
Practical notes on implementing derivatives

Craig Schroeder

May 16, 2016

1 Introduction

For many applications in graphics, one is confronted with the task of solving an optimization problem or
solving a nonlinear system of equations. Efficient methods for solving these problems require derivatives to
be available. Differentiation in numerical methods also occurs for many other reasons, such as computing
forces from potential energy or computing normal and curvature information from an analytic level set. For
most authors in the graphics community, the process of working out, implementing, and testing derivative
routines does not seem to cause real difficulties. This is not always true, however, and some papers punt on
the task in a variety of ways.

One common way of avoiding the task of computing derivatives by hand is to rely on autodifferentiation.
Autodifferentiation is a very reasonable and effective solution in some circumstances, which has received a fair
amount of attention. This approach can be quite effective for rapid prototyping or for circumstances where
computing derivatives does not take a significant fraction of the total runtime. I use autodifferentiation myself
for a variety of purposes. There are many contexts in which autodifferentiation may fail to be adequate, such
as being too slow or not sufficiently numerically robust. Autodifferentiation also does not work well in some
circumstances, such as differentiating quantities depending on a singular value decomposition, a problem
that occurs when working with constitutive models. In these cases, it is best to perform the differentiation
by hand.

Instead of doing this, some authors avoid the derivatives by using BFGS or L-BFGS instead of Newton’s
method. Others approximate the derivatives, such as by omitting terms. Other authors choose to compute
derivatives using Maple, Mathematica, or other similar software. These practices are all generally bad. BFGS
and L-BFGS do not converge as rapidly as Newton’s method, especially for large sparse systems. Nor do
numerical methods perform as well when derivatives are approximated. Derivatives computed symbolically
using a software package tend to have many problems, including being enormously complicated, difficult to
maintain, not numerically robust, and inefficient.

In this document, I explore practical strategies for implementing derivatives in code. I focus our atten-
tion on strategies that are effective even when the derivatives appear hopelessly difficult to work out and
implement. As such, many of the suggestions that I make are overkill for simple tasks.

2 Basic ideas

The basic strategy for computing derivatives is fairly straightforward. Consider a simple example like

z = 3x+
√
9x2−4x cos x
2 cos x . The first step is to break the computation into tiny pieces. In this case, one might use

a = cosx b =
1

a
c = xb d =

3

2
c e = d2 − c f =

√
e z = d+ f.

Next, one differentiates each equation in turn.

a′ = − sinx b′ = −b2a′ c′ = xb′ + b d′ =
3

2
c′ e′ = 2dd′ − c′ f ′ =

e′

2f
z′ = d′ + f ′.

1

Next, one would implement each of these equations to compute the final results, z and z′. If second derivatives
are required, first break the computations into smaller pieces

a′ = − sinx g = b2 b′ = −ga′ c′ = xb′ + b d′ =
3

2
c′

e′ = 2dd′ − c′ h =
1

f
f ′ =

e′h

2
z′ = d′ + f ′.

Then repeat the differentiation term by term.

a′′ = −a g′ = 2bb′ b′′ = −g′a′ − ga′′ c′′ = xb′′ + 2b′ d′′ =
3

2
c′′

e′′ = 2((d′)2 + dd′′)− c′′ h′ = −h2f ′ f ′′ =
e′′h+ e′h′

2
z′′ = d′′ + f ′′.

The next process is implementing these formulas. Compare this to the results obtained by, for example,
cleaning up optimized code generated from Maple.

a = cos(x) b = 4a− 9x c =
√
−bx d = sin(x) e = cd

f = x2 g = a2 h =
1

c
j = g2 k = ga

m = fx n = cf p = f2 q = cm r = ma

s = 108fdg − 8xdk − 54efa+ 24exg − 162dr − 12fg + 4fj + 24an

+ 81pg + 27gq − 54mk − 12kn+ 4j − 162p− 54q + 108r

z =
3x+ c

2a
z′ = −h(2xda− 9fd− 3xe− 3ac− 9xa+ 2g)

2g
z′′ =

hs

2xbk

3 Debug as you go

One problem that is sometimes encountered when implementing derivatives is that one completes the im-
plementation and finds that they don’t actually work. One is then left checking a block of math trying to
find a mistake in the derivation or a mistake converting that math into code.

3.1 Numerical derivative test

One nice property of the approach advocated above, namely breaking the computation into tiny pieces, is
that the implementation can be tested in tiny pieces. The tool for doing this is something I will refer to
as the derivative test. The test will take different forms depending on the type of object being considered
(scalar, vector, matrix, etc.) In its basic form, I compute both z and z′. I can test to see if this is right by
using the definition of a derivative.

z(x+∆x)− z(x)

∆x
− z′(x) = O(∆x)

There are a couple ways of using this. One way is to do a refinement test to verify that convergence is
observed. This is in practice more than is required. It is often sufficient to verify that the error is small.
When doing so, this in not the best formula to use. Better is to do a central difference and central average.

z(x+∆x)− z(x−∆x)

2∆x
− z′(x+∆x) + z′(x−∆x)

2
= O(∆x2)

There is now a much bigger separation between a passing score O(∆x2) and a failing score O(1). When using
this formula, it is best to do the test using ∆x ≈ ǫ1/3, where ǫ is machine precision. This is because one

2

factor of ∆x is lose due to cancelation in the central difference, leaving two factors of ∆x left to distinguish
a passing and failing score. This test should always be done in double precision, in which case I typically
choose ∆x randomly in the interval [−δ, δ], where δ = 10−6. Note that an average is used for the derivative
rather than a midpoint approximation, since this way all computations are done at two locations; this is
convenient since the value will often be computed along with the derivatives.

When x is a vector, the perturbation δx is also a vector, whose entries are chosen uniformly in the range
[−δ, δ]. The test must be altered somewhat, since division is no longer possible. Note that the factor of 2
can be omitted.

z(x+∆x)− z(x−∆x)− (∇z(x+∆x) +∇z(x−∆x)) · δx = O(δ3)

In practice, it is more convenient to keep failing scores at O(1), so one would use

z(x+∆x)− z(x−∆x)− (∇z(x+∆x) +∇z(x−∆x)) · δx
δ

= O(δ2)

If z(x) is a vector, then ∇z(x) is a matrix, and the test can be performed as

‖z(x+∆x)− z(x−∆x)− (∇z(x+∆x) +∇z(x−∆x))δx‖
δ

= O(δ2)

Any norm can be used; L2 or L∞ are reasonable choices. Other cases, such as where x or z are a matrix are
treated similarly. Note that if x is a matrix, one would design the test so that it behaved the same as if x
were instead flattened into a vector.

There are some other practical tips that can be used to improve the test. One of these is to print out
‖z(x+∆x)− z(x−∆x)‖/δ, ‖(∇z(x+∆x) +∇z(x−∆x)δx/δ, and the relative error, which is obtained by
dividing the above error by the maximum of these quantities, while preventing the denominator from being
zero. This improves the test for a number of reasons. One is that it makes the test invariant with respect
to the absolute scale of z. Another is that it gives an idea of the size of the quantities being computed; if
they are very tiny, then they may actually be roundoff approximations of zero, in which case the relative
error will be huge, but the test should still be considered as a pass. One more benefit is that the mistake of
having the answer off by a simple factor (usually being off by a sign) will be very obvious from the output.

Testing second derivatives is done in the same way; in this case, z will be the first derivatives, and ∇z

will be the Hessian.

3.2 Derivative tests on intermediates

Note that in the original example, there were many intermediate quantities defined: {a, b, c, d, e, f, g, h, z}.
Corresponding to these, each quantity’s derivative and most of their second derivatives will be computed.
In addition to testing to ensure that z′ is the derivative of z and that z′′ is the derivative of z′, I can also do
derivative tests to ensure that these intermediates are consistent with their derivatives. This may be more
convenient to do if the derivatives are first implemented in a separate program set up specifically for this
task. In this way, each mistake is narrowed down to a very small piece of code, often one or two lines.

Once the code is working and passes derivative tests, it can be copied into the desired code base if
necessary. Since a working reference implementation of exactly the same thing is available, including with
the same intermediates, debugging will be straightforward.

3.3 Optimization

Although the approach above will often produce code that is quite efficient, the result can usually be
optimized further. Doing this will cause intermediates or their derivatives to no longer be computed, which
would make derivative testing on intermediates less effective. However, if the derivatives are first implemented
and tested as above, optimizations can be tested by comparing the optimized code directly against the original
derivative implementation. Then, optimizations can be made and tested one at a time.

3

4 Working with vectors, matrices, and tensors

4.1 Index notation

In practice, derivatives are often taken with respect to vectors or matrices, and the quantities being differ-
entiated may involve vectors or matrices. When this happens, the limitations of standard notations quickly
becomes evident. Take for example something as simple as g = u ·v. Taking the convention that the second
index of ∇u is the derivative index and that ∇g should be a column vector, one correct option would be to
write ∇g = (∇u)Tv+ (∇v)Tu. Many other possibilities exist, such as ∇uv, (∇u)v, ∇u · v, ∇uTv, vT∇u,
and v · ∇u. Of these, the first three imply summation on the wrong index. ∇uT is mildly ambiguous with
respect to the unlikely interpretation ∇(uT). vT∇u should produce a row vector instead of a column vector.
The meaning of v · ∇u is somewhat ambiguous, but it is probably best interpreted as vT∇u, producing a
row vector. Once a workable set of conventions is established, this difficulty is overcome.

Next, one runs into things like, for example, g = uTABv, where A and B are matrices. Now, I am
left with the derivatives of A and B, which produce rank three tensors, and the notation becomes hopeless.
There is no established notation for contracting against the middle index.

One common solution to the notation problem is to use index notation. This solution works very well
in practice and is the approach that I employ. Then, g = uivi is differentiated to g,r = ui,rvi + uivi,r.
Note that the quantity ui implies that u is a vector, with ui representing its i component. In this notation,
all quantities are scalars (thus the lack of bold typeface), since I am working with components of vectors
rather than the vectors themselves. The use of a comma ui,r indicates a partial derivative with respect to
a component of the independent variable xr. Multiple derivatives are similar ui,rs. An index that occurs
exactly twice in each term is assumed to be summed, a convention referred to as the Einstein summation
convention. With these conventions, the problematic example does not cause problems. g = uiAijBjkvk
differentiates to g,r = ui,rAijBjkvk+uiAij,rBjkvk+uiAijBjk,rvk+uiAijBjkvk,r. The main difficulties with
this notation is that it is more difficult to read and the indices must often be relabeled.

Indexing notation can actually do a lot more than is described here, distinguishing between different
types of indices and different types of derivatives. These distinctions are of no consequence for our purposes,
so I do not employ them.

A couple special tensors are worth mentioning. δij is the identity matrix, and eijk is the permutation
tensor. The latter is typically used for cross products, with w = u × v being replaced by wi = eijkujvk.
Both tensors are constants, so their derivatives vanish. They have a number of other useful properties, such
as δij = δji, δijui = uj , eijk = ekij = ejki = −ejik = −eikj = −ekji. Also, note that xi,j = δij , where xi are
the independent variables.

I have found that augmenting the derivative notation in a few ways is quite helpful in some cases. The
main need is when derivatives are taken with respect to a quantity with more than one index, such as a
matrix. For this, I typically group the indices together with parenthesis. For example, derivatives of g and
A with respect to the matrix F could be written g,(rs) and Aij,(rs). This helps, since g,rs would imply second
derivatives with respect to a vector. Partial derivatives with respect to the positions of all particles xp,
indexed as xpi, might be written g,(qr). Note that xpi,(qr) = δpqδir.

Another convention that has proven to be useful is to designate different sets of indices for different
purposes, so that the meaning can be immediately deduced. It is also convenient to set aside a different set
of indices when working out derivatives, such as my use of r, s, and q as the variables for derivatives, when
I used i, j, and p otherwise. This is convenient since it reduces the need to relabel indices. (The expressions
uiAijvj and ukAkivi mean the same thing; the index names for repeated indices do not matter. If I want
to multiply the scalars uivi and uiAijvj , I must first relabel one of the indices. For example, I could write
ukvkuiAijvj to avoid the clash.)

4.2 Tensors and code

Coding libraries for graphics often come with some degree of support for small matrices and vectors, along
with many of the common operations that are applied to them. These libraries typically do not support

4

more general tensors. This can cause complications, since differentiation has a tendency to produce such
tensors. Dealing with these tensors is generally undesired, even if code support were available for them. One
reason for this is that they can be quite expensive to construct and use. A rank-four tensor in 3D contains 81
entries. Each entry must be computed, and addition work must be done on each entry whenever the tensor
is used for something. In practice, simplifications can sometimes be done that result in the elimination of
tensors, replacing them instead with vector and matrix operations.

The typical workflow is then to work out the derivatives, manipulate the derivation to eliminate tensors
from the computations, implement the results, and then test. If one is lucky, the implementation will pass
derivative tests. More likely, one is left carefully examining the derivation and simplifications line by line
and comparing to code line by line. If one is fortunate, one my even have help doing this. The need to deal
with tensors has prevented me from following the “debug as you go” strategy.

After suffering through this process a few times, I wrote a simple testbed that supports tensors directly
from indexing notation, allowing us to perform computations directly off a form that is usable for working
out the derivation. The important elements of this setup are that (a) the compile-test cycle is very quick
(no more than about a second), (b) it can run derivative tests on quantities of any type, whether they be
scalars, vectors, matrices, or even tensors, and (c) the syntax is usable for working out a derivation. The
computations themselves are very inefficient, but this is not important. It provides a place to differentiate
and simplify expressions while catching mistakes. Once the simplifications are complete, the results can be
ported to use the real library structures and operations. Since a working implementation with exactly the
same operations is available, it is a very simple matter to test and debug the final implementation. This
framework is included in the accompanying code, and examples of its use are provided.

It is important to recognize the limitations of this setup. It works well when the summation convention
can be adhered to and more complex operations (matrix inverse, determinant, matrix factorizations) are not
directly involved. It remains attractive when complex pieces (e.g., a complex constitutive model) can be
abstracted out to a function; the contents of the function can then be replaced by something that fits well
in the framework but has sufficiently generic derivatives to still provide a robust tests. For simple tasks, this
approach is overkill.

5 Derivatives involving the SVD

5.1 Differentiating functions defined in terms of the SVD

When dealing with hyperelastic isotropic constitutive models, it is not uncommon to define the energy density
ψ(F) in terms of the singular values, ψ̂(Σ), where F = UΣVT . If S is symmetric, then S = UΣUT . What

is often needed is derivatives like ∂ψ
∂F , but what is available is ∂ψ̂

∂Σ . Depending on how the function relates to
its diagonal space version, the full derivatives can often be conveniently obtained directly from the diagonal
space version. The table below summarizes many of these. Note that for the table below, the computations
in the right are done assuming the diagonal matrices are treated as vectors. The following intermediates are
used (no summation is implied):

aik =
ψ̂,i − ψ̂,k
σi − σk

bik =
ψ̂,i + ψ̂,k
σi + σk

fik =
Âi − Âk
σi − σk

gik =
Âi + Âk
σi + σk

hik =
Âi − Âk
σi + σk

5

Expression Want Relation to diagonal Nonzero entries (no summation)

ψ(F) = ψ̂(Σ) T =
∂ψ

∂F
Tij = T̂mnUimVjn T̂ii = ψ̂,i

ψ(S) = ψ̂(Σ) T =
∂ψ

∂S
Tij = T̂mnUimUjn T̂ii = ψ̂,i

ψ(F) = ψ̂(Σ) T =
∂2ψ

∂F2
Tijkl = T̂mnrsUimVjnUkrVls

T̂iikk = ψ̂,ik

T̂ikik =
aik + bik

2
, T̂ikki =

aik − bik
2

, i 6= k

ψ(S) = ψ̂(Σ) T =
∂2ψ

∂S2
Tijkl = T̂mnrsUimUjnUkrUls

T̂iikk = ψ̂,ik

T̂ikik = T̂ikki = aik, i 6= k

A(F) = UÂ(Σ)VT T =
∂A

∂F
Tijkl = T̂mnrsUimVjnUkrVls

T̂iikk = Âi,k

T̂ikik =
fik + gik

2
, T̂ikki =

fik − gik
2

, i 6= k

A(F) = UÂ(Σ)UT T =
∂A

∂F
Tijkl = T̂mnrsUimUjnUkrVls

T̂iikk = Âi,k

T̂ikik =
fik − hik

2
, T̂ikki =

fik + hik
2

, i 6= k

A(F) = VÂ(Σ)VT T =
∂A

∂F
Tijkl = T̂mnrsVimVjnUkrVls

T̂iikk = Âi,k

T̂ikik =
fik + hik

2
, T̂ikki =

fik − hik
2

, i 6= k

A(S) = UÂ(Σ)UT T =
∂A

∂S
Tijkl = T̂mnrsUimUjnUkrUls

T̂iikk = Âi,k

T̂ikik = T̂ikki = fik, i 6= k

Each of the second derivative formulas is implemented and demonstrated to pass numerical deriva-
tive tests; the files in which this is done are, in table order, example-svd-dd.cpp, example-eig-dd.cpp,
example-svd-uv.cpp, example-svd-uu.cpp, example-svd-vv.cpp, and example-eig-uu.cpp. The two
rules for first derivatives of scalars are demonstrated alongside the corresponding second derivatives.

Robustness. Note that the quantities aik and fik involve dividing by σi − σk, which is problematic when
singular values are nearly equal. These divided differences can and should be computed robustly. I show
how this can be done in Section 5.2. In this way, robustness is only an issue when σi + σk = 0. When
the singular values follow the inverting finite element sign convention and the configuration is degenerate or
inverted, this is possible. In general, the case σi = −σk 6= 0 will represent an actual discontinuity, and this
division by zero is genuinely unavoidable. I deal with this issue by clamping.

Chain Rule. Sometimes it is the case that a quantity like A(B(F)) will be required, where for example

A(F) = UÂ(Σ)VT and B(F) = UB̂(Σ)VT . The need to differentiate a construct like this might seem

daunting. However, if I let Ĉ(Σ) = Â(B̂(Σ)), then the process becomes much simpler. I now have A(C) =

UĈ(Σ)VT , so the appropriate rule from the table above may be selected. The functions Â and B̂ can be

differentiated independently, with Ĉ pieced together from the chain rule.

5.2 Robustly computing divided differences

When computing derivatives involving the SVD, I sometimes end up needing expressions like

ur − us
xr − xs

, (1)

which will cause numerical problems when xr ≈ xs. Typically, however, these expressions are still finite. I
note that these follow a sort of calculus, which allows them to be computed in a straightforward manner.
Note that this operation only makes sense with respect to indices, since the difference is performed with
respect to an index. In the case of matrices or tensors, it would be performed on any index. It can never be

6

performed on scalar operations.

Operation Rule Note

au a

(

ui − uj
xi − xj

)

u± v

(

ui − uj
xi − xj

)

±
(

vi − vj
xi − xj

)

Au
∑

k

(

Aik −Ajk
xi − xj

)

uk Products are trivial

z = z(u)

(

zi − zj
ui − uj

)(

ui − uj
xi − xj

)

Chain rule

Note that since divided differences cannot be applied to scalars, rules for operations like ‖u‖, u ·v, tr(A),
or det(A) are unnecessary. The same applies to things like sin(a) and ln(a).

Componentwise operations also come up sometimes when working in diagonal space, since it is convenient
to treat diagonal matrices as vectors. Then, these rules are useful

(urvr)− (usvs)

xr − xs
= vr

(

ur − us
xr − xs

)

+ us

(

vr − vs
xr − xs

)

(2)

(ur/vr)− (us/vs)

xr − xs
=

1

vr

(

ur − us
xr − xs

)

− us
vrvs

(

vr − vs
xr − xs

)

(3)

v−1
r − v−1

s

xr − xs
= − 1

vrvs

(

vr − vs
xr − xs

)

(4)

u2r − u2s
xr − xs

= (ur + us)

(

ur − us
xr − xs

)

(5)

It is also useful to consider componentwise function applications. After using the chain rule, I am left only
to evaluate these expressions robustly (let w = x− y and p = x

y − 1)

sinx− sin y

x− y
= cos y

(

sinw

w

)

+ sin y

(

cosw − 1

w

)

(6)

cosx− cos y

x− y
= − sin y

(

sinw

w

)

+ cos y

(

cosw − 1

w

)

(7)

ex − ey

x− y
= ey

(

ew − 1

w

)

(8)

lnx− ln y

x− y
=

1

y

(

ln(p+ 1)

p

)

(9)

These four rules then require four primitives, which can be computed robustly using

sinx

x
=

{

1 |x| < ǫ

sin(x)/x |x| ≥ ǫ
(10)

cosx− 1

x
= −x

2

(

sin(x/2)

x/2

)2

(11)

ex − 1

x
=

{

1 |x| < ǫ

expm1(x)/x |x| ≥ ǫ
(12)

ln(x+ 1)

x
=

{

1 |x| < ǫ

log1p(x)/x |x| ≥ ǫ
(13)

7

Here, log1p and expm1 are commonly-available library routines and ǫ is machine epsilon.
It should be noted that divided differences cannot always be robustly computed. It is not, for example,

possible to compute divided differences of u × v robustly from the divided differences of u and v. Indeed,
the divided differences in this case need not even be finite.

6 Other tips

6.1 Reusing derivations

Do the derivation in a text file. Typically this would be LATEX or some sort of testbed. There are certainly
faster alternatives, at least at first (working things out on paper, working things out on a blackboard and
taking a picture). In the end, text has some advantages. It can be pasted in a technical document to
accompany the finally paper, and it can be modified into valid source code for the implementation. Fixing
errors and tracing the corrections through a derivation is straightforward. A record of how the derivations
were done can be kept with the paper so they are available for reference at a later date.

Another nice attribute of working with text files is that good text editors have powerful and efficient
copy-paste and search-replace features. Careful use of these features can help reduce errors. This is especially
important when dealing with lots of indices, which are easy to make mistakes with. Each line can begin
with a copy and paste of the previous line. Search and replace allows index relabeling to be done quickly
and accurately. Search and replace is also useful for making general substitutions, since it ensures that only
exact matches are replaced and that the replacements are done without mistakes.

6.2 Computing vs applying derivatives

It is not always necessary to compute derivatives; it may be sufficient to be able to multiply by them. This
is the case when using Krylov solvers like conjugate gradient, which only require the ability to multiply by
a matrix. This may be a more convenient alternative, especially when the derivatives themselves involve
tensors but the application can be done with matrices, vectors, and scalars alone. Application may also be
cheaper or take less storage, depending on the circumstances.

6.3 Disabling independent variables

The numerical derivative tests do not test individual components of the derivatives. Rather, the test gives
a quick indicator of whether all of the derivatives are correct. This can still be used to test individual
blocks, which can be used to very quickly narrow problems down to a small number of terms. Lets say I am
differentiating f(x, y, z), computing partials fx, fy, fz, fxx, fxy, fxz, fyy, fyz, and fzz. The derivative test
will give pass/fail for the first derivative, and then another pass/fail for first vs second derivatives. If it is
found that first derivatives pass but second do not, that leaves a lot of possibilities for where the error might
be. If in the test z is set to some fixed value, and the derivatives containing z are set to zero, the derivative
test will only be testing fxx, fxy, and fyy. Fixing y and z tests only fxx. In this way, diagonal blocks can
be tested individually. When these are verified correct, leaving two variables free allows mixed partials to
be tested one at a time.

7 Examples

In this section, I demonstrate these ideas on actual examples. Some of these are taken from graphics
papers published in the last ten years where authors avoided the task of manually computing the derivatives
(citations are omitted; I doubt the authors would want to be cited for failing to compute derivatives). Other
examples are taken from my own papers in which interesting or particularly nontrivial derivatives were
required. In each case, code is provided that shows snapshots of the steps I went through in computing the

8

derivatives. The end result in each case is a routine computing the first and second derivatives and verifying
their correctness numerically.

For the purpose of these examples, I use very simple fixed-size matrix and vector classes to ease un-
derstanding of the code. The routines themselves are not particularly efficient. Any library with basic
operations will do. Trying to implement these things without a reasonably friendly linear algebra framework
is not recommended.

7.1 Example A

This example is taken from a recent graphics paper. The original paper used derivatives computed by
Maple. Its simplification demonstrates strategies for eliminating tensors from intermediate computations.
Many tensors are formed from the differentiation, since I compute the derivatives with respect to a matrix
and some intermediates are also matrices. The scalar W is defined in the original paper by

d1 = x1 − x0

d2 = x2 − x0

D =
(

d1 d2

)

F̄ = DR−1
X

Ē =
1

2
(F̄T F̄− I)

W = AX

(

λ

2
(tr Ē)2 + µ tr(Ē2)

)

The goal with this one is to compute ∂W
∂xi

and ∂2W
∂xi∂xj

, for i, j ∈ {0, 1, 2}. Note that

∂W

∂D
=
(

∂W
∂d1

∂W
∂d2

) ∂W

∂x0
= −∂W

∂d1
− ∂W

∂d2

∂W

∂x1
=
∂W

∂d1

∂W

∂x2
=
∂W

∂d2
.

The same idea applies to the second derivatives (j, k > 0)

∂2W

∂xj∂xk
=

∂2W

∂dj∂dk

∂2W

∂x0∂xk
= − ∂2W

∂d1∂dk
− ∂2W

∂d2∂dk

∂2W

∂x0∂x0
= − ∂2W

∂x0∂x1
− ∂2W

∂x0∂x2

This gives us the somewhat simpler task of computing ∂W
∂D . I computed and simplified the derivatives for

this one in our testbed (testbed-a.cpp) and in the testing framework (example-a.cpp). Let a = AX and
S = R−1

X . Then the first and second derivatives can be computed as

F̄ij = DikSkj Ēij = (F̄kiF̄kj − δij)/2 B = Ēii W = aλB2/2 + aµĒijĒji

Eki = SkjĒji Fki = SkjF̄ij Gki = F̄kjF̄ij W,rs = aλFsrB + 2aµF̄riEsi

Hsv = SsiSvi Csv = λBHsv + 2µSsjEvj W,rsuv = aδruCsv + aλFsrFvu + aµFsuFvr + aµHsvGru

Note that all operations except for assembling the tensor W,rsuv are strictly scalar, vector, and matrix
operations. Recall the relationship between derivatives in D and derivatives in dk.

(

∂W

∂xs

)

r

=W,rs

(

∂2W

∂xs∂xv

)

ru

=W,rsuv

7.2 Example B

This is another example from a paper where derivatives were computed in Maple. This example actually
simplifies quite dramatically, though the paper does not mention this. This leads me to wonder whether the
author was aware of this. The example is more complex than the previous one, and it demonstrates a different

9

set of techniques. I differentiate and simplify the expression in one way. I then repeat the differentiation
(but not the simplification, which was done the same was as the first time) using a different strategy. The
quantity to be differentiated is

dmin = (xA − c) · (xC − xA)× (xB − xA)

‖(xC − xA)× (xB − xA)‖

cot(α) =
(xC − xA) · (xB − xA)

‖(xC − xA)× (xB − xA)‖

cot(β) =
(xA − xB) · (xC − xB)

‖(xA − xB)× (xC − xB)‖

cot(γ) =
(xB − xC) · (xA − xC)

‖(xB − xC)× (xA − xC)‖
EDirichlet = d−2

min(cot(α)‖xB − xC‖2 + cot(β)‖xA − xC‖2 + cot(γ)‖xA − xB‖2)

Earea = d−2
min

‖(xA − xC)× (xB − xC)‖2
InputArea

E = Ecombined = a · EDirichlet + b · Earea

Here, two derivatives of E are desired with respect to xA, xB , and xC . Some simplification is in order before
this one is ready to be differentiated.

u = xA − xC v = xB − xC w = u− v N = u× v A = ‖N‖ B =
1

A
n = BN

z = xA − c dmin = z · n g = d−2
min cot(α) = Bu ·w cot(β) = −Bw · v cot(γ) = Bv · u

EDirichlet = g(cot(α)‖v‖2 + cot(β)‖u‖2 + cot(γ)‖w‖2)

Earea = g
A2

InputArea

E = Ecombined = a · EDirichlet + b · Earea

The form of EDirichlet is rather curious. Ignoring the factor of gB common to all of the terms, I have a
degree four polynomial in the components of u and v. The expression must also be very highly symmetrical
with respect to these, since this value should be invariant with respect to permuting the vertices of the
triangle. That suggests that this polynomial may have a rather simple form. Investigating further leads to
the substantial simplification

EDirichlet = g(cot(α)‖v‖2 + cot(β)‖u‖2 + cot(γ)‖w‖2)
= g(Bu ·w‖v‖2 −Bw · v‖u‖2 +Bv · u‖w‖2)
= 2gB‖N‖2

= 2gA

E = a · EDirichlet + b · Earea

= 2agA+ bg
A2

InputArea

= 2agA+ cgA2 c =
b

InputArea

=
2aA3 + cA4

(z ·N)2

10

The derivatives can now be computed. Observe that E depends on xA, xB , and xC only through z and N,
noting that A = ‖N‖. This suggests that a compact approach would be to first compute EN = ∂E

∂N and

Ez =
∂E
∂z , following by the chain rule. First, the energy E is computed (using z, u, v, N, A from above)

d = z ·N g = d−2 C = (2aA+ fA2)A2 E = gC

Next, I compute the first derivatives.

PA = −v∗ PB = u∗ PC = (v − u)∗ h = 6aA+ 4fA2 EN = −2g2dCz+ ghN Ez = −2g2dCN

qA = 1 qB = 0 qC = 0
∂E

∂xv
= PT

v EN + qvEz

where subscript v runs over the vertices {A,B,C}. The quantity u∗ is the cross product matrix, chosen so
that u∗v = u× v for any vector v. Finally, the second derivatives are

m = 2g2(4gd2 − 1) p = mCz− 2g2dhN ENN = pzT + g((6a/A+ 8f)N− 2gdhz)NT + ghI Ezz = mCNNT

ENz = pNT − 2g2dCI
∂2E

∂xu∂xv
= PT

uENNPv + qvP
T
uENz + quE

T
NzPv + quqvEzz − ruvE

∗
N

where subscripts u, v run over the vertices {A,B,C}. The coefficients ruv are skew symmetric (ruv = −rvu,
ruu = 0) with rAB = rBC = rCA = 1. As with the first example, I computed and simplified the derivatives
for this one in our testbed (testbed-b.cpp) and in the testing framework (example-b.cpp). Note that only
scalars, vectors, and matrices were used.

7.2.1 Change of variables

Notice how in this example the energy depends on positions xA, xB , and xC only through the two quantities
z = xA−c and N = (xA−xC)×(xB−xC). By computing partial derivatives of energy with respect to these
two intermediates (EN ,Ez,ENN ,ENz,Ezz), the desired partial derivatives can then be computed using the
chain rule. This is a divide and conquer strategy; the complexities of the energy are decoupled from the
complications relating to the cross product. This strategy is often helpful when there is a sort of bottleneck,
where the dependence on the original variables can be expressed in terms of a relatively small number of
expressions. In addition to simplifying the derivatives, it also factors out computations that would otherwise
be redundant. Both parts can be debugged independently, since they can both be tested with numerical
derivative tests.

This strategy could have been repeated. For example, E only depends on z and N through d = z · N
and A2 = ‖N‖2. This is nice because now the derivatives are functions of scalars only, which are often easier
and less expensive to work with.

I can pursue this strategy further, considering the energy to depend, in turn, on (g,A2), (d,A2), (d,N),
(z,N), (z,u,v), and finally (xA,xB ,xC). When this is done, I get the following computations, using q = A2

for convenience:

11

Pair Chain rule New derivatives
1 Cq = 3aA+ 2fq Cqq =

3a
2A + 2f Eg = C Eq = gCq Eqg = Cq Eqq = gCqq

2 gd = −2g2d gdd = 6g2 Ed = Eggd Edd = Eggdd Eqd = Eqggd
3 qN = 2N qNN = 2I ÊN = EqqN ÊNN = EqqqNqTN + EqqNN ENd = EqdqN
4 dz = N dN = z dNz = I Ez = Eddz EN = ÊN + EddN Ezz = Edddzd

T
z

ENz = (ENd + EdddN)dTz + EddNz
ENN = ÊNN + dNETNd + (ENd + EdddN)dTN

5 Nu = −v∗ Nv = u∗ Eu = NT
uEN Ev = NT

v EN Euu = NT
uENNNu

Euv = NT
uENNNv −E∗

N Evv = NT
v ENNNv

Euz = NT
uENz Evz = NT

v ENz
6 zA = uA = vB = I EA = Ez +Eu EB = Ev EC = −Eu −Ev

uC = vC = −I EAA = Ezz +Euu +ETuz +Euz EAB = ETvz +Euv
EAC = −ETvz −Euu −ETuz −Euv EBB = Evv
EBC = −ETuv −Evv ECC = Euu +Euv +ETuv +Evv

This computational sequence is, of course, ripe for simplification and optimization. This sequence was
worked out directly in the testing framework (example-b2.cpp). Snapshots captured along the way reveal
how the intermediate numerical derivative tests were done. Note that partial derivatives also depend on
what is being held fixed; The need to distinguish ÊN and ÊNN from EN and ENN reflects this.

7.3 Example C

The following example is from one of my papers. In this case, there are a number of components that
make the derivatives difficult. The first is that tensors cannot be avoided; the first derivatives depend on
the second derivatives of a provided energy function, so second derivatives will inevitably require fourth
derivatives. The other striking thing that makes this example challenging is that one of the quantities (s)
must be computed as the solution to a cubic equation. Another complication is that the provided energy
function is evaluated at a location that depends on the solution to the cubic. Differentiation of the result
ψ is with respect to x, and the quantities r and a are constant. In particular, r is the all-ones vector, and
a ∈ (0, 1) is a parameter.

u =
x− r

‖x− r‖ q = r+ (x− r)s h = (x− q) · u a =
∏

α

qα =
∏

α

(rα + (xα − rα)s)

φ = Ψ(q) gi = Ψ,i(q) Hij = Ψ,ij(q) ψ = φ+ hg · u+
1

2
h2uTHu

The original derivatives I worked out for the energy were very complicated. Although very carefully worked
out with two sets of eyes, debugging the results was quite difficult. I have reworked the derivatives from
scratch, using the techniques and tools outlined in this document. The result is much simpler. Let v = x−r

and solve the cubic to get s. Then,

t = 1− s w =
t2

2
q = r+ sv M =

0 qz qy
qz 0 qx
qy qx 0

 y = Mq z = Mv Tc = ys

Ts = y · v Tss = 2z · v Tcs = y + 2sz Tcc = 2s2M sx = −Tc

Ts
qx = vsTx + sI

sxx = −Tsssxs
T
x +Tcss

T
x + sxT

T
csTcc

Ts
A = vsTx − 3

2
tI

Now, I need to evaluate the energy and its first four derivatives, contracting with v immediately for the third
and fourth derivatives to avoid dealing with tensors in the code. Z00 = φ(q), Z10

i = φ,i(q), Z
20
ij = φ,ij(q),

12

Z31
ij = φ,ijk(q)vk, Z

42
ij = φ,ijkm(q)vkvm. Further contractions with v are useful and computed as needed

while computing the final energy ψ and derivatives ψx and ψxx.

Z11 = Z10 · v Z21 = Z20v Z22 = Z21 · v ψ = Z00 + tZ11 + wZ22

Z32 = Z31v Z33 = Z32 · v ψx = Z10 + tZ21 + wqTxZ
32

ψxx = Z20 − tATZ31A+

(

5

2
w + 1

)

tZ31 + wZ33sxx + wqTxZ
42qx

The simplification of the original is dramatic and does not involve square roots. One significant piece of
this, not noticed in the original derivation, is that hu = tv. The only uses for h and u occur in the
combination hu; this substitution is very beneficial, since v has very simple derivatives and t = 1 − s is a
scalar. These simplifications, and many others, were possible because of the ability to make small speculative
simplifications without the risk of introducing mistakes.

In the case of this example, I am differentiating an energy in diagonal space, so in addition to two
derivatives I also need divided differences.

ψ,i − ψ,j
xi − xj

=

(

Z10
i − Z10

j

xi − xj

)

+ t

(

Z21
i − Z21

j

xi − xj

)

+
2s2wZ33

Ts
Mij + sw

(

Z32
i − Z32

j

xi − xj

)

The remaining divided differences are of contractions of energy density derivatives and should be com-
puted along with energy density derivatives. Derivatives were worked out and simplified in the testbed
(testbed-c.cpp). These were then transferred to the testing framework, debugging by matching the com-
putations from the testbed. Divided differences were then computed directly in the testing framework
(example-c.cpp).

13

