3 % v3 * t4 x vl * u3 * t88 - (t42 + t4 + tl1l + t9) * t94 / 2)
(u2 * v2 + t19 + t52) * (t13 * (102 + t8) + 0.8 * t24 * v2 * (t19 + t52 / 4)

t12 * (£33 * (0.4 * t4 + t8 + t10) + t61 + 1.1 * (t4 + 2. / 11 * t1) * t41)
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This is only Hi;.

u2 *x u2;



This 1s the result

tl =v2 *x v2; t4 = vl * vl; t6 = t1 * tl; t8 = t1 / 10; t9 = v3 * v3; t10 = t9 / 10; t12 = u2 * u2;
t13 = t12 * t12; t19 = ul * vi; t24 = t12 * u2; t31 = t9 / 5; t33 = u3 * u3; t35 = 3 * ti;
t41 = ul *x ul; t42 = t4 * t4; t46 = 3 *x t9; tb2 = u3d * v3; t61 = 0.8 * ul *x u3 * vi * v3;
t73 = t33 * t33; t77 = t33 * u3; t88 = t41l x ul; t94 = t41 * t4l;
t100 = sqrt(t4l + t12 + t33); t102 = t4 / 5;
H11 = -60 / t100 * (t100 * (t13 * (t4 * (-t1 / 5 - 0.1) - t6 / 30 - t8 - t10)

- 0.4 % t24 * v2 * (u3 * (t4 + t1 / 3) * v3 + (t4 + t1) * t19)

+ t12 * (33 * (t4 * (-t1 - t9 - 1) / 5+ t1 *x (-t9 - 1) / 5 - t31)

- 0.4 *x ud * (t4 + t35) * v3 * t19 - (t42 + t4 * (6 * t1 + 3) + t35 + t46) * t41 / 5)

- 4. / 3 % u2 * (t33 * (0.3 * t4 + t10) + t61 + t4 * t41) * v2 * (t19 + t52)

+ t73 * (t4 * (-t31 - 0.1) - t8 - (t9 + 3) * t9 / 30)

- 0.4 % t77 * (t4 + t9) * v3 * t19 - t33 * (t42 + t4 * (6 * t9 + 3) + t35
t46) * t41 / 5 - 4. / 3 % v3 * t4 x vl * u3 * t88 - (t42 + t4 + tl1l + t9) * t94 / 2)
(u2 * v2 + t19 + t52) * (t13 * (102 + t8) + 0.8 * t24 * v2 * (t19 + t52 / 4)
t12 * (£33 * (0.4 * t4 + t8 + t10) + t61 + 1.1 * (t4 + 2. / 11 * t1) * t41)
u2 * (t88 * vi + 0.4 * t4l * t52 + 0.8 * ul * vl * t33 + v3 * t77 / 5) * v2
t73 * (t102 + t10) + 0.8 * v3 * ul * vl * t77 + 1.1 * t33 * t41 *x (t4 + 2. / 11 * t9)
t88 * v3 * u3d * vl + t4 x t94));

This is only HH. Also need ng, ng, H227 Hgg, and H33.
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The chain rule in computation

Original: a = f(g(x))

Derivative: a’ = f'(g(x))g'(x)

Example: a = Va2 +1

Pieces: g =a*+1, f = /g

Derivative: ¢’ = 2z, f' = 2q_ (Note: reuse f)
Recall: 7v/7 = 5~
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The chain rule is the key
Example: f(z) = (23 + V1 + 22)2

Step 1: break it into small pieces.
a=1+2> b=2° c=va d=b+c f=d°

Step 2: compute the derivative of each step

al

a =2x b =3zx* =—
2c

d=+c f=2dd

Note the use of the chain rule.



This 1s good code

a=1+2> b=2 c=+a d=b+c f=d°
/

a =2z b = 322 c’:;— d=b+c f'=2dd
c



Second derivatives are easy, too

a=1+2* b=z c=va d=b+c =d
!/
a'=2x b =3z c’:;— d=t+c f=2dd
C
o ol Al
al/:2 b”:6$ C//: a’c ac d//:bl/+cll f//:2(d/)2+2dd//
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This works for more complex stuft
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This works for more complex stuft

Earlier example: f(u,v) = ||ju(u-v)? - VHuH3“2

Step 1:
a=u-v b=|u ¢ = a? d="0
w =cu-dv f=|wl|?
Step 2:
L 2
Ay =V b, = — c, = 2aa, d, = 3b°b,

b
w, = cl+ucl —vdl fu=2w-w,



But wait, we needed second derivatives

The first few are not too bad.

a=u-v b=|u c=a? d="b
Ay =V b, :% C, = 2aay, d, = 3b%b,

1
Gyy =0 buy = E(I ~bybl) ¢y = 20,0l d,, = 6bb,bL + 307Dy,



Complication: tensors

wW=cu-dv
w, =cl +ucl —vdl
Wy, = 17
W 1S a vector.

W, 1S a matrix.
W, 1S a rank-3 tensor.



Complication: tensors

W =cu-dv f=|w|?
wu:cI+ucg—Vd5 fu=2w-wy,
Wy, = (17 fuw =2W - Wy, + 2W5Wu
—

Z
W 1S a vector.

W, 1S a matrix.
W, 1S a rank-3 tensor.
Note the usage of w,.



Complication: tensors

W =cu-dv f=|w|?
wu:cI+ucg—Vd5 fu=2w-wy,
Wy, = (17 fuw =2W - Wy, + 2W5Wu
—

Z
W 1S a vector.

W, 1S a matrix.
W, 1S a rank-3 tensor.
Note the usage of w,,. Only need matrix z.



Clever idea: avoid computing Wy,
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Compute z = w - wy,, instead of w,,,. z is a matrix.

T

z=(u-wW)cy +c,w! +wel + (v-w)dy,

fuu =22z + 2W5Wu



Clever idea: avoid computing Wy,

Compute z = w - wy,, instead of w,,,. z is a matrix.

T

z=(u-wW)cy +c,w! +wel + (v-w)dy,

fuu =22z + 2W5Wu

This is all of H = f,,, not just Hy;.
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Tensor index notation solves two problems
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Rank-4 t ;. —
e Ran ensor 5F



Tensor index notation solves two problems

@ Deal with tensors
o Gradient of matrix: wy,

0
Rank-4 t R
e Ran ensor 5F

e Forgotten derivative rules
o V(u-v)

° V(fu)
e V-(uxv)



Refer to objects by their components

Scalar: a — a
Vector: u — u;
Matrix: A - A;;
Rank-3 tensor: B;jy,

Rank-4 tensor: Cjjp



Summeation convention

Dot product: a=u-v = Zu,;vi.
i

Indices that occur twice in a term are implicitly summed.

Index notation: a = u;v;.



Summeation convention

Dot product: a=u-v = Zu,;vi.
i

Indices that occur twice in a term are implicitly summed.
Index notation: a = u;v;.

Index names do not matter. a = w;v; = upvE = w,0,.



vector notation calculation index notation



vector notation calculation index notation

A = U_VT Az‘k = U; VL Aik = U; Vg



vector notation calculation index notation
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vector notation calculation index notation
A = U_VT Az‘k = U; VL Aik = UV

a=uu-v CLZZU@UZ' a = u;v;

(2
v=Au Ui = Z Aigug v; = Ay,
k



vector notation

A =uv’
a=u-Vv
v =Au
A =BC

calculation

A = uvy,
a= Z U;V;

(2
vi = ), Aiguy,
k

Air = ) BirCi
k

index notation

Aik, = U0y
a = U;v;
v; = Ay,
Ajr = Bi;,Cy,



vector notation
A =uv’

a=u-Vv

calculation

A = uvy,

a=) uv;

7
v; = Z Ajug
k

Air =) BixChy
2

Az’r = Z BMCM
k

index notation

Arik‘ = U;VE
a = U;v;
v; = A/,;;{;uk
Ajr = Bi;,Cy,
Ajr = By,iCy,y



vector notation calculation index notation
A = U_VT Az‘k = U; VL Aik = UV

a=u-v a=Zu/iU¢ a = uv;
v =Au U = zl: Ay, v; = Aigug
A =BC A= iBika,,. A = BiCy,
A=BI'C A, = Z ByiCrhr A = ByiChr

a=tr(A) = Z Al a=A;
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Careful about indices: w;u;v; # wju;v;
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Subtleties

Careful about indices: w;u;v; # wju;v;
Multiplication commutes: A;. By, = By, A

(u-v)?is (wv;)(u,v,), not (uv;)(uv;).



Special tensors - identity matrix

Kronecker delta

1 1=k
Ok = :
0 72+k

Oik = Ok

OikUk = U;



Special tensors - cross product

Permutation tensor

Eikr =

(1 123,231,312

~1 132,213,321

kO otherwise

u =V X W becomes u; = €5, VW, .

Cikr = €rik = €kri

Cikr = —

Eirk



Derivatives in index notation

Differentiation denoted with a comma

_of _0f
I = 0x, Fors = 0x,0%,
w . = 8u, T 82%5
"o, B O, 0




Derivatives in index notation

Differentiation denoted with a comma

of 0°f
f,/r = (91} f,rs = 833'748335
Wi = Uirs = 5 o
T O, 0 Oz, 0x,
Special case: z;, = Oy = Dy

ox,




Derivatives in index notation

Differentiation denoted with a comma

of 0 f
f,/r = aiL’r f,rs = (9513'7485(35
Wi = Uirs = 5 o
T Oz, 0 Oz, 0w,
Special case: x;, = Oy = Dy
T Oz,

Constants: 0, =0, €jpr 5 =0
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gradient

divergence

of
ox,
ou,

Z ox,

r

fr



gradient

divergence

curl

of
ox,
ou,

Z ox,

r

fr

Eikr U



gradient

divergence

curl

Laplacian

af
oz,
ou,

Z ox,

r

0% f
Z: Ox,0x,

fr

€ikr Uk,



gradient

divergence

curl

Laplacian

vector Laplacian




Scalar derivative rules apply

Components are scalars, so scalar rules apply.
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Scalar derivative rules apply

Components are scalars, so scalar rules apply.

Vector: V(u-w) =7
Index: (ww;), = u;,w; + ww;,, = Vulw+Vwlu

Vector: V- (uxw) =7
Index: (eirurWr),s = €ikrlk,sWr + EikrUpWr 5
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Unfinished business

Recall: u; s = d;5 V; =0

w,=cl +ucl —vdl
Wiy = Cjp + UiCr = Vid
Wi rs = C,sdir + UiCrs + U; sCr — Uz'd,rs

W;W; rs = wic,s(;ir + WU Crs + wicsisc,r - wivz’d,rs



Unfinished business

Recall: u; s = d;5 V; =0

w,=cl +ucl —vdl
Wiy = Cjp + UiCr = Vid
Wi rs = C,sdir + UiCrs + U; sCr — Uz'd,rs
WiWy s = wic,séir + WiUiCrs + wicsisc,r - wivid,rs

WiWi rs =WyrC s + (wiui)c,rs + CrWs — (wivi)d,rs



Unfinished business

Recall: u; s = d;5 V; =0

w,=cl +ucl —vdl
Wiy = Cjp + UiCr = Vid
Wi rs = C,sdir +UCrs + U sCr — Uz'd,rs
WiWy s = wic,s(;ir + WiUiCrs + widz’sc,r - wivid,rs
WiW; s = WrCs + (Withi)Crs + € rws — (WiV;)d s

Z=W- Wy, =Wc. + (W-u)cy, + W — (W-v)dy,
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E.g., f(u,w). Need g—{l and g—v{/
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For g—{;, let u;, =9, and w;, =0

For g—v{,, let u;r = 0 and w;, = 04



Derivatives in many variables at once

E.g., f(u,w). Need g—{l and g—v{/

Work out f,. Do not assume f, = (%’; or f, = 88157 ;

Make two copies of the code:
For g—{l, let u;, =9, and w;, =0

For g—v{,, let u;r = 0 and w;, = 04

Simplify after it works.



Different indices for different variables

r for x
a fory
_of
fir = ox,
0
f,a = —f

= o



Parenthesis for derivative by matrix

oY
aFrs

w,(rs) =



Parenthesis for derivative by matrix

oy
w,(rs) - aFm
Ek,(rs) = 0 Oks
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Forward mode differentiation

Input:
Output: vy
Calculations: a = a(z), b=0b(a), c=c(b), vy = y(c)



Forward mode differentiation
Input:

Output: vy
Calculations: a = a(z), b=0b(a), c=c(b), vy = y(c)
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Forward mode differentiation
Input:

Output: vy
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Forward mode differentiation

Input:
Output: vy
Calculations: a = a(z), b=0b(a), c=c(b), vy = y(c)

ob 9bda dc Ocdb 9dy 9Oydc
dr dadr dr Obdr dr dcd
Actual computation:
oy 6’](80(868@))

9r  9c\ob\dad

0
Note: —
oea



Reverse mode differentiation

Input:
Output: vy
Calculations: a = a(z), b=0b(a), c=c(b), vy = y(c)

Oy _Oyodc Oy _0yodb Oy Oyda . . 0y
ob  9cdb da 0Obda Or 0Oad 0
Actual computation:
dy ((0y0c\0db\da
or ((5’0%)8@)8




Cost

Sizes: x > RS, a—-R3 b—->R3 y—>R!



Cost
Sizes: x >R, a— R? b—- R3? y - R!

dy 0Oy (8b8a)
Ox  Ob \0ad
——

S—— —
13 356, (54+)

Forward: 54 + 18




Cost
Sizes: x >R, a— R? b—- R3? y - R!

Oy = 0y (8b 8a) Forward: 54 + 18

Ox Ob \Had
M — —
X3 3x6; (54+)

dy (Oydb) da .

D (8b 8a) 5 Reverse: 9 + 18
\ ) ——

1x3; (9%) 36



Efficiency of forward vs reverse modes

e Calculating g—i

e Forward is cheaper if x <y
e Fasier to write



Efficiency of forward vs reverse modes

e Calculating g—i
e Forward is cheaper if x <y
e Fasier to write
@ Reverse is cheaper if z >y
e Optimization: Minimize F(x)
Forces: ¢(x)

Stresses: ¥(F)
Backpropagation (machine learning)

®© 6 ¢



Mixed mode differentiation
Input:

Output: vy
Calculations: a = a(z), b=0b(a), c=c(b), vy = y(c)

dc  0cOb dy 9dydc dy 0yda
da dbda  da dcda  Odr dad
Actual computation:
01 oy Oy (Oc b\ \ Oa
Oz (86((% aa))a_




Optimal ordering

e Optimal Jacobian accumulation
@ NP-complete

@ Dynamic programming heuristic



Outline

e Practical considerations

@ Testing



If you cannot test it, don’t write it

How do we know it is right?
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If you cannot test it, don’t write it

How do we know it is right?
Wrong answer?
Disappointing results?

Slow convergence?

Poor stability?

How do you debug that?
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Test derivatives against definition!
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Testing scalars with definition

Test derivatives against definition!
2(z+Azx) - 2(z)
Ax
How small should Az be?

2'(x) = O(Ax)

How small is O(Ax)?

Refinement test?



Use a second-order test instead

2(z+Az)-2(z) Z(z+Ax)+2(z)

_ 2
Az 2 - O(A7)
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Use a second-order test instead

2(z+Az)-2(z) Z(z+Ax)+2(z)
Az 9

Choose Az ~ €l/3 ~ 1075 €~ D x 10-16

= O(Ax?)

Fail error: O(1)
Pass error: O(€2/3) ~ 10710

Vector Azx?



Non-scalar second-order derivative test

“Multiply through” by Ax

Vz(x + Ax) + Vz(x)
2

2(x + Ax) — 2(x) - -Ax = 0(5%)

|Axoo <6



Non-scalar second-order derivative test

“Multiply through” by Ax

Vz(x + Ax) + Vz(x)
2

2(x + Ax) — 2(x) - -Ax = 0(5%)
|Axeo <0

Fail is small: O(d)



Non-scalar second-order derivative test

2(x+Ax) —2(x)  Vz(x+Ax) + Vz(x)
J 26

| Ax[leo <6

- Ax = O(6?)



Non-scalar second-order derivative test

2(x+Ax) —2(x)  Vz(x+Ax) + Vz(x)
J 26

| Ax[leo <6

- Ax = O(6?)

Fail error: O(1)

Pass error: O(0?)



Did it pass?

Introduce an error.



Did it pass?

Introduce an error.

See what a failing score looks like.



Testing Hessians

Test first derivatives.

Test second derivatives against first derivatives.



Incremental testing

Choose random xg, x1; small Ax =z — 2.



Incremental testing

Choose random xg, x1; small Ax =z — 2.
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Incremental testing

Choose random xg, x1; small Ax =z — 2.

5 !/ / J !/
Compute at zo: ao, ay, bo, by, co, ¢, do, dyy, - - -
Compute at z1: ay,al, by, by, c1. ¢, di,dy, ...

Diff test on each intermediate independently.
al_ao—a,1+a6:O(A$2) bl—bo_b’1+b6
r1— g 2 1 — To 2

O(Az?) di — do — d +dy

T — To 2 T — To 2

= O(Az?)

i X o N}
C1 — Cp B Cy + Co B

= O(Az?)



Very general strategy

o !/ / / !/
Compute at zo: ag, ay, bo, by, co, ¢, do, dyy, - - -

Compute at z1: ai,al, by, by, c1,c),dy,dy, ...

@ Test any partial

80 C1 —
o N

da a; — ap



Optimize incrementally

@ Choose ordering

e Get it working
@ Incremental optimization

e Slight change
o Test
e Repeat



Outline

e Practical considerations

@ Implicit differentiation



Implicit functions

Given z, compute y from f(z,y) = 0.



Implicit functions

Given z, compute y from f(z,y) = 0.

Compute 4 from z’.



Implicit differentiation

Equation:  f(x,y) =0



Implicit differentiation

Equation:  f(x,y) =0

Differentiate:  f.(x,y)x"+ f,(z,y)y" =0



Implicit differentiation

Equation:  f(x,y) =0
Differentiate:  f.(x,y)x"+ f,(z,y)y" =0

x' fy
Solve: 1 = -
Jy




Rule derivation: vector magnitude



Rule derivation: matrix inverse



Differentiating the algorithm

Differentiate the function,
not the algorithm used to compute it.



Differentiating elementary functions

Differentiate sin x as cosx
@ Don't diff the Taylor series

e Use analytic formulas
@ Oscillatory approximations

e Accurate value
e Wrong derivative



Differentiating matrix inverse

Use (A1) =-A-TA’A-L.
e Don’t diff Gaussian elimination

@ Discontinuous (pivoting)



Differentiating roots of polynomials

e Use implicit differentiation
@ Don't diff bisection

e How could you?



Outline

e Differentiating matrix factorizations



Singular value defines principle stretches

Singular value decomposition: F = UXVT
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Singular value defines principle stretches

Singular value decomposition: F = UXVT

01
Singular values: X = 09
03

Naturally separates deformation into
rotations: U, V
stretching: X



Stretching takes energy

W(F) = ()
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Stretching takes energy

W(F) = ()

Popular model in graphics (co-rotated):

k

6) =S on -1+ 5 Sl -1)

Its derivatives are sometimes “simplified.”
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Twice:



Here is where it gets tough

We must differentiate this: P = (9_¢
OF
Twice: o = 82¢
" OF  OFOF’

And we can do this.
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Quantity Diagonal Relationship Properties

F T, F=-UxV! diagonal
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Things are simpler in diagonal space

Quantity Diagonal Relationship Properties
F T, F=-UxV! diagonal
) ) )
P-= a—;f P P=UPV’ diagonal
oP 2 A
T=_— T T?[fjk/ = U[/II'LUkTTNLTI/T'H‘/;j’IL‘/;A‘ Sparse

OF



Strategy

e Compute diagonal space quantity

A~

o P. T



Strategy

e Compute diagonal space quantity

o P, T
e Transform to original
o P. T



Formula for B

Notes:



Formula for P
]5;/ = 1&1

Notes:

@ no summation implied



Formula for P

Pi=1,
Notes:
@ no summation implied
. O
@ Y, = 4

7/1/ -
(90',;



Formula for P

Pii =1,
Notes:
@ no summation implied
- O
Q QA@ =

o Pis diagonal



Formula for T

Hessian term:



Formula for T

Hessian term:

Tiikk = Y ik
Cross terms (7 # k):
% - w,k ¢ 7 ¢ k
Qi = bt =
O, — 0L o, + 0
2 a;r + bk ~ Qi b k
ik = — Z Tirri = — Z



Formula for T

Hessian term:

Cross terms (7 # k):

A A

w,z - w,k ¢ 7 w k

aj = bij. =
O, — 0L o, + 0
= air + bk & a;r — bk
hik = 5 Tikki = —5

A

Note: aix = aki, bik = ki, Tikik = Thiki, Likki = Thiik



Robustness notes: a;;.

Notes:
° z@ symimetric in oy,
@ 0; — o), implies 1@7 — 1@;{;
@ limit exists

@ compute analytically



Robustness notes: b;;.

i+

o, t+ 0

bir,

Notes:
@ might be unbounded

@ clamp it




See course notes for formulas for ...

e Matrices that diagonalize as
o A=UAVT (generalizes P rule)
o A=UAU?
o A=VAVT
e Figenvalue decomposition
e S=UAUT
e S is symmetric
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Q Basics

Q Practical considerations
Q Differentiating matrix factorizations

0 Automatic differentiation



Automatic differentiation

e Automate the differentiation process
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Automatic differentiation

e Automate the differentiation process
e Not symbolic differentiation

e Do not rearrange
e Do not simplify
e Avoids mess

e Many ways - lets explore some



Replace scalar with special type

@ Store value and derivative
e Compute both together

@ Overload operators and functions



Sample implementation

struct Diff_TT

{
double x, dx;

+s

Diff _TT operator+ (Diff_TT a, Diff_TT b)
{

return {a.x + b.x, a.dx + b.dx};

}

Diff _TT operator* (Diff_TT a, Diff_TT b)
{

return {a.x*b.x, a.dx*b.x + a.x*b.dx};

+



Compile-time autodift is great

@ Intuitive

e Hasy to implement
e Fasy to use

e Write code for value
e Derivative for free

e Easy for compiler to optimize
e Everything inlines



Extends to vectors, matrices

@ Diff VT: u’

@ Diff MT: A’

. of
@ Diff TV: —
0x

e Diff VV: —
ox



Extends to Hessians

struct Hess_TT

{
double x, dx, ddx;

+s

Hess_TT operator+ (Hess_TT a, Hess_TT b)
{

return {a.x+b.x, a.dx+b.dx, a.ddx+b.ddx};

}

Hess_TT operator* (Hess_TT a, Hess_TT b)
{
return {a.x*b.x, a.dx*b.x + a.x*b.dx,
a.ddx*b.x + 2*a.dx*b.dx + a.x*b.ddx};



Does not scale well

e Forward mode
@ Scales poorly for many inputs
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Does not scale well

e Forward mode

@ Scales poorly for many inputs
e optimization: f(x)
o force: ¢(x)
o stress: Y(F)



Reverse mode compile time autodift

@ Reverse mode is tough
o Compute derivatives in reverse order

@ Need to record the code



Reverse mode via expression templates

Result of: 2 = 322 + cosy

Has type:

Add<Scale<Square<Var<0>>>,6Cos<Var<1i>>>

Reverse order traversal by recursion



Runtime

@ Record operations in a list
o Walk the list to differentiate
@ Forward and reverse mode

@ Can handle variable input size



Not as efficient

@ List construction
@ Memory allocation
e No inlining

@ No compiler optimization



Code generation

@ Separate program
e Input: function code

e Output: derivative code



Very flexible

@ Forward mode
@ Reverse mode

@ Mixed mode



Offline - take your time

@ Run once
@ Speed does not matter

e Optimize the results



Differentiate the function

e Autodiff may trace into functions

@ exp, tgamma, sph_bessel
e Differentiates the algorithm

@ Overload functions
e Differentiates the function



Automatic differentiation has uses

@ Prototyping

@ Debugging

e Infrequently executed code
°

Expect 2x slowdown

e Better for code-gen
e Worse for dynamic

@ No numerical robustness



Autodiff is a community

@ http://www.autodiff.org/
@ Software tools
@ Libraries

@ Reading lists


http://www.autodiff.org/

Manual derivatives are possible

I hope this course has shown you how.

(Questions?
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