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1 Introduction

This document presents the proofs that are related to the Affine Particle-in-Cell method. Section 2 describes the notations. Section 3 lists some
preliminaries for the proofs. Section 4 proves the following properties of Rigid Particle-in-Cell (RPIC): 1. Preservation of rigid motion velocity
field (4.1), 2. Conservation of linear momentum (4.2), 3. Conservation of angular momentum (4.3). Section 5 proves the following properties
of Affine Particle-in-Cell (APIC): 1. Preservation of affine velocity field (5.1), 2. Conservation of linear momentum (5.2), 3. Conservation of
angular momentum (5.3).

2 Notation

We begin by laying out the notation that we use in this document. Many quantities have subscripts (mp), and some have superscripts as
well (vnp ). Subscripts p and q are used to refer to particles, and subscripts i and j are used to refer to regular grid indices. The superscript
distinguishes quantities available or computed at the beginning of the time step (vnp ) from quantities that are computed for use at the beginning
of the next time step (vn+1

p ). We use lowercase bold for vectors (vnp ) and uppercase bold for matrices (Bnp ), with the exception of angular
momentum, a vector quantity that is normally denoted by Lnp . The notation we use is summarized in Table 1.

3 Preliminaries

When we consider conservation of angular momentum when transferring from grid to particles at the end of a time step, we need to consider
angular momentum to be defined over moved grid nodes and we use the notation x̃n+1

i = xi + ∆tṽn+1
i to indicate this. To avoid confusion,

rather than referring to unmoved grid nodes at the beginning of the time step as xi, we will use xni to emphasize that they have not been
dynamically updated yet, whereas the x̃n+1

i have been. We adopt this notation in the remainder of the document.
We will also use a few properties of standard interpolating functions, namely.

∑
i

wnip = 1

∑
i

wnipx
n
i = xnp∑

i

wnip(xni − xnp ) = 0

Here wnip = Ni(x
n
p ) are the weights at time tn, where Ni(x) is the interpolation function associated with grid node i.

The definitions of linear and angular momentum on the grid as well as linear momentum on particles are listed below. The angular momentum
on particles is written in different forms for RPIC and APIC and will be defined in the corresponding sections.

Definition 3.1. The total linear momentum on the grid (after the particle-to-grid transfer at time n) is

pG,ntot =
∑
i

mni v
n
i

Definition 3.2. The total angular momentum on the grid (after the particle-to-grid transfer at time n) is

LG,ntot =
∑
i

xni ×mni vni

Definition 3.3. The total linear momentum on the grid (after the grid dynamics, before the grid-to-particle transfer in the end of time n) is

pG,n+1
tot =

∑
i

mni ṽ
n+1
i

Definition 3.4. The total angular momentum on the grid (after the grid dynamics, before the grid-to-particle transfer in the end of time n) is

LG,n+1
tot =

∑
i

x̃n+1
i ×mni ṽ

n+1
i

Definition 3.5. The total linear momentum on particles (before the particle-to-grid transfer at time n) is

pP,ntot =
∑
p

mpv
n
p



Symbol location type meaning
mp p s mass
xnp p v position
vnp p v velocity
Lnp p v angular momentum
Kn
p p m inertia tensor

Bnp p m affine state
Dn
p p m inertia-like tensor

mni n s mass
xni n v position
x̃n+1
i n v moving grid position
vni n v velocity
ṽn+1
i n v intermediate velocity
wnip n+p s weights
∇wnip n+p v weight gradients
pP,ntot g v total particle linear momentum
pG,ntot g v total grid linear momentum
LP,ntot g v total particle angular momentum
LG,ntot g v total grid angular momentum
v∗ g m cross product matrix of v
ε g t permutation tensor

∆t g s time step size

Table 1: Summary of notation used in this paper. Locations are p (particle), n (regular grid node), or g (global; does not live at any location in
space). Quantities are of type s (scalar), v (vector), m (matrix) or t (rank-3 tensor).

Definition 3.6. The total linear momentum on particles (after the grid-to-particle transfer in the end of time n) is

pP,n+1
tot =

∑
p

mpv
n+1
p

4 Piecewise rigid

Here is a data flow diagram for Rigid Particle-in-Cell method.
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RPIC stores mass mp, position xp, velocity vp and angular momentum Lp on particles. The transfer from particles to the grid are given by

mni =
∑
p

wnipmp

Kn
p =

∑
j

wnjpmp(xnj − xnp )∗(xnj − xnp )∗T

mni v
n
i =

∑
p

wnipmp(vnp + ((Kn
p )−1Lnp )× (xni − xnp )).

(1)

One may imagine this transfer as distributing the masses wnipmp from a rigid body to the grid node i. Kp is the inertia tensor associated with
the local rigid body represented by particle p. For any vectors u and v, u∗ is defined to be the cross product matrix of u, so that u∗v = u× v
and (u∗)T v = v × u.
The transfer from the grid to particles are given by

vn+1
p =

∑
i

wnipṽ
n+1
i

Ln+1
p =

∑
i

wnip(xni − xnp )×mpṽn+1
i .

(2)



4.1 Preservation of rigid motion velocity field

Proposition 4.1. Let ∆t = 0 and consider the the process of transferring grid velocity (ṽn+1
i ) information to particles (vn+1

p , Ln+1
p ) and then back to

the grid (vn+1
i ) with the Rigid Particle-in-Cell method. If the velocities before the transfer represent rigid motion, ṽn+1

i = v + ω × xni , where v and ω
are any constant vectors, then after the process, this velocity field is exactly reproduced: vn+1

i = ṽn+1
i .

Proof. Since ∆t = 0, we have wnip = wn+1
ip and xnp = xn+1

p , so thatKn
p = Kn+1

p and mni = mn+1
i . The grid to particle transfer is (for vp)

vn+1
p =

∑
i

wnipṽ
n+1
i

=
∑
i

wnip(v + ω × xni )

=
∑
i

wnipv +
∑
i

wnipω × xni

= v
∑
i

wnip + ω ×
∑
i

wnipx
n
i

= v + ω × xnp ,

and for LP :

Ln+1
p =

∑
i

wnip(xni − xnp )×mpṽn+1
i

=
∑
i

wnip(xni − xnp )×mp(v + ω × xni )

=

(∑
i

wnip(xni − xnp )

)
×mpv +

∑
i

wnip(xni − xnp )×mp(ω × xni )

=
∑
i

mpw
n
ip(xni − xnp )∗(xni )∗Tω

=
∑
i

mpw
n
ip(xni − xnp )∗(xni − xnp )∗Tω +

∑
i

mpw
n
ip(xni − xnp )∗(xnp )∗Tω

= Kn
pω +mp

(∑
i

wnip(xni − xnp )

)∗

(xnp )∗Tω

= Kn
pω

A particle to grid transfer is then performed:

mn+1
i vn+1

i =
∑
p

wn+1
ip mp(vn+1

p + ((Kn+1
p )−1Ln+1

p )× (xn+1
i − xn+1

p ))

mni v
n+1
i =

∑
p

wnipmp(vn+1
p + ((Kn

p )−1Ln+1
p )× (xni − xnp ))

=
∑
p

wnipmp(v + ω × xnp + ((Kn
p )−1Kn

pω)× (xni − xnp ))

=
∑
p

wnipmp(v + ω × xnp + ω × (xni − xnp ))

=

∑
p

wnipmp

(v + ω × xni )

= mni (v + ω × xni )

We can see vn+1
i = v + ω × xni = ṽn+1

i . Therefore, the rigid motion velocity field represented by v and ω is preserved in the full transfer
cycle.

4.2 Conservation of linear momentum
4.2.1 Particle to grid

Proposition 4.2. Linear momentum is conserved during the RPIC transfer from particles to the grid. pG,ntot = pP,ntot under transfer 1.



Proof. The linear momentum on the grid after transferring from particles is

pG,ntot =
∑
i

mni v
n
i

=
∑
i

∑
p

wnipmp(vnp + ((Kn
p )−1Lnp )× (xni − xnp ))


=
∑
i,p

wnipmpv
n
p +

∑
i,p

wnipmp(((Kn
p )−1Lnp )× (xni − xnp ))

=
∑
p

(∑
i

wnip

)
mpv

n
p +

∑
p

mp((Kn
p )−1Lnp )×

(∑
i

wnip(xni − xnp )

)

=
∑
p

mpv
n
p

= pP,ntot

4.2.2 Grid to particle

Proposition 4.3. Linear momentum is conserved during the RPIC transfer from the grid to particles. pP,n+1
tot = pG,n+1

tot under transfer 2.

Proof. The linear momentum on the particles after transferring from the grid is

pP,n+1
tot =

∑
p

mpv
n+1
p

=
∑
p

mp

(∑
i

wnipṽ
n+1
i

)

=
∑
i

∑
p

wnipmp

ṽn+1
i

=
∑
i

mni ṽ
n+1
i

= pG,n+1
tot

4.3 Conservation of angular momentum
With mp,xp,vp and Lp, we can define the total angular momentum on particles in the piecewise rigid case.

Definition 4.1. The total angular momentum on particles (before the particle-to-grid transfer at time n) represented by RPIC is

LP,ntot =
∑
p

(xnp ×mpvnp +Lnp )

Definition 4.2. The total angular momentum on particles (after the grid-to-particle transfer in the end of time n) represented by RPIC is

LP,n+1
tot =

∑
p

(xn+1
p ×mpvn+1

p +Ln+1
p )

4.3.1 Particle to grid

Proposition 4.4. Angular momentum is conserved during the RPIC transfer from particles to the grid. LG,ntot = LP,ntot under transfer 1.



Proof. The angular momentum on the grid after transferring from particles is

LG,ntot =
∑
i

xni ×mni vni

=
∑
i

xni ×

∑
p

wnipmp(vnp + ((Kn
p )−1Lnp )× (xni − xnp ))


=
∑
i,p

xni × wnipmpvnp +
∑
i,p

xni × wnipmp(((Kn
p )−1Lnp )× (xni − xnp ))

=
∑
p

(∑
i

wnipx
n
i

)
×mpvnp +

∑
i,p

xni × wnipmp(xni − xnp )∗T (Kn
p )−1Lnp

=
∑
p

xnp ×mpvnp +
∑
i,p

(xni − xnp )× wnipmp(xni − xnp )∗T (Kn
p )−1Lnp +

∑
i,p

xnp × wnipmp(xni − xnp )∗T (Kn
p )−1Lnp

=
∑
p

xnp ×mpvnp +
∑
p

(∑
i

mpw
n
ip(xni − xnp )∗(xni − xnp )∗T

)
(Kn

p )−1Lnp +
∑
p

xnp ×mp

(∑
i

wnip(xni − xnp )

)∗T

(Kn
p )−1Lnp

=
∑
p

xnp ×mpvnp +
∑
p

Kn
p (Kn

p )−1Lnp

=
∑
p

(xnp ×mpvnp +Lnp )

= LP,ntot

4.3.2 Grid to particle

Proposition 4.5. Angular momentum is conserved during the RPIC transfer from the grid to particles. LP,n+1
tot = LG,n+1

tot under transfer 2.

Proof. The angular momentum on the particles after transferring from the grid is

LP,n+1
tot =

∑
p

(xn+1
p ×mpvn+1

p +Ln+1
p )

=
∑
p

(
xn+1
p ×mp

(∑
i

wnipṽ
n+1
i

)
+

(∑
i

wnip(xni − xnp )×mpṽn+1
i

))

=
∑
i,p

(
xn+1
p ×mpwnipṽ

n+1
i + wnip(xni − xnp )×mpṽn+1

i

)
=
∑
i,p

(xn+1
p − xnp )×mpwnipṽ

n+1
i +

∑
i,p

wnipx
n
i ×mpṽ

n+1
i

= ∆t
∑
p

vn+1
p ×mp

∑
i

wnipṽ
n+1
i +

∑
i,p

wnip(x̃n+1
i −∆tṽn+1

i )×mpṽn+1
i

= ∆t
∑
i,p

vn+1
p ×mpvn+1

p +
∑
i,p

wnipx̃
n+1
i ×mpṽn+1

i

=
∑
i

∑
p

wnipmp

x̃n+1
i × ṽn+1

i

=
∑
i

x̃n+1
i ×mni ṽ

n+1
i

= LG,n+1
tot

5 Piecewise Affine

Here is a data flow diagram for Affine Particle-in-Cell method.

mn
p

xn
p

vn
p

Bn
p

mn
i

xn
i

vn
i

mn
i

x̃n+1
i
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APIC stores mass mp, position xp, velocity vp and matrixBp on particles. The transfer from particles to the grid are given by

mni =
∑
p

wnipmp

Dn
p =

∑
i

wnip(xni − xnp )(xni − xnp )T =
∑
i

wnipx
n
i (xni )T − xnp (xnp )T

mni v
n
i =

∑
p

wnipmp(vnp +Bnp (Dn
p )−1(xni − xnp ))

(3)

with the transfer to particles given by

vn+1
p =

∑
i

wnipṽ
n+1
i

Bn+1
p =

∑
i

wnipṽ
n+1
i (xni − xnp )T .

(4)

5.1 Preservation of affine velocity fields

Proposition 5.1. Let ∆t = 0 and consider the the process of transferring velocity (ṽn+1
i ) information to particles (vn+1

p , Bn+1
p ) and then back to the

grid (vn+1
i ) with the Affine Particle-in-Cell method. If the velocities before the transfer represent an affine velocity field, ṽn+1

i = v + Cxni , where v is a
vector and C is a matrix, then after the process, this velocity field is exactly reproduced: vn+1

i = ṽn+1
i .

Proof. Since ∆t = 0, we have wnip = wn+1
ip and xnp = xn+1

p , so thatDn
p = Dn+1

p and mni = mn+1
i . The grid to particle transfer is (for vp)

vn+1
p =

∑
i

wnipṽ
n+1
i

=
∑
i

wnip(v + Cxni )

=
∑
i

wnipv +
∑
i

wnipCx
n
i

= v
∑
i

wnip + C
∑
i

wnipx
n
i

= v + Cxnp

and forBp:

Bn+1
p =

∑
i

wnipṽ
n+1
i (xni − xnp )T

=
∑
i

wnip(v + Cxni )(xni − xnp )T

=
∑
i

wnipv(xni − xnp )T +
∑
i

wnipCx
n
i (xni − xnp )T

= v

(∑
i

wnip(xni − xnp )

)T
+ C

∑
i

wnip(xni − xnp )(xni − xnp )T +
∑
i

wnipCx
n
p (xni − xnp )T

= CDn
p + Cxnp

(∑
i

wnip(xni − xnp )

)T
= CDn

p

A particle to grid transfer is then performed:

mn+1
i vn+1

i =
∑
p

wn+1
ip mp(vn+1

p +Bn+1
p (Dn+1

p )−1(xn+1
i − xn+1

p ))

mni v
n+1
i =

∑
p

wnipmp(vn+1
p +Bn+1

p (Dn
p )−1(xni − xnp ))

=
∑
p

wnipmp(v + Cxnp + CDn
p (Dn

p )−1(xni − xnp ))

=
∑
p

wnipmp(v + Cxnp + C(xni − xnp ))

=

∑
p

wnipmp

(v + Cxni )

= mni (v + Cxni )

We can see vn+1
i = v + Cxni = ṽn+1

i . Therefore, the affine velocity field represented by v and C is preserved in the full transfer cycle.



5.2 Conservation of linear momentum
5.2.1 Particle to grid

Proposition 5.2. Linear momentum is conserved during the APIC transfer from particles to the grid. pG,ntot = pP,ntot under transfer 3.

Proof. The linear momentum on the grid after transferring from particles is

pG,ntot =
∑
i

mni v
n
i

=
∑
p

∑
i

mpw
n
ip(vnp +Bnp (Dn

p )−1(xni − xnp ))

=
∑
p,i

mpw
n
ipv

n
p +

∑
p,i

mpw
n
ipB

n
p (Dn

p )−1(xni − xnp )

=
∑
p

mp

(∑
i

wnip

)
vnp +

∑
p

mpB
n
p (Dn

p )−1

(∑
i

wnip(xni − xnp )

)

=
∑
p

mpv
n
p

= pP,ntot

5.2.2 Grid to particle

Proposition 5.3. Linear momentum is conserved during the APIC transfer from the grid to particles. pP,n+1
tot = pG,n+1

tot under transfer 4.

Proof. The linear momentum on the particles after transferring from the grid is

pP,n+1
tot =

∑
p

mpv
n+1
p

=
∑
p

mp
∑
i

wnipṽ
n+1
i

=
∑
i

∑
p

mpw
n
ip

ṽn+1
i

=
∑
i

mni ṽ
n+1
i

= pG,n+1
tot

5.3 Conservation of angular momentum
With mp,xp,vp andBp, we can define the total angular momentum on particles in the piecewise affine case.

Definition 5.1. The total angular momentum on particles (before the particle-to-grid transfer at time n) represented by APIC is

LP,ntot =
∑
p

xnp ×mpvnp +
∑
p

mp(Bnp )T : ε

Definition 5.2. The total angular momentum on particles (after the grid-to-particle transfer in the end of time n) represented by APIC is

LP,n+1
tot =

∑
p

xn+1
p ×mpvn+1

p +
∑
p

mp(Bn+1
p )T : ε

Note we use the permutation tensor ε in this section. To make these portions easier to read, we take the convention that for any matrixA, the
contractionA : εmeans the same thing as Aαβεαβγ . The manipulation u× v = (vuT )T : ε is used to transition from a cross product into the
permutation tensor.



5.3.1 Particle to grid

Proposition 5.4. Angular momentum is conserved during the APIC transfer from particles to the grid. LG,ntot = LP,ntot under transfer 3.

Proof. The angular momentum on the grid after transferring from particles is

LG,ntot =
∑
i

xni ×mni vni

=
∑
p

∑
i

xni ×mpwnip(vnp +Bnp (Dn
p )−1(xni − xnp ))

=
∑
p

∑
i

xni ×mpwnipvnp +
∑
p

∑
i

xni ×mpwnipBnp (Dn
p )−1xni −

∑
p

(∑
i

wnipx
n
i

)
×mpBnp (Dn

p )−1xnp

=
∑
p

xnp ×mpvnp +
∑
p

mp
∑
i

wnipx
n
i × (Bnp (Dn

p )−1xni )−
∑
p

mpx
n
p × (Bnp (Dn

p )−1xnp )

=
∑
p

xnp ×mpvnp +
∑
p

mp

(∑
i

wnipB
n
p (Dn

p )−1xni (xni )T

)T
: ε−

∑
p

mp
(
Bnp (Dn

p )−1xnp (xnp )T
)T

: ε

=
∑
p

xnp ×mpvnp +
∑
p

mp

(∑
i

wnipB
n
p (Dn

p )−1xni (xni )T −Bnp (Dn
p )−1xnp (xnp )T

)T
: ε

=
∑
p

xnp ×mpvnp +
∑
p

mp

(
Bnp (Dn

p )−1

(∑
i

wnipx
n
i (xni )T − xnp (xnp )T

))T
: ε

=
∑
p

xnp ×mpvnp +
∑
p

mp
(
Bnp (Dn

p )−1Dn
p

)T
: ε

=
∑
p

xnp ×mpvnp +
∑
p

mp(Bnp )T : ε

= LP,ntot

5.3.2 Grid to particle

Proposition 5.5. Angular momentum is conserved during the APIC transfer from the grid to particles. LP,n+1
tot = LG,n+1

tot under transfer 4.

Proof. As before, the manipulation (vuT )T : ε = u×v is used to convert the permutation tensor into a cross product. The angular momentum
on the particles after transferring from the grid is

LP,n+1
tot =

∑
p

xn+1
p ×mpvn+1

p +
∑
p

mp(Bn+1
p )T : ε

=
∑
p

xn+1
p ×mpvn+1

p +
∑
p

mp

(∑
i

wnipṽ
n+1
i (xni − xnp )T

)T
: ε

=
∑
p

xn+1
p ×mpvn+1

p +
∑
p

mp
∑
i

wnip(xni − xnp )× ṽn+1
i

=
∑
p

xn+1
p ×mpvn+1

p −
∑
p

mp
∑
i

wnipx
n
p × ṽ

n+1
i +

∑
p

mp
∑
i

wnipx
n
i × ṽ

n+1
i

=
∑
p

xn+1
p ×mpvn+1

p −
∑
p

mpx
n
p ×

∑
i

wnipṽ
n+1
i +

∑
i

∑
p

mpw
n
ip

xni × ṽn+1
i

=
∑
p

xn+1
p ×mpvn+1

p −
∑
p

mpx
n
p × vn+1

p +
∑
i

mni x
n
i × ṽ

n+1
i

=
∑
p

(xn+1
p − xnp )×mpvn+1

p +
∑
i

xni ×mni ṽ
n+1
i

=
∑
p

∆tvn+1
p ×mpvn+1

p +LG,n+1
tot

= LG,n+1
tot


	Introduction
	Notation
	Preliminaries
	Piecewise rigid
	Preservation of rigid motion velocity field
	Conservation of linear momentum
	Particle to grid
	Grid to particle

	Conservation of angular momentum
	Particle to grid
	Grid to particle


	Piecewise Affine
	Preservation of affine velocity fields
	Conservation of linear momentum
	Particle to grid
	Grid to particle

	Conservation of angular momentum
	Particle to grid
	Grid to particle



