Material Point Method for Snow Simulation

Alexey Stomakhin, Craig Schroeder, Lawrence Chai, Joseph Teran & Andrew Selle

January 18, 2013

1 Differentiating energy

Given an elasto-plastic energy density function $\Psi(\mathbf{F}_E, \mathbf{F}_P)$ which evaluates to $\Psi_p = \Psi(\hat{\mathbf{F}}_{Ep}(\hat{\mathbf{x}}), \mathbf{F}_{Pp}^n)$ at each particle p using its elastic and plastic parts of the deformation gradient $\hat{\mathbf{F}}_{Ep}(\hat{\mathbf{x}})$ and \mathbf{F}_{Pp}^n , we define the full potential energy of the system to be

$$\Phi(\hat{\boldsymbol{x}}) = \sum_{p} V_p^0 \Psi(\hat{\boldsymbol{F}}_{Ep}(\hat{\boldsymbol{x}}), \boldsymbol{F}_{Pp}^n) = \sum_{p} V_p^0 \Psi_p,$$

where $\hat{F}_{Ep}(\hat{x})$ is updated as

$$\hat{F}_{Ep}(\hat{\boldsymbol{x}}) = \left(\boldsymbol{I} + \sum_{\boldsymbol{i}} (\hat{\boldsymbol{x}}_{\boldsymbol{i}} - \boldsymbol{x}_{\boldsymbol{i}}^n) (\nabla w_{\boldsymbol{i}p}^n)^T \right) \boldsymbol{F}_{Ep}^n.$$
(1)

For the purposes of working out derivatives, we use index notation for differentiation, using Greek indices α, β, \ldots for spatial indices, $\Phi_{,(j\sigma)}$ to indicate partial derivatives on $x_{j\sigma}$, $\Phi_{,(\alpha\beta)}$ to indicate partial derivatives on $F_{E\alpha\beta}$, and summation implied over all repeated indices. The derivatives of \hat{F}_{Ep} with respect to x_i are

$$\hat{F}_{Ep\alpha\beta} = \left(\delta_{\alpha\gamma} + (x_{i\alpha} - x_{i\alpha}^n) w_{ip,\gamma}^n \right) F_{Ep\gamma\beta}^n$$

$$\hat{F}_{Ep\alpha\beta,(j\sigma)} = \delta_{\alpha\sigma} w_{jp,\gamma}^n F_{Ep\gamma\beta}^n$$

$$\hat{F}_{Ep\alpha\beta,(j\sigma)(k\tau)} = 0$$

With these, the derivatives of Φ with respect to x_i can be worked out using the chain rule

$$\begin{split} \Phi &= V_p^0 \Psi_p \\ \Phi_{,(\boldsymbol{j}\sigma)} &= \sum_p V_p^0 \Psi_{p,(\alpha\beta)} \hat{F}_{Ep\alpha\beta,(\boldsymbol{j}\sigma)} \\ &= \sum_p V_p^0 \Psi_{p,(\alpha\beta)} w_{\boldsymbol{j}p,\gamma}^n F_{Ep\gamma\beta}^n \\ \Phi_{,(\boldsymbol{j}\sigma)(\boldsymbol{k}\tau)} &= \sum_p (V_p^0 \Psi_{p,(\alpha\beta)} w_{\boldsymbol{j}p,\gamma}^n F_{Ep\gamma\beta}^n)_{,(\boldsymbol{k}\tau)} \\ &= \sum_p V_p^0 \Psi_{p,(\alpha\beta)(\tau\kappa)} w_{\boldsymbol{j}p,\gamma}^n F_{Ep\gamma\beta}^n w_{\boldsymbol{k}p,\omega}^n F_{Ep\omega\kappa}^n \end{split}$$

These can be interpreted without the use of indices as

$$-\boldsymbol{f}_{\boldsymbol{i}}(\hat{\boldsymbol{x}}) = \frac{\partial \Phi}{\partial \hat{\boldsymbol{x}}_{\boldsymbol{i}}}(\hat{\boldsymbol{x}}) = \sum_{p} V_{p}^{0} \frac{\partial \Psi}{\partial \boldsymbol{F}_{E}}(\hat{\boldsymbol{F}}_{Ep}(\hat{\boldsymbol{x}}), \boldsymbol{F}_{Pp}^{n})(\boldsymbol{F}_{Ep}^{n})^{T} \nabla w_{\boldsymbol{i}p}^{n}$$
(2)

and

$$-\delta \boldsymbol{f_i} = \sum_{\boldsymbol{j}} \frac{\partial^2 \Phi}{\partial \hat{\boldsymbol{x}_i} \partial \hat{\boldsymbol{x}_j}} (\hat{\boldsymbol{x}}) \delta \boldsymbol{u_j} = \sum_p V_p^0 \boldsymbol{A}_p (\boldsymbol{F}_{Ep}^n)^T \nabla \boldsymbol{w_{ip}^n}$$
(3)

where

$$\boldsymbol{A}_{p} = \frac{\partial^{2} \Psi}{\partial \boldsymbol{F}_{E} \partial \boldsymbol{F}_{E}} (\boldsymbol{F}_{E}(\hat{\boldsymbol{x}}), \boldsymbol{F}_{P_{p}}^{n}) : \left(\sum_{\boldsymbol{j}} \delta \boldsymbol{u}_{\boldsymbol{j}} (\nabla w_{\boldsymbol{j}p}^{n})^{T} \boldsymbol{F}_{Ep}^{n} \right).$$
(4)

and the notation $\mathbf{A} = \mathbf{C} : \mathbf{D}$ is taken to mean $A_{ij} = C_{ijkl}D_{kl}$ with summation implied on indices kl.

2 Differentiating constitutive model

For integration, we need to compute $\frac{\partial \Psi}{\partial F_E}$ and $\frac{\partial^2 \Psi}{\partial F_E \partial F_E} : \delta \mathcal{D}$. In this section, we will omit the subscripts E.

$$\begin{split} \Psi &= \mu \| \boldsymbol{F} - \boldsymbol{R} \|_{F}^{2} + \frac{\lambda}{2} (J-1)^{2} \\ \delta \Psi &= \delta \left(\mu \| \boldsymbol{F} - \boldsymbol{R} \|_{F}^{2} + \frac{\lambda}{2} (J-1)^{2} \right) \\ &= \mu \delta \left(\| \boldsymbol{F} - \boldsymbol{R} \|_{F}^{2} \right) + \lambda (J-1) \delta J \\ &= \mu \delta \left(\operatorname{tr}(\boldsymbol{F}^{T} \boldsymbol{F}) \right) - 2\mu \delta \left(\operatorname{tr}(\boldsymbol{R}^{T} \boldsymbol{F}) \right) + \mu \delta \left(\operatorname{tr}(\boldsymbol{R}^{T} \boldsymbol{R}) \right) + \lambda (J-1) \delta J \\ &= 2\mu \boldsymbol{F} : \delta \boldsymbol{F} - 2\mu \delta (\operatorname{tr}(\boldsymbol{S})) + \lambda (J-1) J \boldsymbol{F}^{-T} : \delta \boldsymbol{F} \\ &= 2\mu \boldsymbol{F} : \delta \boldsymbol{F} - 2\mu \operatorname{tr}(\delta \boldsymbol{S}) + \lambda (J-1) J \boldsymbol{F}^{-T} : \delta \boldsymbol{F} \\ \boldsymbol{F} &= \boldsymbol{R} \boldsymbol{S} \\ \delta \boldsymbol{F} &= \delta \boldsymbol{R} \boldsymbol{S} + \boldsymbol{R} \delta \boldsymbol{S} \\ \operatorname{tr}(\delta \boldsymbol{S}) &= \operatorname{tr}(\boldsymbol{R}^{T} \delta \boldsymbol{F}) - \operatorname{tr}(\boldsymbol{R}^{T} \delta \boldsymbol{R} \boldsymbol{S}) \\ &= \operatorname{tr}(\boldsymbol{R}^{T} \delta \boldsymbol{F}) - (\boldsymbol{R}^{T} \delta \boldsymbol{R}) : \boldsymbol{S} \\ &= \operatorname{tr}(\boldsymbol{R}^{T} \delta \boldsymbol{F}) \\ &= \boldsymbol{R} : \delta \boldsymbol{F} \end{split}$$

Note that since $\mathbf{R}^T \mathbf{R} = \mathbf{I}$, $\mathbf{R}^T \delta \mathbf{R}$ must be skew-symmetric. Since \mathbf{S} is symmetric, $(\mathbf{R}^T \delta \mathbf{R}) : \mathbf{S} = 0$. Finally,

$$\delta \Psi = 2\mu \mathbf{F} : \delta \mathbf{F} - 2\mu \operatorname{tr}(\delta \mathbf{S}) + \lambda (J-1)J\mathbf{F}^{-T} : \delta \mathbf{F}$$

$$= 2\mu \mathbf{F} : \delta \mathbf{F} - 2\mu \mathbf{R} : \delta \mathbf{F} + \lambda (J-1)J\mathbf{F}^{-T} : \delta \mathbf{F}$$

$$\frac{\partial \Psi}{\partial \mathbf{F}} : \delta \mathbf{F} = (2\mu \mathbf{F} - 2\mu \mathbf{R} + \lambda (J-1)J\mathbf{F}^{-T}) : \delta \mathbf{F}$$

$$\frac{\partial \Psi}{\partial \mathbf{F}_E} = 2\mu (\mathbf{F}_E - \mathbf{R}_E) + \lambda (J_E - 1)J_E \mathbf{F}_E^{-T}$$

Note that Cauchy stress σ and first Piola-Kirchhoff stress P are related to $\frac{\partial \Psi}{\partial F_E}$ by

$$\boldsymbol{\sigma} = \frac{1}{J} \frac{\partial \Psi}{\partial \boldsymbol{F}_E} \boldsymbol{F}_E^T = \frac{2\mu}{J} (\boldsymbol{F}_E - \boldsymbol{R}_E) \boldsymbol{F}_E^T + \frac{\lambda}{J} (J_E - 1) J_E \boldsymbol{I} \qquad \boldsymbol{P} = \frac{\partial \Psi}{\partial \boldsymbol{F}_E} \boldsymbol{F}_P^{-T}$$

The second derivatives require a bit more care but can be computed relatively easily.

$$\begin{aligned} \frac{\partial^2 \Psi}{\partial \boldsymbol{F} \partial \boldsymbol{F}} &: \delta \boldsymbol{F} &= \delta \left(\frac{\partial \Psi}{\partial \boldsymbol{F}} \right) \\ &= \delta (2\mu (\boldsymbol{F} - \boldsymbol{R}) + \lambda (J - 1) J \boldsymbol{F}^{-T}) \\ &= 2\mu \delta \boldsymbol{F} - 2\mu \delta \boldsymbol{R} + \lambda J \boldsymbol{F}^{-T} \delta J + \lambda (J - 1) \delta (J \boldsymbol{F}^{-T}) \\ &= 2\mu \delta \boldsymbol{F} - 2\mu \delta \boldsymbol{R} + \lambda J \boldsymbol{F}^{-T} (J \boldsymbol{F}^{-T} : \delta \boldsymbol{F}) + \lambda (J - 1) \delta (J \boldsymbol{F}^{-T}) \end{aligned}$$

Since $J\mathbf{F}^{-T}$ is a matrix whose entries are polynomials in the entries of \mathbf{F} , $\delta(J\mathbf{F}^{-T}) = \frac{\partial}{\partial \mathbf{F}}(J\mathbf{F}^{-T}) : \delta \mathbf{F}$ can readily be computed directly. That leaves the task of computing $\delta \mathbf{R}$.

$$\begin{split} \delta \boldsymbol{F} &= \delta \boldsymbol{R} \boldsymbol{S} + \boldsymbol{R} \delta \boldsymbol{S} \\ \boldsymbol{R}^T \delta \boldsymbol{F} &= (\boldsymbol{R}^T \delta \boldsymbol{R}) \boldsymbol{S} + \delta \boldsymbol{S} \\ \boldsymbol{R}^T \delta \boldsymbol{F} - \delta \boldsymbol{F}^T \boldsymbol{R} &= (\boldsymbol{R}^T \delta \boldsymbol{R}) \boldsymbol{S} + \boldsymbol{S} (\boldsymbol{R}^T \delta \boldsymbol{R}) \end{split}$$

Here we have taken advantage of the symmetry of δS and the skew symmetry of $\mathbf{R}^T \delta \mathbf{R}$. There are three independent components of $\mathbf{R}^T \delta \mathbf{R}$, which we can solve for directly. The equation is linear in these components, so $\mathbf{R}^T \delta \mathbf{R}$ can be computed by solving a 3×3 system. Finally, $\delta \mathbf{R} = \mathbf{R}(\mathbf{R}^T \delta \mathbf{R})$.