Material Point Method for Snow Simulation

Alexey Stomakhin, Craig Schroeder, Lawrence Chai, Joseph Teran \& Andrew Selle

January 18, 2013

1 Differentiating energy

Given an elasto-plastic energy density function $\Psi\left(\boldsymbol{F}_{E}, \boldsymbol{F}_{P}\right)$ which evaluates to $\Psi_{p}=\Psi\left(\hat{\boldsymbol{F}}_{E p}(\hat{\boldsymbol{x}}), \boldsymbol{F}_{P p}^{n}\right)$ at each particle p using its elastic and plastic parts of the deformation gradient $\hat{\boldsymbol{F}}_{E p}(\hat{\boldsymbol{x}})$ and $\boldsymbol{F}_{P p}^{n}$, we define the full potential energy of the system to be

$$
\Phi(\hat{\boldsymbol{x}})=\sum_{p} V_{p}^{0} \Psi\left(\hat{\boldsymbol{F}}_{E p}(\hat{\boldsymbol{x}}), \boldsymbol{F}_{P p}^{n}\right)=\sum_{p} V_{p}^{0} \Psi_{p}
$$

where $\hat{\boldsymbol{F}}_{E p}(\hat{\boldsymbol{x}})$ is updated as

$$
\begin{equation*}
\hat{\boldsymbol{F}}_{E p}(\hat{\boldsymbol{x}})=\left(\boldsymbol{I}+\sum_{\boldsymbol{i}}\left(\hat{\boldsymbol{x}}_{\boldsymbol{i}}-\boldsymbol{x}_{\boldsymbol{i}}^{n}\right)\left(\nabla w_{\boldsymbol{i} p}^{n}\right)^{T}\right) \boldsymbol{F}_{E p}^{n} \tag{1}
\end{equation*}
$$

For the purposes of working out derivatives, we use index notation for differentiation, using Greek indices α, β, \ldots for spatial indices, $\Phi_{,(\boldsymbol{j} \sigma)}$ to indicate partial derivatives on $x_{\boldsymbol{j} \sigma}, \Phi_{,(\alpha \beta)}$ to indicate partial derivatives on $F_{E \alpha \beta}$, and summation implied over all repeated indices. The derivatives of $\hat{\boldsymbol{F}}_{E p}$ with respect to $\boldsymbol{x}_{\boldsymbol{i}}$ are

$$
\begin{aligned}
\hat{F}_{E p \alpha \beta} & =\left(\delta_{\alpha \gamma}+\left(x_{\boldsymbol{i} \alpha}-x_{\boldsymbol{i} \alpha}^{n}\right) w_{i p, \gamma}^{n}\right) F_{E p \gamma \beta}^{n} \\
\hat{F}_{E p \alpha \beta,(\boldsymbol{j} \sigma)} & =\delta_{\alpha \sigma} w_{\boldsymbol{j} p, \gamma}^{n} F_{E p \gamma \beta}^{n} \\
\hat{F}_{E p \alpha \beta,(\boldsymbol{j} \sigma)(\boldsymbol{k} \tau)} & =0
\end{aligned}
$$

With these, the derivatives of Φ with respect to $\boldsymbol{x}_{\boldsymbol{i}}$ can be worked out using the chain rule

$$
\begin{aligned}
\Phi & =V_{p}^{0} \Psi_{p} \\
\Phi_{,(\boldsymbol{j} \sigma)} & =\sum_{p} V_{p}^{0} \Psi_{p,(\alpha \beta)} \hat{F}_{E p \alpha \beta,(\boldsymbol{j} \sigma)} \\
& =\sum_{p} V_{p}^{0} \Psi_{p,(\sigma \beta)} w_{\boldsymbol{j} p, \gamma}^{n} F_{E p \gamma \beta}^{n} \\
\Phi_{,(\boldsymbol{j} \sigma)(\boldsymbol{k} \tau)} & =\sum_{p}\left(V_{p}^{0} \Psi_{p,(\sigma \beta)} w_{\boldsymbol{j} p, \gamma}^{n} F_{E p \gamma \beta}^{n}\right)_{,(\boldsymbol{k} \tau)} \\
& =\sum_{p} V_{p}^{0} \Psi_{p,(\sigma \beta)(\tau \kappa)} w_{\boldsymbol{j} p, \gamma}^{n} F_{E p \gamma \beta}^{n} w_{\boldsymbol{k} p, \omega}^{n} F_{E p \omega \kappa}^{n}
\end{aligned}
$$

These can be interpreted without the use of indices as

$$
\begin{equation*}
-\boldsymbol{f}_{\boldsymbol{i}}(\hat{\boldsymbol{x}})=\frac{\partial \Phi}{\partial \hat{\boldsymbol{x}}_{\boldsymbol{i}}}(\hat{\boldsymbol{x}})=\sum_{p} V_{p}^{0} \frac{\partial \Psi}{\partial \boldsymbol{F}_{E}}\left(\hat{\boldsymbol{F}}_{E p}(\hat{\boldsymbol{x}}), \boldsymbol{F}_{P p}^{n}\right)\left(\boldsymbol{F}_{E p}^{n}\right)^{T} \nabla w_{i p}^{n} \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
-\delta \boldsymbol{f}_{\boldsymbol{i}}=\sum_{\boldsymbol{j}} \frac{\partial^{2} \Phi}{\partial \hat{\boldsymbol{x}}_{\boldsymbol{i}} \partial \hat{\boldsymbol{x}}_{\boldsymbol{j}}}(\hat{\boldsymbol{x}}) \delta \boldsymbol{u}_{\boldsymbol{j}}=\sum_{p} V_{p}^{0} \boldsymbol{A}_{p}\left(\boldsymbol{F}_{E p}^{n}\right)^{T} \nabla w_{\boldsymbol{i} p}^{n} \tag{3}
\end{equation*}
$$

where

$$
\begin{equation*}
\boldsymbol{A}_{p}=\frac{\partial^{2} \Psi}{\partial \boldsymbol{F}_{E} \partial \boldsymbol{F}_{E}}\left(\boldsymbol{F}_{E}(\hat{\boldsymbol{x}}), \boldsymbol{F}_{P_{p}}^{n}\right):\left(\sum_{\boldsymbol{j}} \delta \boldsymbol{u}_{\boldsymbol{j}}\left(\nabla w_{\boldsymbol{j} p}^{n}\right)^{T} \boldsymbol{F}_{E p}^{n}\right) \tag{4}
\end{equation*}
$$

and the notation $\boldsymbol{A}=\mathcal{C}: \boldsymbol{D}$ is taken to mean $A_{i j}=\mathcal{C}_{i j k l} D_{k l}$ with summation implied on indices $k l$.

2 Differentiating constitutive model

For integration, we need to compute $\frac{\partial \Psi}{\partial \boldsymbol{F}_{E}}$ and $\frac{\partial^{2} \Psi}{\partial \boldsymbol{F}_{E} \partial \boldsymbol{F}_{E}}: \delta \mathcal{D}$. In this section, we will omit the subscripts E.

$$
\begin{aligned}
\Psi & =\mu\|\boldsymbol{F}-\boldsymbol{R}\|_{F}^{2}+\frac{\lambda}{2}(J-1)^{2} \\
\delta \Psi & =\delta\left(\mu\|\boldsymbol{F}-\boldsymbol{R}\|_{F}^{2}+\frac{\lambda}{2}(J-1)^{2}\right) \\
& =\mu \delta\left(\|\boldsymbol{F}-\boldsymbol{R}\|_{F}^{2}\right)+\lambda(J-1) \delta J \\
& =\mu \delta\left(\operatorname{tr}\left(\boldsymbol{F}^{T} \boldsymbol{F}\right)\right)-2 \mu \delta\left(\operatorname{tr}\left(\boldsymbol{R}^{T} \boldsymbol{F}\right)\right)+\mu \delta\left(\operatorname{tr}\left(\boldsymbol{R}^{T} \boldsymbol{R}\right)\right)+\lambda(J-1) \delta J \\
& =2 \mu \boldsymbol{F}: \delta \boldsymbol{F}-2 \mu \delta(\operatorname{tr}(\boldsymbol{S}))+\lambda(J-1) J \boldsymbol{F}^{-T}: \delta \boldsymbol{F} \\
& =2 \mu \boldsymbol{F}: \delta \boldsymbol{F}-2 \mu \operatorname{tr}(\delta \boldsymbol{S})+\lambda(J-1) J \boldsymbol{F}^{-T}: \delta \boldsymbol{F} \\
\boldsymbol{F} & =\boldsymbol{R S} \\
\delta \boldsymbol{F} & =\delta \boldsymbol{R} \boldsymbol{S}+\boldsymbol{R} \delta \boldsymbol{S} \\
\operatorname{tr}(\delta \boldsymbol{S}) & =\operatorname{tr}\left(\boldsymbol{R}^{T} \delta \boldsymbol{F}\right)-\operatorname{tr}\left(\boldsymbol{R}^{T} \delta \boldsymbol{R} \boldsymbol{S}\right) \\
& =\operatorname{tr}\left(\boldsymbol{R}^{T} \delta \boldsymbol{F}\right)-\left(\boldsymbol{R}^{T} \delta \boldsymbol{R}\right): \boldsymbol{S} \\
& =\operatorname{tr}\left(\boldsymbol{R}^{T} \delta \boldsymbol{F}\right) \\
& =\boldsymbol{R}: \delta \boldsymbol{F}
\end{aligned}
$$

Note that since $\boldsymbol{R}^{T} \boldsymbol{R}=\boldsymbol{I}, \boldsymbol{R}^{T} \delta \boldsymbol{R}$ must be skew-symmetric. Since \boldsymbol{S} is symmetric, $\left(\boldsymbol{R}^{T} \delta \boldsymbol{R}\right): \boldsymbol{S}=0$. Finally,

$$
\begin{aligned}
\delta \Psi & =2 \mu \boldsymbol{F}: \delta \boldsymbol{F}-2 \mu \operatorname{tr}(\delta \boldsymbol{S})+\lambda(J-1) J \boldsymbol{F}^{-T}: \delta \boldsymbol{F} \\
& =2 \mu \boldsymbol{F}: \delta \boldsymbol{F}-2 \mu \boldsymbol{R}: \delta \boldsymbol{F}+\lambda(J-1) J \boldsymbol{F}^{-T}: \delta \boldsymbol{F} \\
\frac{\partial \Psi}{\partial \boldsymbol{F}}: \delta \boldsymbol{F} & =\left(2 \mu \boldsymbol{F}-2 \mu \boldsymbol{R}+\lambda(J-1) J \boldsymbol{F}^{-T}\right): \delta \boldsymbol{F} \\
\frac{\partial \Psi}{\partial \boldsymbol{F}_{E}} & =2 \mu\left(\boldsymbol{F}_{E}-\boldsymbol{R}_{E}\right)+\lambda\left(J_{E}-1\right) J_{E} \boldsymbol{F}_{E}^{-T}
\end{aligned}
$$

Note that Cauchy stress $\boldsymbol{\sigma}$ and first Piola-Kirchhoff stress \boldsymbol{P} are related to $\frac{\partial \Psi}{\partial \boldsymbol{F}_{E}}$ by

$$
\boldsymbol{\sigma}=\frac{1}{J} \frac{\partial \Psi}{\partial \boldsymbol{F}_{E}} \boldsymbol{F}_{E}^{T}=\frac{2 \mu}{J}\left(\boldsymbol{F}_{E}-\boldsymbol{R}_{E}\right) \boldsymbol{F}_{E}^{T}+\frac{\lambda}{J}\left(J_{E}-1\right) J_{E} \boldsymbol{I} \quad \boldsymbol{P}=\frac{\partial \Psi}{\partial \boldsymbol{F}_{E}} \boldsymbol{F}_{P}^{-T}
$$

The second derivatives require a bit more care but can be computed relatively easily.

$$
\begin{aligned}
\frac{\partial^{2} \Psi}{\partial \boldsymbol{F} \partial \boldsymbol{F}}: \delta \boldsymbol{F} & =\delta\left(\frac{\partial \Psi}{\partial \boldsymbol{F}}\right) \\
& =\delta\left(2 \mu(\boldsymbol{F}-\boldsymbol{R})+\lambda(J-1) J \boldsymbol{F}^{-T}\right) \\
& =2 \mu \delta \boldsymbol{F}-2 \mu \delta \boldsymbol{R}+\lambda J \boldsymbol{F}^{-T} \delta J+\lambda(J-1) \delta\left(J \boldsymbol{F}^{-T}\right) \\
& =2 \mu \delta \boldsymbol{F}-2 \mu \delta \boldsymbol{R}+\lambda J \boldsymbol{F}^{-T}\left(J \boldsymbol{F}^{-T}: \delta \boldsymbol{F}\right)+\lambda(J-1) \delta\left(J \boldsymbol{F}^{-T}\right)
\end{aligned}
$$

Since $J \boldsymbol{F}^{-T}$ is a matrix whose entries are polynomials in the entries of $\boldsymbol{F}, \delta\left(J \boldsymbol{F}^{-T}\right)=\frac{\partial}{\partial \boldsymbol{F}}(J \boldsymbol{F}$ be computed directly. That leaves the task of computing $\delta \boldsymbol{R}$.

$$
\begin{aligned}
\delta \boldsymbol{F} & =\delta \boldsymbol{R} \boldsymbol{S}+\boldsymbol{R} \delta \boldsymbol{S} \\
\boldsymbol{R}^{T} \delta \boldsymbol{F} & =\left(\boldsymbol{R}^{T} \delta \boldsymbol{R}\right) \boldsymbol{S}+\delta \boldsymbol{S} \\
\boldsymbol{R}^{T} \delta \boldsymbol{F}-\delta \boldsymbol{F}^{T} \boldsymbol{R} & =\left(\boldsymbol{R}^{T} \delta \boldsymbol{R}\right) \boldsymbol{S}+\boldsymbol{S}\left(\boldsymbol{R}^{T} \delta \boldsymbol{R}\right)
\end{aligned}
$$

Here we have taken advantage of the symmetry of $\delta \boldsymbol{S}$ and the skew symmetry of $\boldsymbol{R}^{T} \delta \boldsymbol{R}$. There are three independent components of $\boldsymbol{R}^{T} \delta \boldsymbol{R}$, which we can solve for directly. The equation is linear in these components, so $\boldsymbol{R}^{T} \delta \boldsymbol{R}$ can be computed by solving a 3×3 system. Finally, $\delta \boldsymbol{R}=\boldsymbol{R}\left(\boldsymbol{R}^{T} \delta \boldsymbol{R}\right)$.

