
Practical course on computing
derivatives in code

Craig Schroeder

SIGGRAPH 2019

Outline

1 Basics
Motivation
Don’t do this
Chain rule
Tensors

2 Practical considerations

3 Differentiating matrix factorizations

4 Automatic differentiation

Outline

1 Basics
Motivation
Don’t do this
Chain rule
Tensors

2 Practical considerations

3 Differentiating matrix factorizations

4 Automatic differentiation

Motivation - numerical optimization

Minimize: f(x)

Numerical optimization uses gradients

x← x − α∇f Gradient descent

More efficient methods need second derivatives

x← x − (∂
2f

∂x∂x
)
−1

∇f Newton’s method

Motivation - numerical optimization

Minimize: f(x)

Numerical optimization uses gradients

x← x − α∇f Gradient descent

More efficient methods need second derivatives

x← x − (∂
2f

∂x∂x
)
−1

∇f Newton’s method

Motivation - numerical optimization

Minimize: f(x)

Numerical optimization uses gradients

x← x − α∇f Gradient descent

More efficient methods need second derivatives

x← x − (∂
2f

∂x∂x
)
−1

∇f Newton’s method

Motivation - physical forces

potential energy: φ(x)

force: f = −∂φ
∂x

Required for conservative forces.

Forces are often formulated via energy.

Motivation - constitutive models

energy density: ψ(F)

stress: P = ∂ψ
∂F

Note that F and P are matrices.

Implicit methods require derivatives

Backward Euler, trapezoid rule

Solved with Newton’s method

Second derivatives:

∂f

∂x
= − ∂2φ

∂x∂x

∂P

∂F
= ∂2ψ

∂F∂F

Functions can be very complex
From a graphics paper:

α = (z − x) ⋅ (y − x)
∥(z − x) × (y − x)∥ β = (x − y) ⋅ (z − y)

∥(x − y) × (z − y)∥

γ = (y − z) ⋅ (x − z)
∥(y − z) × (x − z)∥ d = (z − x) × (y − x)

∥(z − x) × (y − x)∥ ⋅ (x − c)

Ed =
1

d2
(α∥y − z∥2 + β∥x − z∥2 + γ∥x − y∥2)

Ea =
1

kd2
∥(x − z) × (y − z)∥2 E = a ⋅Ed + b ⋅Ea

Need: ∂E
∂x , ∂E

∂y , ∂E
∂z , ∂2E

∂x∂x, ∂2E
∂x∂y , . . . , ∂2E

∂z∂z (Used Maple)

Functions can be very complex
From a graphics paper:

α = (z − x) ⋅ (y − x)
∥(z − x) × (y − x)∥ β = (x − y) ⋅ (z − y)

∥(x − y) × (z − y)∥

γ = (y − z) ⋅ (x − z)
∥(y − z) × (x − z)∥ d = (z − x) × (y − x)

∥(z − x) × (y − x)∥ ⋅ (x − c)

Ed =
1

d2
(α∥y − z∥2 + β∥x − z∥2 + γ∥x − y∥2)

Ea =
1

kd2
∥(x − z) × (y − z)∥2 E = a ⋅Ed + b ⋅Ea

Need: ∂E
∂x , ∂E

∂y , ∂E
∂z , ∂2E

∂x∂x, ∂2E
∂x∂y , . . . , ∂2E

∂z∂z (Used Maple)

Functions can be very complex
From a graphics paper:

α = (z − x) ⋅ (y − x)
∥(z − x) × (y − x)∥ β = (x − y) ⋅ (z − y)

∥(x − y) × (z − y)∥

γ = (y − z) ⋅ (x − z)
∥(y − z) × (x − z)∥ d = (z − x) × (y − x)

∥(z − x) × (y − x)∥ ⋅ (x − c)

Ed =
1

d2
(α∥y − z∥2 + β∥x − z∥2 + γ∥x − y∥2)

Ea =
1

kd2
∥(x − z) × (y − z)∥2 E = a ⋅Ed + b ⋅Ea

Need: ∂E
∂x , ∂E

∂y , ∂E
∂z , ∂2E

∂x∂x, ∂2E
∂x∂y , . . . , ∂2E

∂z∂z

(Used Maple)

Functions can be very complex
From a graphics paper:

α = (z − x) ⋅ (y − x)
∥(z − x) × (y − x)∥ β = (x − y) ⋅ (z − y)

∥(x − y) × (z − y)∥

γ = (y − z) ⋅ (x − z)
∥(y − z) × (x − z)∥ d = (z − x) × (y − x)

∥(z − x) × (y − x)∥ ⋅ (x − c)

Ed =
1

d2
(α∥y − z∥2 + β∥x − z∥2 + γ∥x − y∥2)

Ea =
1

kd2
∥(x − z) × (y − z)∥2 E = a ⋅Ed + b ⋅Ea

Need: ∂E
∂x , ∂E

∂y , ∂E
∂z , ∂2E

∂x∂x, ∂2E
∂x∂y , . . . , ∂2E

∂z∂z (Used Maple)

It may be hard to know it is right

Sometimes the only symptom is slow convergence.

With the right ideas, we can do this

This course will show you how.

Outline

1 Basics
Motivation
Don’t do this
Chain rule
Tensors

2 Practical considerations

3 Differentiating matrix factorizations

4 Automatic differentiation

Don’t avoid the problem

It is tempting to give up on the task.

The task normally falls to a student or intern.

What not to do - finite differences

f ′(x) ≈ f(x + h) − f(x − h)
2h

Only approximate
May break numerical optimization routines
Catastrophic cancellation

Expensive for gradients/Hessians

What not to do - finite differences

f ′(x) ≈ f(x + h) − f(x − h)
2h

Only approximate

May break numerical optimization routines
Catastrophic cancellation

Expensive for gradients/Hessians

What not to do - finite differences

f ′(x) ≈ f(x + h) − f(x − h)
2h

Only approximate
May break numerical optimization routines

Catastrophic cancellation

Expensive for gradients/Hessians

What not to do - finite differences

f ′(x) ≈ f(x + h) − f(x − h)
2h

Only approximate
May break numerical optimization routines
Catastrophic cancellation

Expensive for gradients/Hessians

What not to do - finite differences

f ′(x) ≈ f(x + h) − f(x − h)
2h

Only approximate
May break numerical optimization routines
Catastrophic cancellation

Expensive for gradients/Hessians

What not to do - Maple/Mathematica

Pros:

Compute derivatives automatically

Can generate code automatically.

How bad can it really be?

Modest example: f(u,v) = ∥u(u ⋅ v)2 − v∥u∥3∥2

What I did in Maple:

Compute Hessian H = ∂2f
∂u∂u

Simplify

Generate C code for just H11.

Simplify the code

How bad can it really be?

Modest example: f(u,v) = ∥u(u ⋅ v)2 − v∥u∥3∥2

What I did in Maple:

Compute Hessian H = ∂2f
∂u∂u

Simplify

Generate C code for just H11.

Simplify the code

This is the result
t1 = v2 * v2; t4 = v1 * v1; t6 = t1 * t1; t8 = t1 / 10; t9 = v3 * v3; t10 = t9 / 10; t12 = u2 * u2;
t13 = t12 * t12; t19 = u1 * v1; t24 = t12 * u2; t31 = t9 / 5; t33 = u3 * u3; t35 = 3 * t1;
t41 = u1 * u1; t42 = t4 * t4; t46 = 3 * t9; t52 = u3 * v3; t61 = 0.8 * u1 * u3 * v1 * v3;
t73 = t33 * t33; t77 = t33 * u3; t88 = t41 * u1; t94 = t41 * t41;
t100 = sqrt(t41 + t12 + t33); t102 = t4 / 5;
H11 = -60 / t100 * (t100 * (t13 * (t4 * (-t1 / 5 - 0.1) - t6 / 30 - t8 - t10)

- 0.4 * t24 * v2 * (u3 * (t4 + t1 / 3) * v3 + (t4 + t1) * t19)
+ t12 * (t33 * (t4 * (-t1 - t9 - 1) / 5 + t1 * (-t9 - 1) / 5 - t31)
- 0.4 * u3 * (t4 + t35) * v3 * t19 - (t42 + t4 * (6 * t1 + 3) + t35 + t46) * t41 / 5)
- 4. / 3 * u2 * (t33 * (0.3 * t4 + t10) + t61 + t4 * t41) * v2 * (t19 + t52)
+ t73 * (t4 * (-t31 - 0.1) - t8 - (t9 + 3) * t9 / 30)
- 0.4 * t77 * (t4 + t9) * v3 * t19 - t33 * (t42 + t4 * (6 * t9 + 3) + t35
+ t46) * t41 / 5 - 4. / 3 * v3 * t4 * v1 * u3 * t88 - (t42 + t4 + t1 + t9) * t94 / 2)
+ (u2 * v2 + t19 + t52) * (t13 * (t102 + t8) + 0.8 * t24 * v2 * (t19 + t52 / 4)
+ t12 * (t33 * (0.4 * t4 + t8 + t10) + t61 + 1.1 * (t4 + 2. / 11 * t1) * t41)
+ u2 * (t88 * v1 + 0.4 * t41 * t52 + 0.8 * u1 * v1 * t33 + v3 * t77 / 5) * v2
+ t73 * (t102 + t10) + 0.8 * v3 * u1 * v1 * t77 + 1.1 * t33 * t41 * (t4 + 2. / 11 * t9)
+ t88 * v3 * u3 * v1 + t4 * t94));

This is only H11. Also need H12, H13, H22, H23, and H33.

This is the result
t1 = v2 * v2; t4 = v1 * v1; t6 = t1 * t1; t8 = t1 / 10; t9 = v3 * v3; t10 = t9 / 10; t12 = u2 * u2;
t13 = t12 * t12; t19 = u1 * v1; t24 = t12 * u2; t31 = t9 / 5; t33 = u3 * u3; t35 = 3 * t1;
t41 = u1 * u1; t42 = t4 * t4; t46 = 3 * t9; t52 = u3 * v3; t61 = 0.8 * u1 * u3 * v1 * v3;
t73 = t33 * t33; t77 = t33 * u3; t88 = t41 * u1; t94 = t41 * t41;
t100 = sqrt(t41 + t12 + t33); t102 = t4 / 5;
H11 = -60 / t100 * (t100 * (t13 * (t4 * (-t1 / 5 - 0.1) - t6 / 30 - t8 - t10)

- 0.4 * t24 * v2 * (u3 * (t4 + t1 / 3) * v3 + (t4 + t1) * t19)
+ t12 * (t33 * (t4 * (-t1 - t9 - 1) / 5 + t1 * (-t9 - 1) / 5 - t31)
- 0.4 * u3 * (t4 + t35) * v3 * t19 - (t42 + t4 * (6 * t1 + 3) + t35 + t46) * t41 / 5)
- 4. / 3 * u2 * (t33 * (0.3 * t4 + t10) + t61 + t4 * t41) * v2 * (t19 + t52)
+ t73 * (t4 * (-t31 - 0.1) - t8 - (t9 + 3) * t9 / 30)
- 0.4 * t77 * (t4 + t9) * v3 * t19 - t33 * (t42 + t4 * (6 * t9 + 3) + t35
+ t46) * t41 / 5 - 4. / 3 * v3 * t4 * v1 * u3 * t88 - (t42 + t4 + t1 + t9) * t94 / 2)
+ (u2 * v2 + t19 + t52) * (t13 * (t102 + t8) + 0.8 * t24 * v2 * (t19 + t52 / 4)
+ t12 * (t33 * (0.4 * t4 + t8 + t10) + t61 + 1.1 * (t4 + 2. / 11 * t1) * t41)
+ u2 * (t88 * v1 + 0.4 * t41 * t52 + 0.8 * u1 * v1 * t33 + v3 * t77 / 5) * v2
+ t73 * (t102 + t10) + 0.8 * v3 * u1 * v1 * t77 + 1.1 * t33 * t41 * (t4 + 2. / 11 * t9)
+ t88 * v3 * u3 * v1 + t4 * t94));

This is only H11.

Also need H12, H13, H22, H23, and H33.

This is the result
t1 = v2 * v2; t4 = v1 * v1; t6 = t1 * t1; t8 = t1 / 10; t9 = v3 * v3; t10 = t9 / 10; t12 = u2 * u2;
t13 = t12 * t12; t19 = u1 * v1; t24 = t12 * u2; t31 = t9 / 5; t33 = u3 * u3; t35 = 3 * t1;
t41 = u1 * u1; t42 = t4 * t4; t46 = 3 * t9; t52 = u3 * v3; t61 = 0.8 * u1 * u3 * v1 * v3;
t73 = t33 * t33; t77 = t33 * u3; t88 = t41 * u1; t94 = t41 * t41;
t100 = sqrt(t41 + t12 + t33); t102 = t4 / 5;
H11 = -60 / t100 * (t100 * (t13 * (t4 * (-t1 / 5 - 0.1) - t6 / 30 - t8 - t10)

- 0.4 * t24 * v2 * (u3 * (t4 + t1 / 3) * v3 + (t4 + t1) * t19)
+ t12 * (t33 * (t4 * (-t1 - t9 - 1) / 5 + t1 * (-t9 - 1) / 5 - t31)
- 0.4 * u3 * (t4 + t35) * v3 * t19 - (t42 + t4 * (6 * t1 + 3) + t35 + t46) * t41 / 5)
- 4. / 3 * u2 * (t33 * (0.3 * t4 + t10) + t61 + t4 * t41) * v2 * (t19 + t52)
+ t73 * (t4 * (-t31 - 0.1) - t8 - (t9 + 3) * t9 / 30)
- 0.4 * t77 * (t4 + t9) * v3 * t19 - t33 * (t42 + t4 * (6 * t9 + 3) + t35
+ t46) * t41 / 5 - 4. / 3 * v3 * t4 * v1 * u3 * t88 - (t42 + t4 + t1 + t9) * t94 / 2)
+ (u2 * v2 + t19 + t52) * (t13 * (t102 + t8) + 0.8 * t24 * v2 * (t19 + t52 / 4)
+ t12 * (t33 * (0.4 * t4 + t8 + t10) + t61 + 1.1 * (t4 + 2. / 11 * t1) * t41)
+ u2 * (t88 * v1 + 0.4 * t41 * t52 + 0.8 * u1 * v1 * t33 + v3 * t77 / 5) * v2
+ t73 * (t102 + t10) + 0.8 * v3 * u1 * v1 * t77 + 1.1 * t33 * t41 * (t4 + 2. / 11 * t9)
+ t88 * v3 * u3 * v1 + t4 * t94));

This is only H11. Also need H12, H13, H22, H23, and H33.

Outline

1 Basics
Motivation
Don’t do this
Chain rule
Tensors

2 Practical considerations

3 Differentiating matrix factorizations

4 Automatic differentiation

The chain rule in computation

Original: a = f(g(x))
Derivative: a′ = f ′(g(x))g′(x)

Example: a =
√
x2 + 1

Pieces: g = x2 + 1, f = √g

Derivative: g′ = 2x, f ′ = g′

2f (Note: reuse f)

Recall: d
dx

√
x = 1

2
√
x

The chain rule in computation

Original: a = f(g(x))
Derivative: a′ = f ′(g(x))g′(x)

Example: a =
√
x2 + 1

Pieces: g = x2 + 1, f = √g

Derivative: g′ = 2x, f ′ = g′

2f (Note: reuse f)

Recall: d
dx

√
x = 1

2
√
x

The chain rule in computation

Original: a = f(g(x))
Derivative: a′ = f ′(g(x))g′(x)

Example: a =
√
x2 + 1

Pieces: g = x2 + 1, f = √g

Derivative: g′ = 2x, f ′ = g′

2f (Note: reuse f)

Recall: d
dx

√
x = 1

2
√
x

The chain rule is the key

Example: f(x) = (x3 +
√

1 + x2)2

Step 1: break it into small pieces.

a = 1 + x2 b = x3 c =
√
a d = b + c f = d2

Step 2: compute the derivative of each step

a′ = 2x b′ = 3x2 c′ = a
′

2c
d′ = b′ + c′ f ′ = 2dd′

Note the use of the chain rule.

The chain rule is the key

Example: f(x) = (x3 +
√

1 + x2)2

Step 1: break it into small pieces.

a = 1 + x2 b = x3 c =
√
a d = b + c f = d2

Step 2: compute the derivative of each step

a′ = 2x b′ = 3x2 c′ = a
′

2c
d′ = b′ + c′ f ′ = 2dd′

Note the use of the chain rule.

The chain rule is the key

Example: f(x) = (x3 +
√

1 + x2)2

Step 1: break it into small pieces.

a = 1 + x2 b = x3 c =
√
a d = b + c f = d2

Step 2: compute the derivative of each step

a′ = 2x b′ = 3x2 c′ = a
′

2c
d′ = b′ + c′ f ′ = 2dd′

Note the use of the chain rule.

The chain rule is the key

Example: f(x) = (x3 +
√

1 + x2)2

Step 1: break it into small pieces.

a = 1 + x2 b = x3 c =
√
a d = b + c f = d2

Step 2: compute the derivative of each step

a′ = 2x b′ = 3x2 c′ = a
′

2c
d′ = b′ + c′ f ′ = 2dd′

Note the use of the chain rule.

The chain rule is the key

Example: f(x) = (x3 +
√

1 + x2)2

Step 1: break it into small pieces.

a = 1 + x2 b = x3 c =
√
a d = b + c f = d2

Step 2: compute the derivative of each step

a′ = 2x b′ = 3x2 c′ = a
′

2c
d′ = b′ + c′ f ′ = 2dd′

Note the use of the chain rule.

This is good code

a = 1 + x2 b = x3 c =
√
a d = b + c f = d2

a′ = 2x b′ = 3x2 c′ = a
′

2c
d′ = b′ + c′ f ′ = 2dd′

Second derivatives are easy, too

a = 1 + x2 b = x3 c =
√
a d = b + c f = d2

a′ = 2x b′ = 3x2 c′ = a′

2c
d′ = b′ + c′ f ′ = 2dd′

a′′ = 2 b′′ = 6x c′′ = a
′′c − a′c′

2a
d′′ = b′′ + c′′ f ′′ = 2(d′)2 + 2dd′′

This works for more complex stuff

Earlier example: f(u,v) = ∥u(u ⋅ v)2 − v∥u∥3∥2

Step 1:

a = u ⋅ v b = ∥u∥ c = a2 d = b3

w = cu − dv f = ∥w∥2

Step 2:

au = v bu =
u

b
cu = 2aau du = 3b2bu

wu = cI + ucTu − vdTu fu = 2w ⋅wu

This works for more complex stuff

Earlier example: f(u,v) = ∥u(u ⋅ v)2 − v∥u∥3∥2

Step 1:

a = u ⋅ v b = ∥u∥ c = a2 d = b3

w = cu − dv f = ∥w∥2

Step 2:

au = v bu =
u

b
cu = 2aau du = 3b2bu

wu = cI + ucTu − vdTu fu = 2w ⋅wu

This works for more complex stuff

Earlier example: f(u,v) = ∥u(u ⋅ v)2 − v∥u∥3∥2

Step 1:

a = u ⋅ v b = ∥u∥ c = a2 d = b3

w = cu − dv f = ∥w∥2

Step 2:

au = v bu =
u

b
cu = 2aau du = 3b2bu

wu = cI + ucTu − vdTu fu = 2w ⋅wu

But wait, we needed second derivatives

The first few are not too bad.

a = u ⋅ v b = ∥u∥ c = a2 d = b3

au = v bu =
u

b
cu = 2aau du = 3b2bu

auu = 0 buu =
1

b
(I − bubTu) cuu = 2aua

T
u duu = 6bbub

T
u + 3b2buu

Complication: tensors

w = cu − dv f = ∥w∥2

wu = cI + ucTu − vdTu fu = 2w ⋅wu

wuu = ?!?

fuu = 2w ⋅wuu´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶
z

+ 2wT
uwu

w is a vector.

wu is a matrix.

wuu is a rank-3 tensor.

Note the usage of wuu. Only need matrix z.

Complication: tensors

w = cu − dv f = ∥w∥2

wu = cI + ucTu − vdTu fu = 2w ⋅wu

wuu = ?!? fuu = 2w ⋅wuu´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶
z

+ 2wT
uwu

w is a vector.

wu is a matrix.

wuu is a rank-3 tensor.

Note the usage of wuu.

Only need matrix z.

Complication: tensors

w = cu − dv f = ∥w∥2

wu = cI + ucTu − vdTu fu = 2w ⋅wu

wuu = ?!? fuu = 2w ⋅wuu´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶
z

+ 2wT
uwu

w is a vector.

wu is a matrix.

wuu is a rank-3 tensor.

Note the usage of wuu. Only need matrix z.

Clever idea: avoid computing wuu

Compute z = w ⋅wuu instead of wuu. z is a matrix.

z = (u ⋅w)cuu + cuwT +wcTu + (v ⋅w)duu
fuu = 2z + 2wT

uwu

This is all of H = fuu, not just H11.

Clever idea: avoid computing wuu

Compute z = w ⋅wuu instead of wuu. z is a matrix.

z = (u ⋅w)cuu + cuwT +wcTu + (v ⋅w)duu
fuu = 2z + 2wT

uwu

This is all of H = fuu, not just H11.

Clever idea: avoid computing wuu

Compute z = w ⋅wuu instead of wuu. z is a matrix.

z = (u ⋅w)cuu + cuwT +wcTu + (v ⋅w)duu
fuu = 2z + 2wT

uwu

This is all of H = fuu, not just H11.

Outline

1 Basics
Motivation
Don’t do this
Chain rule
Tensors

2 Practical considerations

3 Differentiating matrix factorizations

4 Automatic differentiation

Tensor index notation solves two problems

Deal with tensors
Gradient of matrix: wuu

Rank-4 tensor:
∂P

∂F

Forgotten derivative rules
∇(u ⋅ v)
∇(fu)
∇ ⋅ (u × v)

Tensor index notation solves two problems

Deal with tensors
Gradient of matrix: wuu

Rank-4 tensor:
∂P

∂F
Forgotten derivative rules

∇(u ⋅ v)
∇(fu)
∇ ⋅ (u × v)

Refer to objects by their components

Scalar: a→ a

Vector: u→ ui

Matrix: A→ Aij

Rank-3 tensor: Bijk

Rank-4 tensor: Cijkl

Summation convention

Dot product: a = u ⋅ v = ∑
i

uivi.

Indices that occur twice in a term are implicitly summed.

Index notation: a = uivi.

Index names do not matter. a = uivi = ukvk = urvr.

Summation convention

Dot product: a = u ⋅ v = ∑
i

uivi.

Indices that occur twice in a term are implicitly summed.

Index notation: a = uivi.

Index names do not matter. a = uivi = ukvk = urvr.

vector notation calculation index notation

A = uvT Aik = uivk Aik = uivk
a = u ⋅ v a = ∑

i

uivi a = uivi

v = Au vi = ∑
k

Aikuk vi = Aikuk

A = BC Air = ∑
k

BikCkr Air = BikCkr

A = BTC Air = ∑
k

BkiCkr Air = BkiCkr

a = tr(A) a = ∑
i

Aii a = Aii

vector notation calculation index notation

A = uvT Aik = uivk Aik = uivk

a = u ⋅ v a = ∑
i

uivi a = uivi

v = Au vi = ∑
k

Aikuk vi = Aikuk

A = BC Air = ∑
k

BikCkr Air = BikCkr

A = BTC Air = ∑
k

BkiCkr Air = BkiCkr

a = tr(A) a = ∑
i

Aii a = Aii

vector notation calculation index notation

A = uvT Aik = uivk Aik = uivk
a = u ⋅ v a = ∑

i

uivi a = uivi

v = Au vi = ∑
k

Aikuk vi = Aikuk

A = BC Air = ∑
k

BikCkr Air = BikCkr

A = BTC Air = ∑
k

BkiCkr Air = BkiCkr

a = tr(A) a = ∑
i

Aii a = Aii

vector notation calculation index notation

A = uvT Aik = uivk Aik = uivk
a = u ⋅ v a = ∑

i

uivi a = uivi

v = Au vi = ∑
k

Aikuk vi = Aikuk

A = BC Air = ∑
k

BikCkr Air = BikCkr

A = BTC Air = ∑
k

BkiCkr Air = BkiCkr

a = tr(A) a = ∑
i

Aii a = Aii

vector notation calculation index notation

A = uvT Aik = uivk Aik = uivk
a = u ⋅ v a = ∑

i

uivi a = uivi

v = Au vi = ∑
k

Aikuk vi = Aikuk

A = BC Air = ∑
k

BikCkr Air = BikCkr

A = BTC Air = ∑
k

BkiCkr Air = BkiCkr

a = tr(A) a = ∑
i

Aii a = Aii

vector notation calculation index notation

A = uvT Aik = uivk Aik = uivk
a = u ⋅ v a = ∑

i

uivi a = uivi

v = Au vi = ∑
k

Aikuk vi = Aikuk

A = BC Air = ∑
k

BikCkr Air = BikCkr

A = BTC Air = ∑
k

BkiCkr Air = BkiCkr

a = tr(A) a = ∑
i

Aii a = Aii

vector notation calculation index notation

A = uvT Aik = uivk Aik = uivk
a = u ⋅ v a = ∑

i

uivi a = uivi

v = Au vi = ∑
k

Aikuk vi = Aikuk

A = BC Air = ∑
k

BikCkr Air = BikCkr

A = BTC Air = ∑
k

BkiCkr Air = BkiCkr

a = tr(A) a = ∑
i

Aii a = Aii

Subtleties

Careful about indices: uiujvi ≠ uiuivj

Multiplication commutes: AikBkr = BkrAik

(u ⋅ v)2 is (uivi)(urvr), not (uivi)(uivi).

Subtleties

Careful about indices: uiujvi ≠ uiuivj

Multiplication commutes: AikBkr = BkrAik

(u ⋅ v)2 is (uivi)(urvr), not (uivi)(uivi).

Subtleties

Careful about indices: uiujvi ≠ uiuivj

Multiplication commutes: AikBkr = BkrAik

(u ⋅ v)2 is (uivi)(urvr), not (uivi)(uivi).

Special tensors - identity matrix

Kronecker delta

δik =
⎧⎪⎪⎨⎪⎪⎩

1 i = k
0 i ≠ k

δik = δki

δikuk = ui

Special tensors - cross product

Permutation tensor

eikr =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 123, 231, 312

−1 132, 213, 321

0 otherwise

u = v ×w becomes ui = eikrvkwr.

eikr = erik = ekri
eikr = −eirk

Derivatives in index notation

Differentiation denoted with a comma

f,r =
∂f

∂xr
f,rs =

∂2f

∂xr∂xs

ui,r =
∂ui
∂xr

ui,rs =
∂2ui
∂xr∂xs

Special case: xi,r =
∂xi
∂xr

= δir

Constants: δik,r = 0, eikr,s = 0

Derivatives in index notation

Differentiation denoted with a comma

f,r =
∂f

∂xr
f,rs =

∂2f

∂xr∂xs

ui,r =
∂ui
∂xr

ui,rs =
∂2ui
∂xr∂xs

Special case: xi,r =
∂xi
∂xr

= δir

Constants: δik,r = 0, eikr,s = 0

Derivatives in index notation

Differentiation denoted with a comma

f,r =
∂f

∂xr
f,rs =

∂2f

∂xr∂xs

ui,r =
∂ui
∂xr

ui,rs =
∂2ui
∂xr∂xs

Special case: xi,r =
∂xi
∂xr

= δir

Constants: δik,r = 0, eikr,s = 0

gradient ∇f ∂f

∂xr
f,r

divergence ∇ ⋅ u ∑
r

∂ur
∂xr

ur,r

curl ∇× u eikruk,r

Laplacian ∇2f ∑
r

∂2f

∂xr∂xr
f,rr

vector Laplacian ∇2u ∑
r

∂2ui
∂xr∂xr

ui,rr

gradient ∇f ∂f

∂xr
f,r

divergence ∇ ⋅ u ∑
r

∂ur
∂xr

ur,r

curl ∇× u eikruk,r

Laplacian ∇2f ∑
r

∂2f

∂xr∂xr
f,rr

vector Laplacian ∇2u ∑
r

∂2ui
∂xr∂xr

ui,rr

gradient ∇f ∂f

∂xr
f,r

divergence ∇ ⋅ u ∑
r

∂ur
∂xr

ur,r

curl ∇× u eikruk,r

Laplacian ∇2f ∑
r

∂2f

∂xr∂xr
f,rr

vector Laplacian ∇2u ∑
r

∂2ui
∂xr∂xr

ui,rr

gradient ∇f ∂f

∂xr
f,r

divergence ∇ ⋅ u ∑
r

∂ur
∂xr

ur,r

curl ∇× u eikruk,r

Laplacian ∇2f ∑
r

∂2f

∂xr∂xr
f,rr

vector Laplacian ∇2u ∑
r

∂2ui
∂xr∂xr

ui,rr

gradient ∇f ∂f

∂xr
f,r

divergence ∇ ⋅ u ∑
r

∂ur
∂xr

ur,r

curl ∇× u eikruk,r

Laplacian ∇2f ∑
r

∂2f

∂xr∂xr
f,rr

vector Laplacian ∇2u ∑
r

∂2ui
∂xr∂xr

ui,rr

Scalar derivative rules apply

Components are scalars, so scalar rules apply.

Vector: ∇(u ⋅w) =?

Index: (uiwi),r = ui,rwi + uiwi,r Ô⇒ ∇uTw +∇wTu

Vector: ∇ ⋅ (u ×w) =?

Index: (eikrukwr),s = eikruk,swr + eikrukwr,s

Scalar derivative rules apply

Components are scalars, so scalar rules apply.

Vector: ∇(u ⋅w) =?

Index: (uiwi),r = ui,rwi + uiwi,r

Ô⇒ ∇uTw +∇wTu

Vector: ∇ ⋅ (u ×w) =?

Index: (eikrukwr),s = eikruk,swr + eikrukwr,s

Scalar derivative rules apply

Components are scalars, so scalar rules apply.

Vector: ∇(u ⋅w) =?

Index: (uiwi),r = ui,rwi + uiwi,r Ô⇒ ∇uTw +∇wTu

Vector: ∇ ⋅ (u ×w) =?

Index: (eikrukwr),s = eikruk,swr + eikrukwr,s

Scalar derivative rules apply

Components are scalars, so scalar rules apply.

Vector: ∇(u ⋅w) =?

Index: (uiwi),r = ui,rwi + uiwi,r Ô⇒ ∇uTw +∇wTu

Vector: ∇ ⋅ (u ×w) =?

Index: (eikrukwr),s = eikruk,swr + eikrukwr,s

Unfinished business
Recall: ui,s = δis vi,s = 0

wu = cI + ucTu − vdTu

wi,r = cδir + uic,r − vid,r
wi,rs = c,sδir + uic,rs + ui,sc,r − vid,rs

wiwi,rs =wic,sδir +wiuic,rs +wiδisc,r −wivid,rs
wiwi,rs =wrc,s + (wiui)c,rs + c,rws − (wivi)d,rs

z = w ⋅wuu =wcTu + (w ⋅ u)cuu + cuwT − (w ⋅ v)duu

Unfinished business
Recall: ui,s = δis vi,s = 0

wu = cI + ucTu − vdTu
wi,r = cδir + uic,r − vid,r

wi,rs = c,sδir + uic,rs + ui,sc,r − vid,rs
wiwi,rs =wic,sδir +wiuic,rs +wiδisc,r −wivid,rs
wiwi,rs =wrc,s + (wiui)c,rs + c,rws − (wivi)d,rs

z = w ⋅wuu =wcTu + (w ⋅ u)cuu + cuwT − (w ⋅ v)duu

Unfinished business
Recall: ui,s = δis vi,s = 0

wu = cI + ucTu − vdTu
wi,r = cδir + uic,r − vid,r
wi,rs = c,sδir + uic,rs + ui,sc,r − vid,rs

wiwi,rs =wic,sδir +wiuic,rs +wiδisc,r −wivid,rs
wiwi,rs =wrc,s + (wiui)c,rs + c,rws − (wivi)d,rs

z = w ⋅wuu =wcTu + (w ⋅ u)cuu + cuwT − (w ⋅ v)duu

Unfinished business
Recall: ui,s = δis vi,s = 0

wu = cI + ucTu − vdTu
wi,r = cδir + uic,r − vid,r
wi,rs = c,sδir + uic,rs + ui,sc,r − vid,rs

wiwi,rs =wic,sδir +wiuic,rs +wiδisc,r −wivid,rs

wiwi,rs =wrc,s + (wiui)c,rs + c,rws − (wivi)d,rs
z = w ⋅wuu =wcTu + (w ⋅ u)cuu + cuwT − (w ⋅ v)duu

Unfinished business
Recall: ui,s = δis vi,s = 0

wu = cI + ucTu − vdTu
wi,r = cδir + uic,r − vid,r
wi,rs = c,sδir + uic,rs + ui,sc,r − vid,rs

wiwi,rs =wic,sδir +wiuic,rs +wiδisc,r −wivid,rs
wiwi,rs =wrc,s + (wiui)c,rs + c,rws − (wivi)d,rs

z = w ⋅wuu =wcTu + (w ⋅ u)cuu + cuwT − (w ⋅ v)duu

Unfinished business
Recall: ui,s = δis vi,s = 0

wu = cI + ucTu − vdTu
wi,r = cδir + uic,r − vid,r
wi,rs = c,sδir + uic,rs + ui,sc,r − vid,rs

wiwi,rs =wic,sδir +wiuic,rs +wiδisc,r −wivid,rs
wiwi,rs =wrc,s + (wiui)c,rs + c,rws − (wivi)d,rs

z = w ⋅wuu =wcTu + (w ⋅ u)cuu + cuwT − (w ⋅ v)duu

Derivatives in many variables at once

E.g., f(u,w). Need ∂f
∂u and ∂f

∂w

Work out f,r. Do not assume f,r = ∂f
∂ur

or f,r = ∂f
∂wr

.

Make two copies of the code:

For ∂f
∂u, let ui,r = δir and wi,r = 0

For ∂f
∂w , let ui,r = 0 and wi,r = δir

Simplify after it works.

Derivatives in many variables at once

E.g., f(u,w). Need ∂f
∂u and ∂f

∂w

Work out f,r. Do not assume f,r = ∂f
∂ur

or f,r = ∂f
∂wr

.

Make two copies of the code:

For ∂f
∂u, let ui,r = δir and wi,r = 0

For ∂f
∂w , let ui,r = 0 and wi,r = δir

Simplify after it works.

Derivatives in many variables at once

E.g., f(u,w). Need ∂f
∂u and ∂f

∂w

Work out f,r. Do not assume f,r = ∂f
∂ur

or f,r = ∂f
∂wr

.

Make two copies of the code:

For ∂f
∂u, let ui,r = δir and wi,r = 0

For ∂f
∂w , let ui,r = 0 and wi,r = δir

Simplify after it works.

Derivatives in many variables at once

E.g., f(u,w). Need ∂f
∂u and ∂f

∂w

Work out f,r. Do not assume f,r = ∂f
∂ur

or f,r = ∂f
∂wr

.

Make two copies of the code:

For ∂f
∂u, let ui,r = δir and wi,r = 0

For ∂f
∂w , let ui,r = 0 and wi,r = δir

Simplify after it works.

Different indices for different variables

r for x

α for y

f,r =
∂f

∂xr

f,α =
∂f

∂yα

Parenthesis for derivative by matrix

ψ,(rs) =
∂ψ

∂Frs

Fik,(rs) = δirδks

Parenthesis for derivative by matrix

ψ,(rs) =
∂ψ

∂Frs
Fik,(rs) = δirδks

Outline

1 Basics

2 Practical considerations
Modes of differentiation
Testing
Implicit differentiation

3 Differentiating matrix factorizations

4 Automatic differentiation

Outline

1 Basics

2 Practical considerations
Modes of differentiation
Testing
Implicit differentiation

3 Differentiating matrix factorizations

4 Automatic differentiation

Forward mode differentiation
Input: x

Output: y

Calculations: a = a(x), b = b(a), c = c(b), y = y(c)

∂b

∂x
= ∂b
∂a

∂a

∂x

∂c

∂x
= ∂c
∂b

∂b

∂x

∂y

∂x
= ∂y
∂c

∂c

∂x

Note:
∂?

∂x

Actual computation:

∂y

∂x
= ∂y
∂c
(∂c
∂b
(∂b
∂a

∂a

∂x
))

Forward mode differentiation
Input: x

Output: y

Calculations: a = a(x), b = b(a), c = c(b), y = y(c)

∂b

∂x
= ∂b
∂a

∂a

∂x

∂c

∂x
= ∂c
∂b

∂b

∂x

∂y

∂x
= ∂y
∂c

∂c

∂x

Note:
∂?

∂x
Actual computation:

∂y

∂x
= ∂y
∂c
(∂c
∂b
(∂b
∂a

∂a

∂x
))

Forward mode differentiation
Input: x

Output: y

Calculations: a = a(x), b = b(a), c = c(b), y = y(c)

∂b

∂x
= ∂b
∂a

∂a

∂x

∂c

∂x
= ∂c
∂b

∂b

∂x

∂y

∂x
= ∂y
∂c

∂c

∂x
Note:

∂?

∂x

Actual computation:

∂y

∂x
= ∂y
∂c
(∂c
∂b
(∂b
∂a

∂a

∂x
))

Forward mode differentiation
Input: x

Output: y

Calculations: a = a(x), b = b(a), c = c(b), y = y(c)

∂b

∂x
= ∂b
∂a

∂a

∂x

∂c

∂x
= ∂c
∂b

∂b

∂x

∂y

∂x
= ∂y
∂c

∂c

∂x
Note:

∂?

∂x
Actual computation:

∂y

∂x
= ∂y
∂c
(∂c
∂b
(∂b
∂a

∂a

∂x
))

Reverse mode differentiation
Input: x

Output: y

Calculations: a = a(x), b = b(a), c = c(b), y = y(c)

∂y

∂b
= ∂y
∂c

∂c

∂b

∂y

∂a
= ∂y
∂b

∂b

∂a

∂y

∂x
= ∂y
∂a

∂a

∂x
Note:

∂y

∂?
Actual computation:

∂y

∂x
= ((∂y

∂c

∂c

∂b
)∂b
∂a
)∂a
∂x

Cost
Sizes: x→ R6, a→ R3, b→ R3, y → R1

∂y

∂x
= ∂y

∂b°
1×3

(∂b

∂a

∂a

∂x
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
3×6; (54∗)

Forward: 54 + 18

∂y

∂x
= (∂y

∂b

∂b

∂a
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
1×3; (9∗)

∂a

∂x°
3×6

Reverse: 9 + 18

Cost
Sizes: x→ R6, a→ R3, b→ R3, y → R1

∂y

∂x
= ∂y

∂b°
1×3

(∂b

∂a

∂a

∂x
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
3×6; (54∗)

Forward: 54 + 18

∂y

∂x
= (∂y

∂b

∂b

∂a
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
1×3; (9∗)

∂a

∂x°
3×6

Reverse: 9 + 18

Cost
Sizes: x→ R6, a→ R3, b→ R3, y → R1

∂y

∂x
= ∂y

∂b°
1×3

(∂b

∂a

∂a

∂x
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
3×6; (54∗)

Forward: 54 + 18

∂y

∂x
= (∂y

∂b

∂b

∂a
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
1×3; (9∗)

∂a

∂x°
3×6

Reverse: 9 + 18

Efficiency of forward vs reverse modes

Calculating ∂y
∂x

Forward is cheaper if x≪ y
Easier to write

Reverse is cheaper if x≫ y
Optimization: Minimize E(x)
Forces: φ(x)
Stresses: ψ(F)
Backpropagation (machine learning)

Efficiency of forward vs reverse modes

Calculating ∂y
∂x

Forward is cheaper if x≪ y
Easier to write

Reverse is cheaper if x≫ y
Optimization: Minimize E(x)
Forces: φ(x)
Stresses: ψ(F)
Backpropagation (machine learning)

Mixed mode differentiation
Input: x

Output: y

Calculations: a = a(x), b = b(a), c = c(b), y = y(c)

∂c

∂a
= ∂c
∂b

∂b

∂a

∂y

∂a
= ∂y
∂c

∂c

∂a

∂y

∂x
= ∂y
∂a

∂a

∂x
Actual computation:

∂y

∂x
= (∂y

∂c
(∂c
∂b

∂b

∂a
))∂a
∂x

Optimal ordering

Optimal Jacobian accumulation

NP-complete

Dynamic programming heuristic

Outline

1 Basics

2 Practical considerations
Modes of differentiation
Testing
Implicit differentiation

3 Differentiating matrix factorizations

4 Automatic differentiation

If you cannot test it, don’t write it

How do we know it is right?

Wrong answer?

Disappointing results?

Slow convergence?

Poor stability?

How do you debug that?

If you cannot test it, don’t write it

How do we know it is right?

Wrong answer?

Disappointing results?

Slow convergence?

Poor stability?

How do you debug that?

If you cannot test it, don’t write it

How do we know it is right?

Wrong answer?

Disappointing results?

Slow convergence?

Poor stability?

How do you debug that?

If you cannot test it, don’t write it

How do we know it is right?

Wrong answer?

Disappointing results?

Slow convergence?

Poor stability?

How do you debug that?

If you cannot test it, don’t write it

How do we know it is right?

Wrong answer?

Disappointing results?

Slow convergence?

Poor stability?

How do you debug that?

If you cannot test it, don’t write it

How do we know it is right?

Wrong answer?

Disappointing results?

Slow convergence?

Poor stability?

How do you debug that?

Testing scalars with definition

Test derivatives against definition!

z(x +∆x) − z(x)
∆x

− z′(x) = O(∆x)

How small should ∆x be?

How small is O(∆x)?

Refinement test?

Testing scalars with definition

Test derivatives against definition!

z(x +∆x) − z(x)
∆x

− z′(x) = O(∆x)

How small should ∆x be?

How small is O(∆x)?

Refinement test?

Testing scalars with definition

Test derivatives against definition!

z(x +∆x) − z(x)
∆x

− z′(x) = O(∆x)

How small should ∆x be?

How small is O(∆x)?

Refinement test?

Testing scalars with definition

Test derivatives against definition!

z(x +∆x) − z(x)
∆x

− z′(x) = O(∆x)

How small should ∆x be?

How small is O(∆x)?

Refinement test?

Testing scalars with definition

Test derivatives against definition!

z(x +∆x) − z(x)
∆x

− z′(x) = O(∆x)

How small should ∆x be?

How small is O(∆x)?

Refinement test?

Use a second-order test instead

z(x +∆x) − z(x)
∆x

− z
′(x +∆x) + z′(x)

2
= O(∆x2)

Choose ∆x ≈ ε1/3 ∼ 10−5 ε ≈ 2 × 10−16

Fail error: O(1)

Pass error: O(ε2/3) ∼ 10−10

Vector ∆x?

Use a second-order test instead

z(x +∆x) − z(x)
∆x

− z
′(x +∆x) + z′(x)

2
= O(∆x2)

Choose ∆x ≈ ε1/3 ∼ 10−5 ε ≈ 2 × 10−16

Fail error: O(1)

Pass error: O(ε2/3) ∼ 10−10

Vector ∆x?

Use a second-order test instead

z(x +∆x) − z(x)
∆x

− z
′(x +∆x) + z′(x)

2
= O(∆x2)

Choose ∆x ≈ ε1/3 ∼ 10−5 ε ≈ 2 × 10−16

Fail error: O(1)

Pass error: O(ε2/3) ∼ 10−10

Vector ∆x?

Use a second-order test instead

z(x +∆x) − z(x)
∆x

− z
′(x +∆x) + z′(x)

2
= O(∆x2)

Choose ∆x ≈ ε1/3 ∼ 10−5 ε ≈ 2 × 10−16

Fail error: O(1)

Pass error: O(ε2/3) ∼ 10−10

Vector ∆x?

Use a second-order test instead

z(x +∆x) − z(x)
∆x

− z
′(x +∆x) + z′(x)

2
= O(∆x2)

Choose ∆x ≈ ε1/3 ∼ 10−5 ε ≈ 2 × 10−16

Fail error: O(1)

Pass error: O(ε2/3) ∼ 10−10

Vector ∆x?

Non-scalar second-order derivative test

“Multiply through” by ∆x

z(x +∆x) − z(x) − ∇z(x +∆x) + ∇z(x)
2

⋅∆x = O(δ3)

∥∆x∥∞ ≤ δ

Fail is small: O(δ)

Non-scalar second-order derivative test

“Multiply through” by ∆x

z(x +∆x) − z(x) − ∇z(x +∆x) + ∇z(x)
2

⋅∆x = O(δ3)

∥∆x∥∞ ≤ δ

Fail is small: O(δ)

Non-scalar second-order derivative test

z(x +∆x) − z(x)
δ

− ∇z(x +∆x) + ∇z(x)
2δ

⋅∆x = O(δ2)

∥∆x∥∞ ≤ δ

Fail error: O(1)

Pass error: O(δ2)

Non-scalar second-order derivative test

z(x +∆x) − z(x)
δ

− ∇z(x +∆x) + ∇z(x)
2δ

⋅∆x = O(δ2)

∥∆x∥∞ ≤ δ

Fail error: O(1)

Pass error: O(δ2)

Did it pass?

Introduce an error.

See what a failing score looks like.

Did it pass?

Introduce an error.

See what a failing score looks like.

Testing Hessians

Test first derivatives.

Test second derivatives against first derivatives.

Incremental testing
Choose random x0, x1; small ∆x = x1 − x0.

Compute at x0: a0, a′0, b0, b′0, c0, c′0, d0, d′0, . . .

Compute at x1: a1, a′1, b1, b′1, c1, c′1, d1, d′1, . . .

Diff test on each intermediate independently.
a1 − a0
x1 − x0

− a
′

1 + a′0
2

= O(∆x2) b1 − b0
x1 − x0

− b
′

1 + b′0
2

= O(∆x2)

c1 − c0
x1 − x0

− c
′

1 + c′0
2

= O(∆x2) d1 − d0
x1 − x0

− d
′

1 + d′0
2

= O(∆x2)

Incremental testing
Choose random x0, x1; small ∆x = x1 − x0.

Compute at x0: a0, a′0, b0, b′0, c0, c′0, d0, d′0, . . .

Compute at x1: a1, a′1, b1, b′1, c1, c′1, d1, d′1, . . .

Diff test on each intermediate independently.
a1 − a0
x1 − x0

− a
′

1 + a′0
2

= O(∆x2) b1 − b0
x1 − x0

− b
′

1 + b′0
2

= O(∆x2)

c1 − c0
x1 − x0

− c
′

1 + c′0
2

= O(∆x2) d1 − d0
x1 − x0

− d
′

1 + d′0
2

= O(∆x2)

Incremental testing
Choose random x0, x1; small ∆x = x1 − x0.

Compute at x0: a0, a′0, b0, b′0, c0, c′0, d0, d′0, . . .

Compute at x1: a1, a′1, b1, b′1, c1, c′1, d1, d′1, . . .

Diff test on each intermediate independently.
a1 − a0
x1 − x0

− a
′

1 + a′0
2

= O(∆x2) b1 − b0
x1 − x0

− b
′

1 + b′0
2

= O(∆x2)

c1 − c0
x1 − x0

− c
′

1 + c′0
2

= O(∆x2) d1 − d0
x1 − x0

− d
′

1 + d′0
2

= O(∆x2)

Very general strategy

Compute at x0: a0, a′0, b0, b′0, c0, c′0, d0, d′0, . . .

Compute at x1: a1, a′1, b1, b′1, c1, c′1, d1, d′1, . . .

Test any partial
∂c

∂a
≈ c1 − c0

a1 − a0

Optimize incrementally

Choose ordering

Get it working
Incremental optimization

Slight change
Test
Repeat

Outline

1 Basics

2 Practical considerations
Modes of differentiation
Testing
Implicit differentiation

3 Differentiating matrix factorizations

4 Automatic differentiation

Implicit functions

Given x, compute y from f(x, y) = 0.

Compute y′ from x′.

Implicit functions

Given x, compute y from f(x, y) = 0.

Compute y′ from x′.

Implicit differentiation

Equation: f(x, y) = 0

Differentiate: fx(x, y)x′ + fy(x, y)y′ = 0

Solve: y′ = −x
′fx
fy

Implicit differentiation

Equation: f(x, y) = 0

Differentiate: fx(x, y)x′ + fy(x, y)y′ = 0

Solve: y′ = −x
′fx
fy

Implicit differentiation

Equation: f(x, y) = 0

Differentiate: fx(x, y)x′ + fy(x, y)y′ = 0

Solve: y′ = −x
′fx
fy

Rule derivation: vector magnitude

∥x∥2 = x ⋅ x
2∥x∥∥x∥′ = 2x ⋅ x′

∥x∥′ = x

∥x∥ ⋅ x
′

Rule derivation: matrix inverse

B = A−1

AB − I = 0

A′B +AB′ = 0

AB′ = −A′B

B′ = −BA′B

Differentiating the algorithm

Differentiate the function,

not the algorithm used to compute it.

Differentiating elementary functions

Differentiate sinx as cosx

Don’t diff the Taylor series

Use analytic formulas
Oscillatory approximations

Accurate value
Wrong derivative

Differentiating matrix inverse

Use (A−1)′ = −A−1A′A−1.

Don’t diff Gaussian elimination

Discontinuous (pivoting)

Differentiating roots of polynomials

Use implicit differentiation
Don’t diff bisection

How could you?

Outline

1 Basics

2 Practical considerations

3 Differentiating matrix factorizations

4 Automatic differentiation

Singular value defines principle stretches

Singular value decomposition: F = UΣVT

Singular values: Σ =
⎛
⎜⎜
⎝

σ1

σ2

σ3

⎞
⎟⎟
⎠

Naturally separates deformation into

rotations : U, V

stretching : Σ

Singular value defines principle stretches

Singular value decomposition: F = UΣVT

Singular values: Σ =
⎛
⎜⎜
⎝

σ1

σ2

σ3

⎞
⎟⎟
⎠

Naturally separates deformation into

rotations : U, V

stretching : Σ

Singular value defines principle stretches

Singular value decomposition: F = UΣVT

Singular values: Σ =
⎛
⎜⎜
⎝

σ1

σ2

σ3

⎞
⎟⎟
⎠

Naturally separates deformation into

rotations : U, V

stretching : Σ

Stretching takes energy

ψ(F) = ψ̂(Σ)

Popular model in graphics (co-rotated):

ψ̂(Σ) = µ∑
k

(σk − 1)2 + λ
2
(∑
k

(σk − 1))
2

Its derivatives are sometimes “simplified.”

Stretching takes energy

ψ(F) = ψ̂(Σ)

Popular model in graphics (co-rotated):

ψ̂(Σ) = µ∑
k

(σk − 1)2 + λ
2
(∑
k

(σk − 1))
2

Its derivatives are sometimes “simplified.”

Stretching takes energy

ψ(F) = ψ̂(Σ)

Popular model in graphics (co-rotated):

ψ̂(Σ) = µ∑
k

(σk − 1)2 + λ
2
(∑
k

(σk − 1))
2

Its derivatives are sometimes “simplified.”

Here is where it gets tough

We must differentiate this: P = ∂ψ
∂F

.

Twice:
∂P

∂F
= ∂2ψ

∂F∂F
.

And we can do this.

Here is where it gets tough

We must differentiate this: P = ∂ψ
∂F

.

Twice:
∂P

∂F
= ∂2ψ

∂F∂F
.

And we can do this.

Here is where it gets tough

We must differentiate this: P = ∂ψ
∂F

.

Twice:
∂P

∂F
= ∂2ψ

∂F∂F
.

And we can do this.

Things are simpler in diagonal space

Quantity Diagonal Relationship Properties

F Σ F = UΣVT diagonal

P = ∂ψ
∂F

P̂ P = UP̂VT diagonal

T = ∂P

∂F
T̂ Tijkl = UimUkrT̂mnrsVjnVls sparse

Things are simpler in diagonal space

Quantity Diagonal Relationship Properties

F Σ F = UΣVT diagonal

P = ∂ψ
∂F

P̂ P = UP̂VT diagonal

T = ∂P

∂F
T̂ Tijkl = UimUkrT̂mnrsVjnVls sparse

Things are simpler in diagonal space

Quantity Diagonal Relationship Properties

F Σ F = UΣVT diagonal

P = ∂ψ
∂F

P̂ P = UP̂VT diagonal

T = ∂P

∂F
T̂ Tijkl = UimUkrT̂mnrsVjnVls sparse

Strategy

Compute diagonal space quantity
P̂, T̂

Transform to original
P, T

Strategy

Compute diagonal space quantity
P̂, T̂

Transform to original
P, T

Formula for P̂

P̂ii = ψ̂,i

Notes:

no summation implied

ψ̂,i =
∂ψ̂

∂σi
P̂ is diagonal

Formula for P̂

P̂ii = ψ̂,i

Notes:

no summation implied

ψ̂,i =
∂ψ̂

∂σi
P̂ is diagonal

Formula for P̂

P̂ii = ψ̂,i

Notes:

no summation implied

ψ̂,i =
∂ψ̂

∂σi

P̂ is diagonal

Formula for P̂

P̂ii = ψ̂,i

Notes:

no summation implied

ψ̂,i =
∂ψ̂

∂σi
P̂ is diagonal

Formula for T̂
Hessian term:

T̂iikk = ψ̂,ik

Cross terms (i ≠ k):

aik =
ψ̂,i − ψ̂,k
σi − σk

bik =
ψ̂,i + ψ̂,k
σi + σk

T̂ikik =
aik + bik

2
T̂ikki =

aik − bik
2

Note: aik = aki, bik = bki, T̂ikik = T̂kiki, T̂ikki = T̂kiik

Formula for T̂
Hessian term:

T̂iikk = ψ̂,ik
Cross terms (i ≠ k):

aik =
ψ̂,i − ψ̂,k
σi − σk

bik =
ψ̂,i + ψ̂,k
σi + σk

T̂ikik =
aik + bik

2
T̂ikki =

aik − bik
2

Note: aik = aki, bik = bki, T̂ikik = T̂kiki, T̂ikki = T̂kiik

Formula for T̂
Hessian term:

T̂iikk = ψ̂,ik
Cross terms (i ≠ k):

aik =
ψ̂,i − ψ̂,k
σi − σk

bik =
ψ̂,i + ψ̂,k
σi + σk

T̂ikik =
aik + bik

2
T̂ikki =

aik − bik
2

Note: aik = aki, bik = bki, T̂ikik = T̂kiki, T̂ikki = T̂kiik

Robustness notes: aik

aik =
ψ̂,i − ψ̂,k
σi − σk

Notes:

ψ̂ symmetric in σk

σi → σk implies ψ̂,i → ψ̂,k

limit exists

compute analytically

Robustness notes: bik

bik =
ψ̂,i + ψ̂,k
σi + σk

Notes:

might be unbounded

clamp it

See course notes for formulas for . . .

Matrices that diagonalize as
A = UÂVT (generalizes P rule)

A = UÂUT

A = VÂVT

Eigenvalue decomposition
S = UΛUT

S is symmetric

Outline

1 Basics

2 Practical considerations

3 Differentiating matrix factorizations

4 Automatic differentiation

Automatic differentiation

Automate the differentiation process

Not symbolic differentiation
Do not rearrange
Do not simplify
Avoids mess

Many ways - lets explore some

Automatic differentiation

Automate the differentiation process
Not symbolic differentiation

Do not rearrange
Do not simplify
Avoids mess

Many ways - lets explore some

Automatic differentiation

Automate the differentiation process
Not symbolic differentiation

Do not rearrange
Do not simplify
Avoids mess

Many ways - lets explore some

Replace scalar with special type

Store value and derivative

Compute both together

Overload operators and functions

Sample implementation
struct Diff_TT

{

double x, dx;

};

Diff_TT operator+ (Diff_TT a, Diff_TT b)

{

return {a.x + b.x, a.dx + b.dx};

}

Diff_TT operator* (Diff_TT a, Diff_TT b)

{

return {a.x*b.x, a.dx*b.x + a.x*b.dx};

}

// and so on ...

Compile-time autodiff is great

Intuitive

Easy to implement
Easy to use

Write code for value
Derivative for free

Easy for compiler to optimize
Everything inlines

Extends to vectors, matrices

Diff VT: u′

Diff MT: A′

Diff TV:
∂f

∂x

Diff VV:
∂u

∂x

Extends to Hessians
struct Hess_TT

{

double x, dx, ddx;

};

Hess_TT operator+ (Hess_TT a, Hess_TT b)

{

return {a.x+b.x, a.dx+b.dx, a.ddx+b.ddx};

}

Hess_TT operator* (Hess_TT a, Hess_TT b)

{

return {a.x*b.x, a.dx*b.x + a.x*b.dx,

a.ddx*b.x + 2*a.dx*b.dx + a.x*b.ddx};

}

Does not scale well

Forward mode
Scales poorly for many inputs

optimization: f(x)
force: φ(x)
stress: ψ(F)

Does not scale well

Forward mode
Scales poorly for many inputs

optimization: f(x)

force: φ(x)
stress: ψ(F)

Does not scale well

Forward mode
Scales poorly for many inputs

optimization: f(x)
force: φ(x)

stress: ψ(F)

Does not scale well

Forward mode
Scales poorly for many inputs

optimization: f(x)
force: φ(x)
stress: ψ(F)

Reverse mode compile time autodiff

Reverse mode is tough

Compute derivatives in reverse order

Need to record the code

Reverse mode via expression templates

Result of: z = 3x2 + cos y

Has type:

Add <Scale <Square <Var <0>>>,Cos <Var <1>>>

Reverse order traversal by recursion

Runtime

Record operations in a list

Walk the list to differentiate

Forward and reverse mode

Can handle variable input size

Not as efficient

List construction

Memory allocation

No inlining

No compiler optimization

Code generation

Separate program

Input: function code

Output: derivative code

Very flexible

Forward mode

Reverse mode

Mixed mode

Offline - take your time

Run once

Speed does not matter

Optimize the results

Differentiate the function

Autodiff may trace into functions
exp, tgamma, sph bessel

Differentiates the algorithm

Overload functions
Differentiates the function

Automatic differentiation has uses

Prototyping

Debugging

Infrequently executed code
Expect 2× slowdown

Better for code-gen
Worse for dynamic

No numerical robustness

Autodiff is a community

http://www.autodiff.org/

Software tools

Libraries

Reading lists

http://www.autodiff.org/

Manual derivatives are possible

I hope this course has shown you how.

Questions?

	Basics
	Motivation
	Don't do this
	Chain rule
	Tensors

	Practical considerations
	Modes of differentiation
	Testing
	Implicit differentiation

	Differentiating matrix factorizations
	Automatic differentiation

