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1 Isotropic stress derivatives in terms of singular values

When specifying a constitutive model energy density Ψ in terms of singular values σi, it is convenient to
compute the first Piola-Kirchoff stress tensor P = ∂Ψ

∂F and its derivatives M = ∂P
∂F directly in terms of ∂Ψ

∂σi
and

∂2Ψ
∂σi∂σj

. To do this we parameterized F in terms of the singular values using the singular value decomposition

F = UΣVT . Let K = {σ1, σ2, σ3, u1, u2, u3, v1, v2, v3} be the degrees of freedom parameterizing U, Σ, and
V. We parameterize the rotations using Rodrigues’ rotation formula, though any parameterization that
is well-behaved around the identity would suffice. Let Ciα = ∂Fi

∂Kα
, where Latin characters (i, j) are used

to represent the degrees of freedom of F (flattened into a 9-vector) and Greek letters (α, β, γ) are used to
represent the degrees of freedom parameterizing the singular value decomposition. Then, Ciα is the Jacobian
matrix (in terms of K) for the change of variables. Let Dαj be the inverse of the Jacobian (also in terms of

K), so that CiαDαj = δij . Let Ψ be the energy in terms of the degrees of freedom of F and Ψ̂ be the energy
in terms of the degrees of freedom K. Using commas to indicate partial differentiation,

Ψ,iCi,α = Ψ̂,α

(Ψ,iCi,α),β = Ψ̂,αβ

Ψ,ijCi,αCj,β + Ψ,iCi,αβ = Ψ̂,αβ

Ci,αDαj = δij

Ψ,i = Ψ̂,αDαi

Ψ,ijCi,αDαkCj,β = Ψ̂,αβDαk −Ψ,iCi,αβDαk

Ψ,kjCj,β = Ψ̂,αβDαk −Ψ,iCi,αβDαk

Ψ,ij = Ψ̂,αβDαiDβj − Ψ̂,γDγkCk,αβDαiDβj

The Piola-Kirchoff stress tensor Ψ,i in diagonal space can be computed as Ψ,i(F(K))
∣∣
U=V=I

. It is a diagonal

matrix whose diagonals are ∂Ψ̂
∂σi

and corresponds to P̂(σ) from Section 2 of [1]. The stress derivatives in

diagonal space are similarly given by Ψ,ij(F(K))
∣∣
U=V=I

. This corresponds to the ∂P
∂F (Σ) from Section 2

of [1]. When this computation is performed, one finds that the 9 × 9 matrix can be permuted into a block
diagonal matrix with diagonal blocks A3×3, B2×2

12 , B2×2
13 , B2×2

23 .

A =

M1111 M1122 M1133

M2211 M2222 M2233

M3311 M3322 M3333

 =

Ψ̂,σ1σ1
Ψ̂,σ1σ2

Ψ̂,σ1σ3

Ψ̂,σ2σ1
Ψ̂,σ2σ2

Ψ̂,σ2σ3

Ψ̂,σ3σ1
Ψ̂,σ3σ2

Ψ̂,σ3σ3


and

Bij =

(
Mijij Mijji

Mjiij Mjiji

)
=

1

σ2
i − σ2

j

(
σiΨ̂,σi − σjΨ̂,σj σjΨ̂,σi − σiΨ̂,σj

σjΨ̂,σi − σiΨ̂,σj σiΨ̂,σi − σjΨ̂,σj

)
for (ij) ∈ {(12), (13), (23)}.

The division by σ2
i − σ2

j is problematic when two singular values are nearly equal or when two singular
values nearly sum to zero. The latter is possible with a convention for permitting negative singular values.
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Expanding Bij in terms of partial fractions yields the useful decomposition

Bij =
1

2

Ψ̂,σi − Ψ̂,σj

σi − σj

(
1 1
1 1

)
+

1

2

Ψ̂,σi + Ψ̂,σj

σi + σj

(
1 −1
−1 1

)
.

Note that if Ψ̂ is invariant under permutation of the singular values, then Ψ̂,σi → Ψ̂,σj as σi → σj . Thus,
the first term can normally be computed robustly for an isotropic model if implemented carefully. The other
fraction has deeper implications. This term can be computed robustly if Ψ̂,σi + Ψ̂,σj → 0 as σi + σj → 0.
This property is unfavorable, as it means the constitutive model will have difficulty recovering from many
inverted configurations. This corresponds to the kink described in Section 3.1 of [1]. Since we are specifically
interested in models with robust behavior under inversion, this term will necessarily be unbounded under
some circumstances. We address this by clamping the magnitude of the denominator to not be smaller than
10−6 before division to bound the derivatives.

2 C1 model

In this section, we construct the energy density and its derivatives for the C1 extrapolation model. We begin
by presenting the model in 3D. This model has four regions, depending on how many singular values are
below the cutoff σi = a. If all of the singular values are above this threshold, then the energy is just the base
model Ψ. Next, assume one singular value crosses this threshold (σ3 < a), and let ∆σ3 = σ3 − a < 0. Let

φ = Ψ|q gi =
∂Ψ

∂σi

∣∣∣∣
q

Hij =
∂2Ψ

∂σi∂σj

∣∣∣∣
q

Tijk =
∂3Ψ

∂σi∂σj∂σk

∣∣∣∣
q

Aijkl =
∂4Ψ

∂σi∂σj∂σk∂σl

∣∣∣∣
q

.

Then we extrapolate the energy across the threshold, add a quadratic term, and compute the derivatives

Ψ̂ = φ+ g3∆σ3 + k∆σ2
3

∂Ψ̂

∂σ1
= g1 +H13∆σ3

∂Ψ̂

∂σ3
= g3 + 2k∆σ3

∂2Ψ̂

∂σ2
1

= H11 + T113∆σ3
∂2Ψ̂

∂σ2
3

= 2k
∂2Ψ̂

∂σ1∂σ2
= H12 +H12∆σ3

∂2Ψ̂

∂σ1∂σ3
= H13

The remaining terms are obtained by exchanging the indices 1 and 2.
If we instead assume two singular values cross this threshold (σ2 < a, σ3 < a), and let ∆σ2 = σ2 − a < 0

and ∆σ3 = σ3 − a < 0. Then the extrapolated energy is

Ψ̂ = φ+ g2∆σ2 + g3∆σ3 +H23∆σ2∆σ3 + k∆σ2
2 + k∆σ2

3

∂Ψ̂

∂σ1
= g1 +H12∆σ2 +H13∆σ3 + T123∆σ2∆σ3

∂Ψ̂

∂σ2
= g2 +H23∆σ3 + 2k∆σ2

∂2Ψ̂

∂σ2
1

= H11 + T112∆σ2 + T113∆σ3 +A1123∆σ2∆σ3
∂2Ψ̂

∂σ2
2

= 2k

∂2Ψ̂

∂σ1∂σ2
= H12 + T123∆σ3

∂2Ψ̂

∂σ2∂σ3
= H23

The remaining terms are obtained by exchanging the indices 2 and 3.
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Finally, if all three singular values cross the threshold (σ1 < a, σ2 < a, σ3 < a), let ∆σ1 = σ1 − a < 0,
∆σ2 = σ2 − a < 0 and ∆σ3 = σ3 − a < 0. Then the extrapolated energy is then

Ψ̂ = φ+ g1∆σ1 + g2∆σ2 + g3∆σ3 +H12∆σ1∆σ2 +H13∆σ1∆σ3 +H23∆σ2∆σ3

+ T123∆σ1∆σ2∆σ3 + k∆σ2
1 + k∆σ2

2 + k∆σ2
3

∂Ψ̂

∂σ1
= g1 +H12∆σ2 +H13∆σ3 + T123∆σ2∆σ3 + 2k∆σ1

∂2Ψ̂

∂σ2
1

= 2k

∂2Ψ̂

∂σ1∂σ2
= H12 + T123∆σ3

The remaining derivatives are obtained by cycling the indices.

2.1 Continuity

To see that the model is in fact C1, we need to show that the energy and first derivatives match at the
interfaces between regions. In the case of one singular value right at the extrapolation surface, ∆σ3 → 0,
and

Ψ̂ = φ+ g3∆σ3 + k∆σ2
3 → φ

∂Ψ̂

∂σ1
= g1 +H13∆σ3 → g1

∂Ψ̂

∂σ3
= g3 + 2k∆σ3 → g3.

These are just the base model. At the transition from two to one singular values outside the extrapolation
surface, ∆σ2 → 0 and

Ψ̂ = φ+ g2∆σ2 + g3∆σ3 +H23∆σ2∆σ3 + k∆σ2
2 + k∆σ2

3 → φ+ g3∆σ3 + k∆σ2
3

∂Ψ̂

∂σ1
= g1 +H12∆σ2 +H13∆σ3 + T123∆σ2∆σ3 → g1 +H13∆σ3

∂Ψ̂

∂σ2
= g2 +H23∆σ3 + 2k∆σ2 → g2 +H23∆σ3

∂Ψ̂

∂σ3
= g3 +H23∆σ2 + 2k∆σ3 → g3 + 2k∆σ3

These agree with the values obtained when only one singular value was extrapolated. Finally, in the transition
from three to two singular values outside the extrapolation surface, ∆σ1 → 0 and

Ψ̂ = φ+ g1∆σ1 + g2∆σ2 + g3∆σ3 +H12∆σ1∆σ2 +H13∆σ1∆σ3 +H23∆σ2∆σ3

+ T123∆σ1∆σ2∆σ3 + k∆σ2
1 + k∆σ2

2 + k∆σ2
3

→ φ+ g2∆σ2 + g3∆σ3 +H23∆σ2∆σ3 + k∆σ2
2 + k∆σ2

3

∂Ψ̂

∂σ1
= g1 +H12∆σ2 +H13∆σ3 + T123∆σ2∆σ3 + 2k∆σ1

→ g1 +H12∆σ2 +H13∆σ3 + T123∆σ2∆σ3

∂Ψ̂

∂σ2
= g2 +H23∆σ3 +H12∆σ1 + T123∆σ1∆σ3 + 2k∆σ2

→ g2 +H23∆σ3 + 2k∆σ2

These match the expressions obtained for the case where two singular values are beyond the extrapolation
surface, so C1 continuity is established.
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Figure 1: This figures shows some of the quantities used for the C2 extrapolation.

3 C2 model

This section provides a detailed derivation of the energy density and its derivatives for the C2 model described
in [1].

In this section, index notation is used for conciseness and clarity. We follow the convention that letters
(i, j, k, . . .) are used for indices with the Einstein summation assumed. In a few places, this convention does
not fit will. For those cases, we use Greek letters (α, β, γ, . . .) for the index to indicate that summation
over that index is never implied. Indices that occur after a comma are differentiated. Thus, Ψ,i = ∂Ψ

∂σi
and

ui,jk = ∂2ui
∂σjσk

. Summation limits are not stated and should go up to the dimension (that is, 2 or 3). The

derivation that follows is valid in any dimension, except where noted.
The base energy Ψ is the be extended to the extrapolated energy Ψ̂ at the point σ by extrapolating along

the line to the rest configuration r (ri = 1 for all i). The direction of the line is ui = m(σi − ri), with m =
‖σ−r‖−1. This line intersects the contour J = a at qi = ri+(σi−ri)s. The distance along this line from the
contour to σ is then h = (σi−qi)ui. The extrapolated energy is Ψ̂ = φ+hgjuj+ 1

2h
2Hljuluj , where φ = Ψ

∣∣
q
,

gi = Ψ,i

∣∣
q
, and Hij = Ψ,ij

∣∣
q
. The scalar s is given by the polynomial equation a =

∏
α(rα + (σα − rα)s).

The differentiation of Ψ̂ at first may seem like an impossible task, particularly in terms of debugging. We
compute the extrapolated energy in many small intermediate steps, and then we differentiate each of those
steps along the way to construct the extrapolated energy derivatives. This breaks the task down into many
simpler quantities, which simplifies the implementation. This has the added advantage that the derivatives
of each intermediate quantity can be checked numerically, which drastically simplifies the debugging process.
See section 4 for suggestions on testing derivatives numerically.

3.1 Simple quantities

First, we start with a few simple quantities. The quantity δij = 1 if i = j, and δij = 0 otherwise. The scalar
m is the reciprocal of the distance between r and σ, which is a convenient intermediate in computing ui,
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the direction along with extrapolation occurs.

σi,j = δij

δij,k = 0

ri,j = 0

m = ‖σ − r‖−1

m,i = −(σi − ri)m3

m,ij = −δijm3 + 3(σi − ri)(σj − rj)m5

ui = m(σi − ri)
ui,k = m,k(σi − ri) +mδik

ui,kj = m,kj(σi − ri) + (m,kδij +m,jδik)

These quantities do not depend on anything else. Throughout this derivation, we will group pairs of terms in
Hessians that are symmetric as we have done in the expression for ui,kj with (m,kδij +m,jδik). In practice,
one of these terms should be computed and then transposed to obtain the other.

3.2 Point on extrapolation surface

Next, we define q as the location where extrapolation begins. It is the location on the segment connecting
the rest configuration r and the current configuration σ that intersects the extrapolation surface. The energy
density will be extrapolated along the segment from q to σ. The length of this segment is denoted h.

qi = ri + (σi − ri)s
qi,j = δijs+ (σi − ri)s,j
qi,jk = (δijs,k + δiks,j) + (σi − ri)s,jk
h = (σi − qi)ui

h,j = (δij − qi,j)ui + (σi − qi)ui,j
h,jk = −qi,jkui + ((δij − qi,j)ui,k + (δik − qi,k)ui,j) + (σi − qi)ui,jk

Note that these quantities depend on an interpolation fraction s (with 0 < s < 1) and its derivatives, which
we compute next.

3.3 Interpolation fraction

The interpolating fraction is constrained to lie on the extrapolation surface given by
∏
α qα = a for some

constant 0 < a < 1. This leads to the equation

a =
∏
α

qα =
∏
α

(rα + (σα − rα)s).

This is a cubic equation in the scalar variable s. Note that when s = 0∏
α

(rα + (σα − rα)s)− a =
∏
α

rα − a = 1− a > 0,

and at s = 1 ∏
α

(rα + (σα − rα)s)− a =
∏
α

σα − a = J < 0.

Thus, we are guaranteed that there will exist a solution s to the cubic in the interval (0, 1). We compute
this intersection using the bisection method since it is efficient and robust.
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To compute the derivatives, we use implicit differentiation. We introduce two intermediate scalars ζ and
ξ (with no particular physical interpretation) to simplify these computations.

ζ =
∑
α

σα − rα
qα

ζ,β =
1

qβ
−
∑
α

σα − rα
q2
α

qα,β

ζ,βγ = −

(
qβ,γ
q2
β

+
qγ,β
q2
γ

)
+ 2

∑
α

σα − rα
q3
α

qα,βqα,γ −
∑
α

σα − rα
q2
α

qα,ik

ξ = ζ−1

ξ,k = −ξ2ζ,k

ξ,ki = 2ξ3ζ,kζ,i − ξ2ζ,ki

Now, we can proceed with the differentiation of s.

0 =
∑
α

δαks+ (σα − rα)s,k
rα + (σα − rα)s

s,β = −s

(∑
α

σα − rα
rα + (σα − rα)s

)−1∑
α

δαβ
rα + (σα − rα)s

= − s

qβ

(∑
α

σα − rα
qα

)−1

= −sξ
qβ

s,βγ = −s,γξ
qβ
− sξ,γ

qβ
+
sξqβ,γ
q2
β

=
sξ2

qβqγ
− sξ,γ

qβ
+
sξqβ,γ
q2
β

All the quantities introduced so far can now be computed. The expression for s,βγ can be shown to be
symmetric.

3.4 Base model

The base model and its first four derivatives are required on the extrapolation surface to compute the stress
derivatives. These quantities are all evaluated at the point qi.

φ = Ψ
∣∣
q

gi = Ψ,i

∣∣
q

Hij = Ψ,ij

∣∣
q

Tijk = Ψ,ijk

∣∣
q

Aijkl = Ψ,ijkl

∣∣
q

These quantities are symmetric in all of their indices. We will also use some of the derivatives of these
quantities. Note that the point qi is constrained to the extrapolation surface, so the derivatives of these will
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depend on the derivatives of qi.

φ,i = gkqk,i

φ,ij = gk,jqk,i + gkqk,ij

gk,i = Hkmqm,i

gk,ij = Tkmnqm,iqn,j +Hkmqm,ij

Hkl,i = Tklmqm,i

Hkl,ij = Aklmnqm,iqn,j + Tklmqm,ij

3.5 Extrapolated energy

We now have all of the quantities we need to compute Ψ̂ and its derivatives. The scalars gkuk and Hklukul
are required for interpolation, and we differentiate them separately first.

b = gkuk

b,i = gk,iuk + gkuk,i

b,ij = gk,ijuk + (gk,iuk,j + gk,juk,i) + gkuk,ij

c = Hklukul

c,i = Hkl,iukul + 2Hkluk,iul

c,ij = Hkl,ijukul + (2Hkl,iuk,jul + 2Hkl,juk,iul) + 2Hkluk,ijul + 2Hkluk,iul,j

d = Tkljukuluj

Finally, we compute the extrapolated energy and its derivatives.

Ψ̂ = φ+ hb+
1

2
h2c

Ψ̂,i = φ,i + h,ib+ hb,i + hh,ic+
1

2
h2c,i

Ψ̂,ik = φ,ik + h,ikb+ (h,ib,k + h,kb,i) + hb,ik + h,kh,ic+ hh,ikc+ (hh,ic,k + hh,kc,i) +
1

2
h2c,ik

3.6 Robustness

The formula for
∂Pij
∂Fkm

requires that terms of the form

Ψ̂,i − Ψ̂,t

σi − σt

be computed robustly. To work out a robust way to do this, it will be very convenient to introduce some
new notation. We take the index [it] to indicate quantities like

B[it] =
Bi −Bt
σi − σt

Ck,[it] =
Ck,i −Bk,t
σi − σt

where it is assumed that i 6= t. We are after the quantity Ψ̂,[it]. We will also reuse notation slightly. Since
ri = 1, we will use it for this purpose even when the usage is unrelated to the rest configuration. With this,

7



we can say σ[it] = rirt and r[it] = 0. Note that hm+ s = 1 and Bkδk[it] = B[it].

u[it] = m(σ[it] − r[it]) = mrirt

m,[it] = −(σ[it] − r[it])m
3 = −m3rirt

uj,[it] = m−1m,[it]uj +mδj[it]

= −m2ujrirt +mδj[it]

q[it] = r[it] + (σ[it] − r[it])s = srirt

s,[it] =
s,i − s,s
σi − σt

= −sξ q
−1
i − q

−1
t

σi − σt
= −sξq−1

i q−1
t

qt − qi
σi − σt

= sξq−1
i q−1

t q[it]

= s2ξq−1
i q−1

t

qm,[it] = δm[it]s+ (σm − rm)s,[it]

= δm[it]s+m−1ums,[it]

h,[it] = u[it] − qk,[it]uk + (σk − qk)uk,[it]

= mrirt − su[it] −m−1uks,[it]uk + huk(m−1m,[it]uk +mδk[it])

= mrirt + (hm− s)u[it] −m−1s,[it] + hukm
−1m,[it]uk

= (hm− s+ 1)mrirt −m−1s,[it] − hm2rirt

= hm2rirt −m−1s,[it]

φ,[it] = gkqk,[it]

= g[it]s+m−1bs,[it]

gj,[it] = Hjmqm,[it]

= Hj[it]s+m−1Hjmums,[it]

Hkl,[it] = Tklmqm,[it]

= sTkl[it] +m−1Tklmums,[it]

b,[it] = gk,[it]uk + gkuk,[it]

= Hk[it]suk +m−1Hkmums,[it]uk − gkm2ukrirt + gkmδk[it]

= Hk[it]suk +m−1cs,[it] − bm2rirt +mg[it]

c,[it] = Hkl,[it]ukul + 2Hkluk,[it]ul

= sTkl[it]ukul +m−1ds,[it] − 2Hklmukrirtul + 2Hklmδk[it]ul

= sTkl[it]ukul +m−1ds,[it] − 2cmrirt + 2Hk[it]muk
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Finally, we can assemble the desired quantity Ψ̂,[it].

h,[it]b+ hb,[it] = −m−1s,[it]b+ hm2rirtb+ hHk[it]suk + hm−1cs,[it] − hbm2rirt + hmg[it]

= m−1(hc− b)s,[it] + hsHk[it]uk + hmg[it]

hh,[it]c+
1

2
h2c,[it] = −hcm−1s,[it] + h2cm2rirt +

1

2
h2sTkl[it]ukul +

1

2
h2m−1ds,[it] − h2cmrirt + h2Hk[it]muk

=
1

2
m−1h(hd− 2c)s,[it] +

1

2
h2sTkl[it]ukul + h2Hk[it]muk

Ψ̂,[it] = φ,[it] + h,[it]b+ hb,[it] + hh,[it]c+
1

2
h2c,[it]

= φ,[it] +m−1(hc− b)s,[it] + hsHk[it]uk + hmg[it] +
1

2
m−1h(hd− 2c)s,[it]

+
1

2
h2sTkl[it]ukul + h2Hk[it]muk

= φ,[it] +
1

2
m−1

(
h2d− 2b

)
s,[it] + hHk[it]uk + hmg[it] +

1

2
h2sTkl[it]ukul

= g[it]s+m−1bs,[it] +
1

2
m−1

(
h2d− 2b

)
s,[it] + hHk[it]uk + hmg[it] +

1

2
h2sTkl[it]ukul

= g[it] + hHk[it]uk +
1

2
h2sTkl[it]ukul +

1

2
m−1h2ds,[it]

This formula is elegant, but unfortunately Hk[it] and Tkl[it] cannot be computed robustly.
The solution to this problem is to compute hHk[it]uk and Tkl[it]ukul, since they can be computed robustly.

Consider the computation of hHk[12]uk (the others can be obtained by cycling indices).

H[12]juj = H[12]1u1 +H[12]2u2 +H[12]3u3

=
H11u1 −H12u1 +H12u2 −H22u2

σ1 − σ2
+H[12]3u3

=
H11u1 −H11u2

σ1 − σ2
+
H11u2 −H22u2

σ1 − σ2
− H12u1 −H12u2

σ1 − σ2
+H[12]3u3

= H11u[12] +H[11,22]u2 −H12u[12] +H[12]3u3

where we have introduced the new notation

H[11,22] =
H11 −H22

σ1 − σ2
.

The resulting terms can each be computed robustly. Note that expanding in this way allows us to isolate
the base model (H11, H12, H[12]3, H[11,22]) from the details of the extrapolation (u2, u3, u[12]).

Similarly, we can compute Tjk[12]ujuk robustly

Tjk[12]ujuk = T33[12]u3u3 + T31[12]u3u1 + T32[12]u3u2 + T13[12]u3u1 + T11[12]u1u1 + T12[12]u1u2

+ T23[12]u3u2 + T21[12]u2u1 + T22[12]u2u2

= T33[12]u3u3 + 2T12[12]u1u2 + 2T31[12]u3u1 + 2T32[12]u3u2 + T11[12]u1u1 + T22[12]u2u2

= T33[12]u3u3 + 2T12[12]u1u2 + 2u3(T311u[12] + T3[11,22]u2 − T312u[12])

+ (T[111,222] − T12[12])u
2
1 + (T222 − T122)

u2
1 − u2

2

σ1 − σ2

= T33[12]u3u3 + 2T12[12]u1u2 + 2u3(T311u[12] + T3[11,22]u2 − T312u[12])

+ (T[111,222] − T12[12])u
2
1 +m2(T222 − T122)(σ1 + σ2 − 2)
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where we have introduced the new notation

T3[11,22] =
T311 − T322

σ1 − σ2
T[111,222] =

T111 − T222

σ1 − σ2
.

As before, these quantities can be computed robustly, and the base model is isolated from the details of the
extrapolation. The 2D formulas for H[12]juj and Tjk[12]ujuk are obtained by discarding all terms containing
the index 3.

3.7 Continuity

To establish C2 continuity for this model, we need to establish that Ψ̂ = φ, Ψ̂,i = gi, and Ψ̂,ik = Hik at the
extrapolation surface. At this surface, s = 1 and h = 0. With these,

qi = ri + (σi − ri)s
qi = σi

qi,j = δijs+ (σi − ri)s,j
= δij +m−1uis,j

δij − qi,j = −m−1uis,j

h,j = (δij − qi,j)ui + (σi − qi)ui,j
= −m−1s,j

h,jk = −qi,jkui + ((δij − qi,j)ui,k + (δik − qi,k)ui,j) + (σi − qi)ui,jk
= −qi,jkui

gk,i = Hkmqm,i

= Hki +m−1Hkmums,i

gk,ij = Tkmnqm,iqn,j +Hkmqm,ij

= Tkmnqm,iqn,j +Hkmqm,ij

b,i = gk,iuk + gkuk,i

= Hkiuk +m−1Hkmums,iuk +m,i(σk − rk)gk +mgi

= Hkiuk +m−1cs,i +m,im
−1b+mgi

= Hkiuk +m−1cs,i + (gi − uib)m

With these, C1 is established readily

Ψ̂ = φ+ hb+
1

2
h2c

= φ

Ψ̂,i = φ,i + h,ib+ hb,i + hh,ic+
1

2
h2c,i

= φ,i + h,ib

= gkqk,i −m−1s,ib

= gi + gkukm
−1s,i −m−1s,ib

= gi
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Finally, C2 can be established with a bit of work.

Ψ̂,ik = φ,ik + h,ikb+ (h,ib,k + h,kb,i) + hb,ik + h,kh,ic+ hh,ikc+ (hh,ic,k + hh,kc,i) +
1

2
h2c,ik

= φ,ik + h,ikb+ (h,ib,k + h,kb,i) + h,kh,ic

= gj,kqj,i + gjqj,ik − qj,ikujb+ (h,ib,k + h,kb,i) + h,kh,ic

= gj,kqj,i + (gj − ujb)qj,ik + (h,ib,k + h,kb,i) + h,kh,ic

= gj,kqj,i + (gj − ujb)(δjis,k + δjks,i +m−1ujs,ik) + (h,ib,k + h,kb,i) + h,kh,ic

= gj,kqj,i + (gi − uib)s,k + (gk − ukb)s,i + (h,ib,k + h,kb,i) + h,kh,ic

= gj,kqj,i + (b,i − (gi − uib)m)h,k + (b,k − (gk − ukb)m)h,i + h,kh,ic

= gj,kqj,i + (Hjiuj +m−1cs,i)h,k + (Hjkuj +m−1cs,k)h,i + h,kh,ic

= gj,kqj,i − ch,ih,k +Hjiujh,k +Hjkujh,i

= gi,k − gj,kujh,i − ch,ih,k +Hjiujh,k +Hjkujh,i

= Hik +m−1Himums,k −Hjkujh,i −m−1Hjmums,kujh,i − ch,ih,k +Hjiujh,k +Hjkujh,i

= Hik −m−1Hjmums,kujh,i − ch,ih,k
= Hik

This establishes C2 continuity for this model.

4 Note on testing derivatives numerically

We suggest above that the derivatives can be tested numerically. Here, we present a simple yet effective
way to do this. Choose a small random perturbation δx. Suppose we have a scalar f and its derivative ∇f
evaluated at x and δx. Then,

f(x + δx)− f(x)− 1

2
(∇f(x + δx) +∇f(x)) · δx = O(‖δx‖3).

This test compares a second order accurate central difference approximation against a second order average,
which makes the test much less ambiguous. When the test fails, the error will generally only be of order
O(‖δx‖). If the quantities being tested are on the order of one, then it is most effective to choose ‖δx‖3 to
be around floating point precision. If f were instead a vector quantity, then the error quantity computed
on the left hand side would be a vector, which should be nearly zero. Second order derivatives are tested
against first order derivatives.
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