
Penalty Force for Coupling Materials with Coulomb Friction:

Technical Document

1 Pseudocode

This is the technical document for [Ano18]. In this section, we will present pseudocode for computing a time
step of the method along with details of the underlying Newton solver and penalty forces.

Algorithm 1 Overview of time integration.

1: procedure Time Step
2: Solve Backward Euler Equations(∆v) = 0 using Newton Solve
3: vn+1 ← vn + ∆v, xn+1 ← xn + ∆tvn+1 . Update rotations for rigid bodies, etc.
4: for all registered attachments do
5: if is active then
6: Update Attachment XX . XX is DI, DR, RR, or DD
7: else
8: Discard attachment

1: procedure Backward Euler Equations(∆v) . Compute g
2: a← physical forces . Constitutive models, gravity
3: Compute candidate configuration from ∆v
4: Compute collisions and add to list of registered collisions
5: for all registered attachments do
6: Precompute XX . XX is DI, DR, RR, or DD
7: if is active then
8: a← a + Force XX . XX is DI, DR, RR, or DD

9: return M∆v −∆ta . M is the mass matrix

1: procedure Backward Euler Equations Diff(δu) . Compute Hδu = ∇gδu
2: a← multiply physical force derivatives by δu . Constitutive models, gravity
3: for all registered attachments do
4: if is active then
5: a← a + Force Diff XX(δu) . XX is DI, DR, RR, or DD

6: return Mδu−∆t2a . M is the mass matrix

1: procedure Backward Euler Equations Diff Transpose(δu) . Compute HT δu = ∇gT δu
2: a← multiply physical force derivatives by δu . Constitutive models, gravity
3: for all registered attachments do
4: if is active then
5: a← a + Force Diff Transpose XX(δu) . XX is DI, DR, RR, or DD

6: return Mδu−∆t2a . M is the mass matrix

1

Algorithm 2 Newton-based solver for asymmetrical systems.

1: procedure Newton Solve(z)
2: while true do
3: b← Backward Euler Equations(z)
4: a← Backward Euler Equations Diff Transpose(b)
5: m← ‖a‖
6: if min(m, ‖b‖) < τ then . τ is the Newton tolerance
7: return z
8: ∆z← H−1(−b) . Solve with GMRES, using operator Backward Euler Equations Diff
9: a← ‖∆z‖, b← ∆z · a

10: if b > aτam then . τa is a small angle tolerance; we use τa = 10−4

11: ∆z← −∆z . Uphill direction; look backwards
12: else if b ≥ −aτam then
13: ∆z← − a

ma . Not appreciably uphill or downhill; gradient direction

14: Create function: h(t) = 1
2‖Backward Euler Equations(z + t∆z)‖2

15: Compute α by performing line search on function h with Wolfe conditions . See [NW06].
16: z← z + α∆z

1.1 Time step

We use Backward Euler for our time integration scheme. In Algorithm 1, we present pseudocode for our
overall time integration scheme for one time step, assuming a deformable body simulation. For rigid bodies,
there is additional state that must be updated (rotations, angular velocity). For the material point method,
there are particle-to-grid and grid-to-particle transfers that are required. These extra steps are not affected
by our modifications.

We have chosen to parameterize our system in terms of ∆v. This avoids the complexities that would
result from parameterizing rigid bodies in terms of positional degrees of freedom. Following this conven-
tion, Backward Euler Equations Diff and Backward Euler Equations Diff Transpose are linear opera-
tors that compute matrix-vector products (without or with transpose) using the derivative of
Backward Euler Equations with respect to ∆v. Following the usual physics conventions, the forces are al-
ways differentiated with respect to positions to construct the linear operators Force Diff XX and
Force Diff Transpose XX. This accounts for the factor of ∆t that occurs in the definitions of
Backward Euler Equations and the factor of ∆t2 in its derivatives.

Although our algorithm uses force derivatives, no part of our algorithm requires us to compute an explicit
matrix representation. Instead, it suffices to perform matrix-vector multiplies, possibly with transpose. In
this way, Force Diff XX(δu) computes the matrix-vector product ∇fδu, and Force Diff Transpose XX(δu)
computes the matrix-vector product with transpose ∇fT δu. The result of these operations is a vector.
The vector δu simply represents some abstract vector to which the derivatives should be multiplied; it
need not have any particular physical meaning and often does not. In the case of GMRES, for exam-
ple, these vectors are the Krylov basis vectors. These force derivative multiplies do not modify internal
state; indeed, they would fail to be linear operators if they did. Backward Euler Equations Diff and
Backward Euler Equations Diff Transpose compute matrix-vector products in the same way.

1.2 Newton solver

We use a stabilized Newton-based solver designed for use with asymmetrical systems. This solver takes an
initial guess z and seeks a solution g(z) = 0. Let H = ∇g, where here H will generally be an asymmetric
matrix. Pseudocode for this solver is given in Algorithm 2. In our parametrization, z corresponds to ∆v.
Note that we do not actually compute H−1; rather we solve this system using GMRES, which only requires
us to compute matrix-vector multiplications Hδu = Backward Euler Equations Diff(δu).

2

1.3 Penalty forces

In this section, we present pseudocode for the relaxation procedures, forces, and force derivatives required to
implement the penalty forces in that paper. Routines are provided for deformable vs level set (Algorithm 5,
denoted DI), deformable vs rigid body (Algorithm 6, denoted RD), rigid body vs rigid body (Algorithm 7
and Algorithm 8, denoted RR), and deformable vs deformable (Algorithm 9, denoted DD). These algorithms
rely on helper utilities for differentiating rigid body motion (Algorithm 4) as well as relaxation in a plane
(Algorithm 3), or mesh (Algorithm 10, Algorithm 11, and Algorithm 12).

The pseudocode aims to strike a balance between completeness, readability, and conciseness. We use bold
letters to represent vectors and matrices. Regular letters represent scalars. Note that bold capital letters are
used for both vector and matrix quantities. Quantities written as partial derivatives such as ∂K

∂X represent
regular variables which store the value of the partial derivative suggested by the name. Although this makes
the pseudocode appear more complex and less concise, it makes it immediately clear what many of the
quantities being computed represent. As a general rule (but not always), we will assign results to a variable
and then return the variable to make it clear what the quantity being returned represents. When we return
multiple items (such as a, b, and c), we denote the aggregate using the notation 〈a, b, c〉 ← Function(Y,Z).

We often omit the identity of particles and rigid bodies for clarity. When colliding a particle with a rigid
body, for instance, we are dealing with one particle and one rigid body, so this should not lead to confusion.
When dealing with two rigid bodies, we give them names the names i and s. Rigid body i is the object,
and s is the rigid body with the particle. That is, the level set or surface mesh of body i is colliding with a
particle in the surface mesh of body s.

We use standard linear algebra notation except when dealing with rank-3 tensors, in which case we use
index notation with summation convention applied; this notation is adopted for individual lines, and this is
noted on those lines by a comment.

Algorithm 3 Relax a particle against a flat plane.

1: procedure Relax Plane(Z, X, W, µ)
2: a← ‖Z−W‖, b← ‖X−W‖, q ← µa
3: if b ≤ q then . Sticking friction
4: return 〈X,0, I,0〉

5: u← Z−W

a
, v← X−W

b
, K←W + qv . Dynamic friction

6:
∂K

∂X
← q

b
(I− vvT),

∂K

∂Z
← µvuT ,

∂K

∂W
← I− ∂K

∂X
− ∂K

∂Z

7: return

〈
K,

∂K

∂Z
,
∂K

∂X
,
∂K

∂W

〉
1: procedure Project Attachment To Moving Surface(b, X, φ, exit early)

2:

〈
U,

∂U

∂X
,
∂U

∂v
,
∂U

∂ω

〉
← Frame Inverse Times(b,X)

3: Compute

〈
d,N,

∂N

∂U

〉
. Level set φ along with normal and Hessian evaluated at U.

4: if exit early and d > 0 then
5: return 〈false, · · ·〉

6:

〈
n,

∂n

∂N
,
∂n

∂ω

〉
← Rotate(b,N)

7: W← X− dn, ∂n

∂U
← ∂n

∂N

∂N

∂U
,

∂W

∂U
← −d ∂n

∂U
− nNT

8:
∂W

∂X
← I +

∂W

∂U

∂U

∂X
,

∂W

∂v
← ∂W

∂U

∂U

∂v
,

∂W

∂ω
← ∂W

∂U

∂U

∂ω
− d ∂n

∂ω

9: return

〈
true,W,

∂W

∂X
,
∂W

∂v
,
∂W

∂ω

〉

3

Algorithm 4 Routines for applying and differentiating rigid body motion.

1: procedure Move Rigid Body(v, ω, ∆t)
2: x← xn + ∆tv, u← ∆tω, R← eu

∗
Rn

3: θ ← ‖u‖, K← u∗

θ
, A← I− uuT , B← cos θK + sin θK2, a← − sin θ

θ
, b← 1− cos θ

θ
4: Tijk ← (Bimuk + aeimrAkr + bAikum + bAmkui)R

n
mj . Tensor index notation

5: Store: x,R,T

1: procedure Frame Times(body, u)
2: Lookup R,x,T for rigid body

3: Z← Ru + x,
∂Z

∂u
← R,

∂Z

∂v
← I

4:

(
∂Z

∂ω

)
ij

← Tikjuk . Tensor index notation

5: return

〈
Z,
∂Z

∂u
,
∂Z

∂v
,
∂Z

∂ω

〉
1: procedure Frame Inverse Times(body, u)
2: Lookup R,x,T for rigid body

3: w← u− x, Z← RTw,
∂Z

∂u
← RT ,

∂Z

∂v
← −RT

4:

(
∂Z

∂ω

)
ij

← Tkijwk . Tensor index notation

5: return

〈
Z,
∂Z

∂u
,
∂Z

∂v
,
∂Z

∂ω

〉
1: procedure Rotate(body, u)
2: Lookup R,T for rigid body

3: Z← Ru,
∂Z

∂u
← R

4:

(
∂Z

∂ω

)
ij

← Tikjuk . Tensor index notation

5: return

〈
Z,
∂Z

∂u
,
∂Z

∂ω

〉

Each of the 4 relaxation types (DI, RD, RR, and DD) have four routines, named (for example) Pre-
compute DI, Force DI, Force Diff DI, and Force Diff Transpose DI. The precompute routine
performs the attachment relaxation. It should be used to update the attachment points before any of the
force routines are computed. The three force-related routines are written as though they are writing (or
adding) forces to a large force vector f , which is initially zero. The notation f [Z]← 0 is used to indicate that
zero is written to the entries in the large force vector f corresponding to the degrees of freedom of Z. The
force diff routine multiplies an input vector δu (same dimensions as f) by the force derivatives and places
the results in f . The notation δu[Z] means take the entries from δu corresponding to the degrees of freedom
Z. Since force derivative matrix is not symmetric and we do not construct the matrix explicitly, we also
provide a routine to multiply by its transpose.

2 Finite termination of mesh relaxation

In this section, we show that the mesh relaxation algorithm must terminate after a finite number of steps.
The algorithm has 4 cases (1=initial, 2=triangle, 3=edge, 4=point). The initial case is when the attachment
starts in a triangle interior; this is the starting case and is never revisited, so we do not consider it further.
The cases are associated with a individual primitives of a triangulate surface and an attachment point Y

4

Algorithm 5 Routines for penalty force between a particle and a fixed level set.

1: procedure Project Attachment To Surface(X, φ, exit early)
2: Compute 〈d,n,H〉 . Level set φ along with gradient and Hessian evaluated at X.
3: if exit early and d > 0 then
4: return 〈false, ·, ·〉

5: W← X− dn, ∂W

∂X
← I− nnT − dH

6: return

〈
d ≤ 0,W,

∂W

∂X

〉
1: procedure Precompute DI(Z, φ)

2:

〈
is active,W,

∂W

∂Z

〉
← Project Attachment To Surface(Z, φ, true)

3: Store: is active
4: if is active then . Check if intersecting

5:

〈
K,

∂K

∂Z
,
∂K

∂X
,
∂K

∂W

〉
← Relax Plane(Z,X,W, µ)

6:

〈
·,Y, ∂Y

∂K

〉
← Project Attachment To Surface(K, φ, false)

7:
∂Y

∂Z
← ∂Y

∂K

(
∂K

∂Z
+
∂K

∂W

∂W

∂Z

)
8: Store: Y,

∂Y

∂Z

1: procedure Force DI
2: f ← 0, f [Z]← −k(Z−Y), return f

1: procedure Force Diff DI(δu)

2: f ← 0, f [Z]← k

(
∂Y

∂Z
− I

)
δu[Z], return f

1: procedure Force Diff Transpose DI(δu)

2: f ← 0, f [Z]← k

(
∂Y

∂Z
− I

)T

δu[Z], return f

1: procedure Update Attachment DI
2: X← Y; Store: X

on the primitive. The attachment point moves in the direction of fastest decrease in distance to Z, so the
distance ‖Y−Z‖ decreases whenever the attachment Y moves. We show that the attachment can visit any
primitive (vertex, triangle, edge) at most a finite number of times; this guarantees termination.

Vertices and case 4. A vertex can be visited in case 4 (vertex case). It can also be visited in case 2
(on an edge) or in case 3 (on a triangle) as a degeneracy. The triangle case checks for this and transitions to
case 4. The edge case always terminates or transitions to case 4. Thus, we can assume we are visiting the
vertex in case 4. Case 4 checks to see whether progress can be made from a triangle or an edge; if progress
can be made, it transitions to the triangle (case 2) or edge (case 3). Progress will be made in that case, and
the attachment point will move. Since the attachment will then be closer to Z than the vertex, the vertex
can never be revisited. If no progress can be made from case 4, the algorithm terminates. Thus, vertices can
be visited at most twice (once in case 2 or 3, then once in case 4).

Case 3. When case 3 is visited, we are on an edge. If the closest point on the line to Z is in the interior of
the edge, the algorithm terminates from this case. If the algorithm does not terminate, one of the endpoints
must be closer to Z, and the algorithm visits that endpoint in case 4. At this point, the attachment has
moved to the endpoint of the edge, which is closer to Z than any other point on the edge. If the algorithm

5

Algorithm 6 Routines for penalty force between a particle and a rigid body.

1: procedure Precompute RD(Z)
2: if Use level set then . Check if intersecting

3:

〈
X̂, ·, ∂X̂

∂v
,
∂X̂

∂ω

〉
← Frame Times(rigid body,X)

4:

〈
is active,W,

∂W

∂Z
,
∂W

∂v
,
∂W

∂ω

〉
← Project Attachment To Moving Surface(rigid body,Z, φ, true)

5: if is active then

6:

〈
K,

∂K

∂Z
,
∂K

∂X̂
,
∂K

∂W

〉
← Relax Plane(Z, X̂,W, µ)

7:

〈
·,V, ∂V

∂K
,
∂V

∂v
,
∂V

∂ω

〉
← Project Attachment To Moving Surface(rigid body,K, φ, true)

8: Y ← V,
∂Y

∂Z
← ∂V

∂K

(
∂K

∂Z
+
∂K

∂W

∂W

∂Z

)
9:

∂Y

∂v
← ∂V

∂K

(
∂K

∂X̂

∂X̂

∂v
+
∂K

∂W

∂W

∂v

)
+
∂V

∂v
,

∂Y

∂ω
← ∂V

∂K

(
∂K

∂X̂

∂X̂

∂ω
+
∂K

∂W

∂W

∂ω

)
+
∂V

∂ω

10: else

11:

〈
Ẑ,
∂Ẑ

∂Z
,
∂Ẑ

∂v
,
∂Ẑ

∂ω

〉
← Frame Times(rigid body,Z)

12:

〈
is active, e, w, Ŷ,diff list

〉
← Relax Mesh(e0, w0, Ẑ,none, µ)

13: if is active then

14:

〈
Y,

∂Y

∂Ŷ
,
∂Y

∂v
,
∂Y

∂ω

〉
← Frame Times(rigid body, Ŷ)

15:
∂Ŷ

∂Z
← 0,

∂Ŷ

∂v
← 0,

∂Ŷ

∂ω
← 0

16: for all 〈DY,DZ, ·〉 ∈ diff list do . Visit in the order they were added to the list

17:
∂Ŷ

∂Z
← DY

∂Ŷ

∂Z
+ DZ

∂Ẑ

∂Z
,

∂Ŷ

∂v
← DY

∂Ŷ

∂v
+ DZ

∂Ẑ

∂v
,

∂Ŷ

∂ω
← DY

∂Ŷ

∂ω
+ DZ

∂Ẑ

∂ω

18:
∂Y

∂Z
← ∂Y

∂Ŷ

∂Ŷ

∂Z
,

∂Y

∂v
← ∂Y

∂Ŷ

∂Ŷ

∂v
+
∂Y

∂v
,

∂Y

∂ω
← ∂Y

∂Ŷ

∂Ŷ

∂ω
+
∂Y

∂ω

19: Store: Y, e, w,
∂Y

∂Z
,
∂Y

∂v
,
∂Y

∂ω
, is active

1: procedure Force RD
2: f ← 0, j← k(Z−Y), f [Z]← −j, f [v]← j, f [ω]← (Y − xb)× j, return f

1: procedure Force Diff RD(δu)

2: f ← 0, j← k(Z−Y), δY ← ∂Y

∂Z
δu[Z] +

∂Y

∂v
δu[v] +

∂Y

∂ω
δu[ω], δj← k(δu[Z]− δY)

3: f [Z]← −δj, f [v]← δj, f [ω]← (Y − xb)× δj + (δY − δu[v])× j, return f

1: procedure Force Diff Transpose RD(δu)
2: j← k(Z−Y), δv← δu[v] + δu[ω]× (Y − x), δω ← δu[ω], δj← δv − δu[Z]
3: δw← j× δω, δZ← kδj, δY ← δw − δZ, f ← 0

4: f [Z]← δZ +

(
∂Y

∂Z

)T

δY, f [v]←
(
∂Y

∂v

)T

δY − δw, f [ω]←
(
∂Y

∂ω

)T

δY, return f

1: procedure Update Attachment RD(δu)
2: e0 ← e, w0 ← w,X← Frame Inverse Times(rigid body,Y); Store: e0, w0,X

6

Algorithm 7 Relaxation routine for contact between two rigid bodies.

1: procedure Precompute RR(s, i)
2: if Use level set then . Check if intersecting

3:

〈
Z, ·, ∂Z

∂vs
,
∂Z

∂ωs

〉
← Frame Times(s,Z)

4:

〈
X̂, ·, ∂X̂

∂vi
,
∂X̂

∂ωi

〉
← Frame Times(i,X)

5:

〈
is active,W,

∂W

∂Z
,
∂W

∂vi
,
∂W

∂ωi

〉
← Project Attachment To Moving Surface(i,Z, φ, true)

6: if is active then

7:

〈
K,

∂K

∂Z
,
∂K

∂X̂
,
∂K

∂W

〉
← Relax Plane(Z, X̂,W, µ)

8:

〈
·,V, ∂V

∂K
,
∂V

∂vi
,
∂V

∂ωi

〉
← Project Attachment To Moving Surface(i,K, φ, true)

9: Y ← V,
∂V

∂Z
← ∂V

∂K

(
∂K

∂Z
+
∂K

∂W

∂W

∂Z

)
,

∂Y

∂vs
← ∂V

∂Z

∂Z

∂vs
,

∂Y

∂ωs
← ∂V

∂Z

∂Z

∂ωs

10:
∂Y

∂vi
← ∂V

∂K

(
∂K

∂X̂

∂X̂

∂vi
+
∂K

∂W

∂W

∂vi

)
+
∂V

∂vi
,

∂Y

∂ωi
← ∂V

∂K

(
∂K

∂X̂

∂X̂

∂ωi
+
∂K

∂W

∂W

∂ωi

)
+
∂V

∂ωi

11: else

12:

〈
Z, ·, ∂Z

∂vs
,
∂Z

∂ωs

〉
← Frame Times(s,Z)

13:

〈
Ẑ,
∂Ẑ

∂Z
,
∂Ẑ

∂vi
,
∂Ẑ

∂ωi

〉
← Frame Inverse Times(i,Z)

14:

〈
is active, e, w, Ŷ,diff list

〉
← Relax Mesh(e0, w0, Ẑ,none, µ)

15: if is active then

16:

〈
Y,

∂Y

∂Ŷ
,
∂Y

∂vi
,
∂Y

∂ωi

〉
← Frame Times(i, Ŷ)

17:
∂Ŷ

∂vs
← 0,

∂Ŷ

∂ωs
← 0,

∂Ŷ

∂vi
← 0,

∂Ŷ

∂ωi
← 0

18: for all 〈DY,DZ, ·〉 ∈ diff list do . Visit in the order they were added to the list

19:
∂Ŷ

∂vs
← DY

∂Ŷ

∂vs
+ DZ

∂Ẑ

∂vs
,

∂Ŷ

∂ωs
← DY

∂Ŷ

∂ωs
+ DZ

∂Ẑ

∂ωs

20:
∂Ŷ

∂vi
← DY

∂Ŷ

∂vi
+ DZ

∂Ẑ

∂vi
,

∂Ŷ

∂ωi
← DY

∂Ŷ

∂ωi
+ DZ

∂Ẑ

∂ωi

21:
∂Y

∂vs
← ∂Y

∂Ŷ

∂Ŷ

∂vs
,

∂Y

∂ωs
← ∂Y

∂Ŷ

∂Ŷ

∂ωs
,

∂Y

∂vi
← ∂Y

∂Ŷ

∂Ŷ

∂vi
+
∂Y

∂vi
,

∂Y

∂ωi
← ∂Y

∂Ŷ

∂Ŷ

∂ωi
+
∂Y

∂ωi

22: Store: Z,Y, e, w,
∂Y

∂vs
,
∂Y

∂ωs
,
∂Y

∂vi
,
∂Y

∂ωi
, is active

does not terminate from case 4, the following step must move Y. The attachment is now closer to Z than
any point on the edge; the edge can never be revisited. Thus, an edge can be visited in case 3 at most once.

At this point, the only case we must consider is when edges are visited in case 2 as the edges of triangles.
This is by far the most common case. The three edges of a triangle can be labeled as entering or leaving
edges. If the projection of Z into the plane of the triangle lies on the other side of the edge from the interior
of the triangle, the edge is a leaving edge. Otherwise it is an entering edge.

When the attachment transitions from case 2, it must do so through a vertex or through a leaving edge.
If the attachment point enters through a leaving edge, it immediately transitions to the edge in case 3; this
ensures that the edge is never visited again. Since vertices can only be visited a finite number of times, the

7

Algorithm 8 Force routines for penalty force between two rigid bodies.

1: procedure Force RR(s, i)
2: f ← 0, j← k(Z−Y)
3: f [vs]← −j, f [ωs]← (Z− xs)×−j, f [vi]← j, f [ωi]← (Y − xi)× j, return f

1: procedure Force Diff RR(s, i, δu)

2: j← k(Z−Y), δZ← ∂Z

∂vs
δu[vs] +

∂Z

∂ωs
δu[ωs]

3: δY ← ∂Y

∂vs
δu[vs] +

∂Y

∂ωs
δu[ωs] +

∂Y

∂vi
δu[vi] +

∂Y

∂ωi
δu[ωi], δj← k(δZ− δY)

4: f ← 0, f [vs]← δj, f [ωs]← (Y − xb)× δj + (δY − δu[v])× j
5: f [vi]← −δj, f [ωi]← (Y − xb)×−δj + (δY − δu[v])×−j, return f

1: procedure Force Diff Transpose RR(s, i, δu)
2: j← −k(Z−Y), δvs ← δu[vs]+δu[ωs]×(Z−xs), δωs ← δu[ωs], δvi ← δu[vi]+δu[ωi]×(Y−xi)
3: δωi ← δu[ωi], δj← δvi−δvs, δws ← j×δωs, δwi ← j×δωi, δZ← δj−δws, δY ← δwi−δj

4: f ← 0, f [vi]←
(
∂Y

∂vi

)T

δY − δwi, f [ωi]←
(
∂Y

∂ωi

)T

δY

5: f [vs]←
(
∂Y

∂vs

)T

δY +

(
∂Z

∂vs

)T

δZ + δws, f [ωs]←
(
∂Y

∂ωs

)T

δY +

(
∂Z

∂ωs

)T

δZ, return f

1: procedure Update Attachment RR(δu)
2: e0 ← e, w0 ← w,X← Frame Inverse Times(i,Y); Store: e0, w0,X

only case that needs to be considered is that one or more triangles are being visited multiple times from
entering edges in case 2. Each of these edges is a leaving edge to one adjacent triangle and an entering edge
to the other. When an attachment enters through an entering edge and leaves through a leaving edge, the
attachment has necessarily moved.

Next, consider the accumulation points of the path that attachment traverses if this algorithm does not
terminate and is left to run forever. The distance to Z is a monotonically decreasing nonnegative function, so
it must converge to some distance. The accumulation points of the attachment path are all at this distance
to the point Z. Note that within each triangle, the accumulation points must form a line; since it is not
possible for a line to contain points all of the same distance to Z, there cannot be accumulation points in
the interiors of the triangles. The same observation excludes them from the interiors of the edges. Thus, the
accumulation point must be a single vertex. Thus, after a finite number of steps, the attachment point will
be restricted to the triangles and edges adjacent to a single vertex.

The attachment point must visit the triangles in order (since for each triangle the attachment must enter
through the entering edge and leave through the leaving edge). Thus, we must have a spiral motion of the
attachment point. In the language of differential equations, this motion is a gradient system (the motion
is locally gradient descent on distance to Z). Equilibrium points of such systems must be nodes or saddle
points; they can never be spirals (See [Dob17], page 526). The spiral path around the vertex that must
exist if the algorithm fails to terminate is therefore impossible. It follows that the algorithm must eventually
terminate.

The proof presented is not constructive, and we do not have a proven bound on the number of times that
a triangle can be visited. In practice, we only observe primitives to be visited once in any particular state.

References

[Ano18] Anonymous: Penalty force for coupling materials with coulomb friction. In Proceedings of the
2018 ACM SIGGRAPH/Eurographics symposium on Computer animation (2018), ACM, p. 0.

8

Algorithm 9 Routines for penalty force between deformable bodies.

1: procedure Precompute DD
2: 〈is active, e,w,Y,diff list,weight diff〉 ← Relax Mesh(e0, w0,Z, p, µ)
3: Store: is active, e,w,Y,diff list,weight diff

1: procedure Force DD
2: f ← 0, j← k(Z−Y), f [Z]← −j
3: for all i ∈ {0, 1, 2} do
4: f [vertices[e][i]]← w[i]j

5: return f

1: procedure Force Diff DD(δu)

2: δY ←
2∑

i=0

w0[i]δu[vertices[e0][i]], δŶ ← 0, δw← 0

3: for all 〈DY,DZ,DA,DB,DC, ê〉 ∈ diff list do . Visit in the order they were added to the list

4: δŶ ← δY
5: δY ← DYδY + DZδu[Z] + DAδu[vertices[ê][0]] + DBδu[vertices[ê][1]] + DCδu[vertices[ê][2]]

6: if diff list is not empty then
7: 〈EY,EZ,EA,EB,EC〉 ← weight diff

8: δw← EYδŶ + EZδu[Z] + EAδu[vertices[e][0]] + EBδu[vertices[e][1]] + ECδu[vertices[e][2]]

9: f ← 0, j← k(Z−Y), δj← k(δu[Z]− δY), f [Z]← −δj
10: for all i ∈ {0, 1, 2} do
11: f [vertices[e][i]]← w[i]δj + δw[i]j

12: return f

1: procedure Force Diff Transpose DD

2: j← k(Z−Y), δj← −δu[Z] +

2∑
i=0

w0[i]δu[vertices[e0][i]]

3: for all i ∈ {0, 1, 2} do
4: δw[i]← j · δu[vertices[e0][i]]

5: f ← 0, δY ← −kδj, f [Z]← −δY
6: if diff list is empty then
7: δZ← 0, δŶ ← 0
8: else
9: 〈EY,EZ,EA,EB,EC〉 ← weight diff

10: δf [vertices[e][0]]+ = ET
Aδw, δf [vertices[e][1]]+ = ET

Bδw, δf [vertices[e][2]]+ = ET
Cδw

11: δŶ ← ET
Yδw, δZ← ET

Zδw

12: for all 〈DY,DZ,DA,DB,DC, ê〉 ∈ diff list do . Visit in the order they were added to the list
13: δf [vertices[ê][0]]+ = DT

AδY, δf [vertices[ê][1]]+ = DT
BδY, δf [vertices[ê][2]]+ = DT

CδY

14: δZ← DT
ZδY, δY ← DT

YδY + δŶ, δŶ ← 0

15: for all i ∈ {0, 1, 2} do
16: f [vertices[e0][i]]+ = w0[i]δY

17: f [Z]+ = δZ
18: return f

[Dob17] Dobrushkin V.: Applied Differential Equations with Boundary Value Problems. CRC Press,
2017.

[NW06] Nocedal J., Wright S.: Numerical Optimization. Springer series in operations research and
financial engineering. Springer, 2006.

9

Algorithm 10 Mesh relaxation routines (Part I).

1: procedure Relax Mesh(eo, w0, Z, ρ, µ)
2: X← point on mesh element e0 with barycentric weights w0

3: 〈c,Y,w, e〉 ← Case Triangle(X,Z, w0, e0, ρ, µ, true)
4: if c then
5: return 〈true, e,w,Y,diff list,weight diff〉
6: else
7: return 〈false, ·〉
1: procedure Case Triangle(X, Z, w0, e, ρ, µ, first)
2: if ρ ∈ vertices[e] then
3: return 〈false, ·, ·, ·〉
4: 〈A,B,C〉 ← vertices of triangle e

5: u← A−C, v← A−C, x← X−C, z← Z−C, N← u× v, W← z− z ·N
N ·N

N

6: inside← (z ·N ≤ 0), α← |d|µ, β ← ‖x−W‖2
7: if β < α2 then
8: Y ← X
9: return 〈inside,Y,w0, e〉

10: a← α√
β
, y←W + a(x−W)

11: M←
(
u v

)
, q← (MTM)−1MTy, r← (MTM)−1MTx, Y ← y + C

12: if Segment q, r intersects triangle (0, 0), (1, 0), (0, 1) then
13: q← intersection point
14: Y ← q[0]u + q[1]v + C
15: Record which triangle edge was intersected

16: w←
(
q[0],q[1], 1− q[0]− q[1]

)
17: Compute DY = ∂Y

∂X ,DZ = ∂Y
∂Z ,DA = ∂Y

∂A ,DB = ∂Y
∂B ,DC = ∂Y

∂C by autodifferentiation

18: Compute EY = ∂w
∂X ,EZ = ∂w

∂Z ,EA = ∂w
∂A ,EB = ∂w

∂B ,EC = ∂w
∂C by autodifferentiation

19: Overwrite weight diff← 〈EY,EZ,EA,EB,EC〉
20: Append 〈DY,DZ,DA,DB,DC, e〉 to diff list
21: if Segment intersected triangle then
22: q← intersection point
23: for all i ∈ {0, 1, 2} do
24: if w[i] > 1− 128ε then
25: return Case Vertex(Z, vertices[e][i], ρ, µ)

26: if not first and X = Y then . Attachment leaves on same edge it entered
27: Segment intersected triangle edge (a, b)
28: Use w to compute barycentric weights we on edge
29: return Case Edge(Y,Z,we, (a, b), ρ, µ)
30: else
31: Segment intersected triangle edge; let ê be the element on the other side
32: Use w to compute barycentric weights ŵ in triangle ê
33: return Case Triangle(Y,Z, ŵ, ê, ρ, µ, false)

34: else
35: return 〈inside,Y,w, e〉

10

Algorithm 11 Mesh relaxation routines (Part II).

1: procedure Case Edge(X, Z, w0, edge, ρ, µ)
2: if ρ ∈ vertices of edge then
3: return 〈false, ·, ·, ·〉
4: 〈A,B〉 ← vertices of edge

5: u← A−C,x← X−C, z← Z−C,W← z · u
u · u

u, α← ‖z−W‖2µ2, β ← ‖x−W‖2

6: if β < α then
7: Select a triangle e containing edge, compute triangle barycentric weights w from edge weights w0

8: return 〈Inside Edge(Z, edge),X,w, e〉

9: a←
√
α

β
,y←W + a(x−W), q ← y · u

u · u
10: if q < 0 then
11: Y ← B, f ← true, w ← 0
12: else if q > 1 then
13: Y ← A, f ← true, w ← 1
14: else
15: Y ← qu + B, f ← false, w ← q

16: Compute DY = ∂Y
∂X ,DZ = ∂Y

∂Z ,DA = ∂Y
∂A ,DB = ∂Y

∂B by autodifferentiation

17: Compute EY = ∂w
∂X ,EZ = ∂w

∂Z ,EA = ∂w
∂A ,EB = ∂w

∂B by autodifferentiation
18: Choose a triangle e containing this edge, compute barycentric weights w from edge weight w
19: Relabel DA,DB,DC,EA,EB,EC to correspond to the vertices of this triangle (two will be zero)
20: Overwrite weight diff← 〈EY,EZ,EA,EB,EC〉
21: Append 〈DY,DZ,DA,DB,DC, e〉 to diff list
22: if f then
23: return Case Vertex(Z, v̄, ρ, µ)
24: else
25: return 〈Inside Edge(Z, edge),Y,w, e〉
1: procedure Case Vertex(Z, p, ρ, µ)
2: if ρ = p then
3: return 〈false, ·, ·, ·〉
4: C← position of particle p, z = Z−C
5: for all triangles e containing point p do
6: 〈A,B〉 ← other two vertex positions

7: u = A−C, v = B−C, n = u× v, a =
z · (v × n)

n · n
, b = −z · (u× n)

n · n
8: if a ≥ 128ε and b ≥ 128ε then
9: Compute barycentric weights w of vertex C in e

10: return Case Triangle(C,Z,w, e, ρ, µ, false)

11: for all edges g containing point p do
12: A← other vertex position
13: if (A−C) · z ≥ 128ε then
14: Compute barycentric weights we of vertex C in g
15: return Case Edge(C,Z,we, g, ρ, µ)

16: Select a triangle e containing p, compute barycentric weights w of p in e
17: return 〈Inside Vertex(Z, p),C,w, e〉

11

Algorithm 12 Mesh relaxation routines (Part III).

1: procedure Inside Edge(Z, edge)
2: Let t0 and t1 be the triangles adjacent to edge
3: i0 ← Vol(t0,Z) ≤ 0, i1 ← Vol(t1,Z) ≤ 0 . determine inside/outside per triangle via tet volumes
4: if i0 = i1 then
5: return i0
6: Let q be vertex of t0 not on edge
7: return Vol(t1, q) > 0 . Resolve by testing convexity

1: procedure Inside Vertex(Z, p)
2: s← 0 . Solid angle centered at Z of triangle fan around p
3: for all triangles (p, a, b) containing p do . Triangle vertices are oriented
4: Get triangle vertices: P,A,B
5: w← P− Z, u← A−P, v← B−P, a← ‖w‖, b← ‖u‖, c← ‖v‖
6: s← s+ 2 atan2(w · (u× v), abc+ a(u · v) + b(v ·w) + c(w · u)) . Solid angle for triangle

7: return s > 0

12

