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Abstract
Metric Tree Weight Adjustment and Infinite Complete Binary Trees As Groups

Craig Schroeder
Advisor: Ali Shokoufandeh

Metric trees are an important type of metric because many problems are efficiently solvable on metric

trees that are hard on more general metrics. For this reason, many algorithms use metric trees. At the

current time, there is only one known efficient, approximate embedding into a metric tree, and the trees

that this embedding produces are typically far from balanced. While an unbalanced tree is acceptable for

many applications, a balanced metric tree is more suitable for others. This thesis considers part of the

metric tree balancing problem. We find efficient algorithms for computing new weights for metric trees, to

be applied after the tree is topologically balanced. One of these algorithms uses the L2 norm, yielding an

optimal solution. A second algorithm solves the same problem under the L∞ norm, where the solution is

also optimal. Both algorithms are considered in a local case, where they update weights locally after tree

rotations.

By extending binary trees to an infinite, complete binary tree, tree operations like rotations and child

flips become closed. By carefully defining the tree rotations and child flips, the tree operations form a

group. To our knowledge, this group structure has not been studied before. We remedy this by proving

many important theorems, including its finite generation and a complete list of its normal subgroups.
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1. Introduction

1.1 Problem

Humans can easily and almost instantly recognize objects. This is called object recognition, and the task

is quite difficult for computers. Object recognition has received much attention and remains a hot area of

research in computational vision and pattern recognition. One variation of the object recognition problem

may be formulated as the problem of, given some object, finding the best match from a database of models.

Several approaches used in object recognition break objects into features and a perform many-to-many

matching on the features as points in a metric space [14, 17, 18]. However, this approach relies on the ability

to take an arbitrary metric, embed it into a tree, and take a caterpillar decomposition. Unfortunately, only

one provably good algorithm is known for performing this embedding, and the trees that it produces do not

lead to good caterpillar decompositions, because the trees it produces are highly unbalanced. The metric

embedding is described in [2], and the use of the caterpillar decomposition for embedding is described in

[13].

The global update algorithms for updating the metric after balancing the tree are a useful tool for com-

pleting the metric tree balancing process. Algorithms for restructuring the tree are not considered in this

thesis, as the difficulty of this task is beyond the scope of this thesis. It is not clear whether a polynomial

runtime algorithm for this task exists. We treat the much simpler problem of assigning edge weights. The

update algorithms return the tree to a metric by assigning edge weights to the balanced tree. In both cases

the assignment is optimal.

Adding new entries to the metric using the global update algorithms is inefficient. Local update algo-

rithms are derived for both metrics similar in nature to the global versions. The local updates are applied

after individual rotation operations used in the insertion. While the local updates need not result in a glob-

ally optimal assignment of weights, it does yield an optimal update of the edges immediately around the

rotation.

Attempting to treat the question of balancing metric trees leads to the study of binary trees and tree

operations as a group. A group is a set with a binary operator. The operator must satisfy four properties:
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closure, associativity, identity, and inverse. A good introductory and reference text on group theory is [7].

The link between group theory and graphs is far from new, and much of this is focused on automor-

phism groups of finite graphs [5, 4]. The connection surfaces in the classification theorem for finite simple

groups, as many of the sporadic groups are conveniently realized as automorphism groups or subgroups of

automorphism groups of graphs. Examples of this are the Janko group J2, the Higman-Sims group HS, the

McLaughlin group McL, and the Conway groups Co1, Co2, and Co3 [3].

There are also links between trees and groups. For example, when binary trees of size n are used as

vertices of a graph with a directed edge when the trees are related by a single left rotation, the resulting

graph contains a Hamiltonian path, which is used to enumerate all such trees efficiently [11, 12]. Interesting

relationships have been explored between trees, groups, and finite automata [8, 1]. Lavrenyuk considers

techniques for developing finite state actions on homogeneous trees of finite size [10].

Integers may be broken down as factors of primes. In a similar way, groups may be broken down into

simple groups. The groups may then be assembled using direct products, semidirect products, and other

approaches. Groups are broken down into smaller groups by taking a quotient with respect to a subgroup.

This quotient is well-defined precisely when the subgroup is normal. A more precise treatment of this can

be found in [7]. The ability to decompose groups makes finding normal subgroups worthwhile.

1.2 Definitions

This section is intended to provide basic definitions and important background information useful to

readers unfamiliar with the background assumed in the body of the thesis. Readers familiar with these

areas may skip this section.

1.2.1 Tree Metrics and Embeddings

A metric space consists of a set X and a function d : X×X →R that satisfies four properties [21]:

• Non-negativity: ∀x,y ∈ X ,d(x,y)≥ 0

• Identity of Indiscernibles: ∀x,y ∈ X ,d(x,y) = 0 if and only if x = y

• Symmetry: ∀x,y ∈ X ,d(x,y) = d(y,x)
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• Triangle Inequality: ∀x,y,z ∈ X ,d(x,y)+d(y,z)≥ d(x,z).

Inparticular, X may be finite or infinite. The most common and familiar example of a metric is the Euclidean

metric on Rn defined by:

d(x,y) = ‖x− y‖2
2 = ∑

i
(xi− yi)2.

A second example of a metric is the Manhattan distance metric, defined on Rn by:

d(x,y) = ‖x− y‖1 = ∑
i
|xi− yi|.

A third example is defined on Rn by:

d(x,y) = ‖x− y‖∞ = max
i
|xi− yi|.

These three examples are normed vector spaces also known as the L2, L1, and L∞ norms, respectively.

Any metric may be expressed as a possibly infinite, weighted, undirected, connected graph G = (V,E).

The vertices of the graph correspond to the elements in the set, so X = V . The distance d(x,y) for x,y∈V is

defined to be the length of the shortest path from x to y, where the length of a path is the sum of the weights

of the edges along that path.

These conditions guarantee that the graph corresponds to a metric. Positive edge weights ensure the first

two properties. Symmetry is guaranteed because the graph is undirected, and a path from x to y corresponds

to a path from y to x of the same length. The triangle inequality follows from the definition of the distance,

since the path from x to y to z is a path from x to z of length d(x,y)+d(y,z).

Any metric may be expressed as a graph. Let G be the complete graph on V = X with edge weights

w(x,y) = d(x,y). The triangle inequality ensures that the shortest path from x to y will be the path consisting

of only the edge (x,y).
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A useful representation for a finite metric is a distance matrix. The metric is defined over a finite set

X = {x1, . . . ,xn} with d(xi,x j) = Di j, where D is an n×n matrix. The properties of a metric force D to be

symmetric with zeroes along the diagonal. This representation is used in Chapters 2 and 3.

Finally, a tree metric can be defined similar to the graph representation of a metric. In this case, the

graph is a tree, and the set X of elements defining the metric is the set of leaves of the tree. Non-leaf nodes

of the tree are not elements of the metric space. The distances, as with the graph representation, are defined

as the length of the unique path bewteen two leaves. Metric trees satisfy a four-point condition:

d(w,x)+d(y,z)≤max(d(w,y)+d(x,z),d(w,z)+d(x,y)) .

This condition is a necessary and sufficient condition for a metric to be a tree metric [9].

A metric embedding can be defined as a mapping φ : X → X ′ from a metric space on X with distance

function d into a metric space on X ′ with distance function d′. The distortion of an embedding is a measure

of how well the distances of the metric are preserved by the embedding. Three examples of measures of

distortion are variations of the examples for distance metrics. The L2
2 norm may be used as a measure for

the distortion between distance matrices D and E:

‖D−E‖2
2 = ∑

i j
(Di j−Ei j)2.

This distortion measure is used in Chapter 2. The L1 norm leads to the distortion measure:

‖D−E‖1 = ∑
i j
|Di j−Ei j|.

The L∞ norm leads to the distortion measure:

‖D−E‖∞ = max
i j
|Di j−Ei j|.
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This distortion measure is used in Chapter 3. Note that the distortion measure and the distance metrics are

in general unrelated.

It is known that embedding an arbitrary metric into a tree metric with minimum distortion is NP-hard

under the L1, L2, and L∞ distortion measures. A polynomial time 3-approximation, i.e., the distortion

oftained is at most a factor of three of the optimal distortion, exists for the L∞ distortion measure [2].

1.2.2 Group Theorey

This section is intended to be a quick introduction to the group theory used in this thesis. For a more

complete and authoratative introduction, please see [7].

A group is a set of elements G and a binary operation · : G×G→G. The binary operation must satisfy

four properties.

• Identity: There exists an identity element e such that for any x ∈ G, e · x = x · e = x.

• Closure: For any elements x,y ∈ G, x · y ∈ G. That is to say the group is closed under the binary

operation.

• Associativity: For any elements x,y,z ∈ G, x · (y · z) = (x · y) · z.

• Inverse: For each element x ∈ G there exists a unique element w ∈ G such that w · x = x ·w = e. The

element w is called the inverse of x and is denoted w = x−1.

A group is said be Abelian if x · y = y · x for all x,y ∈ G. That is, the binary operation is commutative.

When a group is Abelian, the group operation is often written as addition: x+y. If the group is not Abelian,

the binary operation is generally written as multiplication: x · y or xy. Because the groups studied in this

thesis are not Abelian, the binary operation is written using concatenation as xy.

A subgroup is a subset H with the same binary operation that itself satisfies the properties of a group.

Subgroups are fundamental to the study of groups.

The elements of a group G may be thought of as bijective functions that act on the elements of a set X .

Then, a (left) group action is a function · : G×X → X that satisfies two properties [20]:

• Identity: If e ∈ G is the identity element in G and x ∈ X then e · x = x.
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• Associativity: For all g,h ∈ G and x ∈ X , g · (h · x) = (gh) · x.

A right group action is similar, except that the binary operation is defined with the group applied to the

other side as · : X ×G → X . Right action by g may be expressed as left action by g−1, so the notions are

not fundamentally different.

Note that any action leads to a group and is a way of creating a group structure from bijective functions.

Used in this way, associativity may be treated as a definition of the binary operator as the composition of

functions g and h. Closing set of functions under composition ensures the closure property. Combining the

two properties gives us the element e that fulfills the identity property for the group:

(eg) · x = e · (g · x)

= g · x

eg = g

(ge) · x = g · (e · x)

= g · x

ge = g.

The associativity property for actions implies associativity for the group:

( f (gh)) · x = f · ((gh) · x)

= f · (g · (h · x))

= ( f g) · (h · x))

= (( f g)h) · x

f (gh) = ( f g)h.

Because the functions are bijections, they have inverses. The inverse g−1 of a function g corresponds to the

group inverse:
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(g−1g) · x = g−1 · (g · x)

= x

= e · x

g−1g = e

(gg−1) · x = g · (g−1 · x)

= x

= e · x

gg−1 = e.

This construction is used to define the group of tree operations studied in Chapters 4 and 5.

A group homomorphism is a mapping φ : G→ H between groups G and H such that:

φ(ab) = φ(a)φ(b).

An group ismorphism is a group homomorphism that is also a bijection. An automorphism is a group

isomorphism from a group to itself. The automorphism group, Aut(G), is the group constructed from

the action of automorphisms on G using the construction above. In particular, the binary operation is

composition.

Conjugation of a group element h by another element h is defined as ghg−1. For each h, the set of all

f for which f = ghg−1 for some g is called the conjugacy class of h. A subgroup of G that is closed under

conjugation by elements of G is called a normal subgroup. If H ⊆ G is a normal subgroup, then for any

g ∈ G and h ∈ H ⊆ G, ghg−1 ∈ H. The subgroup formed by closing a subgroup H ⊆ G under conjugation

by elements of the group G is called the conjugate closure of H and is denoted 〈H〉G [19]. In particular,

conjugate closures are always normal subgroups, and the conjugate closure of a normal subgroup is itself.

Thus, there is a one-to-one correspondence between (distinct) conjugate closures and normal subgroups.
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The quotient of a group G by a subgroup H, denoted G/H is a set of sets:

G/H = {gH : g ∈ G}.

Alternatively, the quotient may be defined in terms of an equivalence relation:

x∼ y ⇐⇒ ∃h ∈ H,xh = y.

The binary operation is taken to be:

( f H)(gH) = ( f g)H.

However, this operation is not in general well-defined. Let aH = bH and cH = dH. The binary operation is

well-defined if and only if: (aH)(cH) = (bH)(dH). Because b ∈ aH, there exists g ∈ H such that b = ag.

Similarly, d ∈ cH, so there exists a h ∈ H such that d = ch. Then, being well-defined implies:
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(aH)(cH) = (bH)(dH)

(ac)H = (bd)H

(ac)H = (agch)H

a−1(ac)H = a−1(agch)H

cH = (gch)H

c−1cH = c−1(gch)H

H = (c−1gch)H

H 3 (c−1gch)e

c−1gch ∈ H

c−1gc ∈ H.

Here, c ∈ G is arbitrary. Further, I can choose b = ag for any a ∈ G and g ∈ H. It follows that H is closed

under conjugation and is thus a normal subgroup. Being a normal subgroup is also a sufficient condition.

This is shown by choosing a,b,c,d, arguing the existance of g and h as before, and reversing the order of

the logic above. A quotient can be taken if and only if subgroup is normal.

Simple groups are groups that contain no normal subgroups other than the trivial group and the group it-

self, which are always normal subgroups. Simple groups are the group analog of a prime number. Quotients

cannot be used to break simple groups into smaller groups.

If K = G/H, can G be obtained from K and H? The answer is “yes,” and possibly in many ways. The

simplest way is the direct product, denoted H⊕K:

H⊕K = {(h,k) : h ∈ H,k ∈ K}.

The binary operation is:
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(a,b)(c,d) = (ac,bd).

The identity element is (e,e), and the inverse of (h,k) is (h−1,k−1). Associativity and closure follow from

the associativity and closure of groups H and K. It is left so show that (H ⊕K)/H ∼= K. Note H is a

subgroup of H ⊕K because H ∼= {(h,e),h ∈ H} = (H,e). It is normal because (a,b)(h,e)(a−1,b−1) =

(aha−1,bb−1) = (aha−1,e)∈H. The quotient is (a,b)(H,e) = (aH,be) = (H,b). But K ∼= {(H,k),k ∈K}.

Note that H⊕K ∼= K⊕H, so that K is also a normal subgroup of H⊕K, and (H⊕K)/K ∼= H.

A second way to construct G is by a direct product, denoted HoK, which differs in its definition for

the binary operation:

(a,b)(c,d) = (aφ(b)(c),bd)

φ : H → Aut(K),

where φ is a group homomorphism from H to Aut(K). The semidirect product is in general not uniquely

defined, in that multiple choices of φ may exist. The choice φ(h) = id turns the semidirect product into a

direct product. Nontrivial choices of φ lead to general direct products. In general, HoK and KoH are

distinct, and K is not a normal subgroup of HoK. In fact, if either of these are false, then the semidirect

product is in fact a direct product. As with a direct product, but H and K are subgroups, and H is a normal

subgroup. Eg, K ∼= {(e,k),k ∈ K}. Because φ(e) = id, (a,e)(c,e) = (ac,e), and H ∼= {(h,e),h ∈ H}. The

subgroup H ∼= (H,e) is normal because:
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(a,b)(h,e)(a−1,b−1) = (a,b)(hφ(e)(a−1),eb−1)

= (a,b)(ha−1,eb−1)

= (aφ(b)(ha−1),beb−1)

= (aφ(b)(ha−1),e)

∈ (H,e).

The quotient is (a,b)(H,e) = (aφ(b)(H),be) = (aH,b) = (H,b), as with the direct product. It is not hard

to see that K being a normal subgroup makes the semidirect product a direct product:

(a,b)(e,k)(a−1,b−1) = (aφ(b)(e),bk)(a−1,b−1)

= (ae,bk)(a−1,b−1)

= (a,bk)(a−1,b−1)

= (aφ(bk)(a−1),bkb−1).

Because the element is in (e,K) by assumption, aφ(bk)(a−1) = e and φ(bk)(a−1) = a−1. However, bk

and a−1 are arbitrary, so that φ(k) = id, making the semidirect product a direct product. If HoK ∼= KoH,

then K is a normal subgroup of HoK, and H⊕K ∼= HoK ∼= KoH.

1.3 Outline of Thesis

This thesis is laid out as follows. Chapter 2 considers the problem of balancing metric trees under

the L2
2 norm. The primary focus of the chapter is on the problem of local updates, updating the weights

immediately around the nodes involved in a tree rotation. The chapter solves the problem in closed form

and is applicable to both left and right rotations. The chapter also solves the degenerate case of the local

weight update problem, where one of the five edges is missing, and two of the remaining weights are not

independent. The chapter also discusses an efficient way to maintain and update supplemental information
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needed to perform the local updates. This chapter then generalizes the update algorithm to the case of a

global update on the entire tree, expressing the result as the solution to a linear equation. The solution in

each case is optimal.

Chapter 3 considers the same problem under the L∞ norm. The solution for the local update case is

considered first, and the solution is expressed in the form of a linear programming problem of constant size.

The degenerate case is also considered, and the solutions to both are optimal. The chapter then considers

the problem of updating and maintaining supplemental information needed to compute the local updates

under the L∞ norm. Next, the global update case is considered, and its solution is expressed as a linear

programming problem whose size is linear in the number of edges in the metric tree. Simple distortion

bounds are also presented in this chapter.

At this point, the emphasis of the thesis shifts from direct computation of edge weights after tree oper-

ations have been performed to a systematic analysis of the tree operations themselves. Though the results

obtained do not yield an algorithm for balancing the metric trees, the group theoretical treatment of tree

operations has, to the best of our knowledge, never been done previously.

Chapter 4 extends binary trees to an infinite, complete binary tree and formulates tree operations on the

infinite tree. Using the infinite tree and the formulation of its operations, the operations are shown to satisfy

the properties of a group. The chapter starts with exploratory and elementary results, but it quickly builds

machinery for proving that the group is finitely generated. The chapter switches attention to subgroups of

the group of operations, building up powerful machinery on the simpler, restricted subgroups. Machinery is

built up in the group and subgroups to prove that the groups contain all finite groups and finite permutations.

The chapter also proves that group of tree operations contains infinitely many copies of itself and gives a

complete characterization of the group operations.

Chapter 5 focuses on identifying the normal subgroup structure of the group. The chapter begins by

considering the effects on the group when operations at the root are removed to weaken the operations.

This approach is used along with some additional machinery to construct the first normal subgroup of the

group of tree operations. This, in turn, shows that the group is not simple. The chapter then turns to the

conjugate closure operation and uses it to build up the machinery needed to solve the problem of finding

normal subgroups completely, ending in a complete list of all normal subgroups. The chapter then switches

focus to the much more common, but thus far unconsidered, subgroup generated by rotations alone. Finite
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generation and a complete characterization are proven for this group.

Finally, in Chapter 6 we summarize the contributions of the thesis and present our conclusions.
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2. Balancing Metric Trees under L2

Given some distance metric, it is useful to be able to embed the metric into a tree structure. What we

want to do is take this a step further by balancing the tree while minimizing the distortion of the resulting

balanced tree. We are balancing using standard rotations, and these rotations can affect the distortion of the

tree. In this chapter, we use the L2 norm to calculate the distortion of the tree. This chapter is devoted to

updating the weights of the tree to minimize this distortion, either locally or globally.

2.1 Local Edge Weight Updates

The case of a local update is considered first. In this case, it is assumed that we have a tree approximating

the original metric, and we have just finished performing a rotation operation.

2.1.1 Notation

Let D = [Di j]n×n be the original metric; this metric is arbitrary. Let T be the tree obtained after a

rotation, and let E = [Ei j]n×n be the metric for this tree. Only the portion of the tree immediately around

the site of the rotation needs to be considered in detail. The relevant nodes are shown before and after the

rotation in Figure 2.1. The following text focuses on the tree T as it appears after the rotation.

Let Ta, where a ∈ {m,n, p,r}, denote the nodes of T reachable from α and β through a. Let La denote

the leaves of Ta. We will use µ = |Lm|, ν = |Ln|, ρ = |Lp|, ζ = |Lr|.
Define these edge lengths: v = αβ , w = αr, x = αm, y = βn, z = β p. These are the quantities to be

determined, and they must be nonnegative.

2.1.2 Distortion

The total distortion after the rotation under the L2 norm is:

‖E−D‖2 = ∑
i, j

(Ei j−Di j)2. (2.1)
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Figure 2.1: Local structure of the tree T (a) before and (b) after rotation about the node β

This quantity depends on the to-be-determined variables v,w,x,y,z ≥ 0. We will start by splitting the

sum into ten parts {Pmm,Pmn,Pmp,Pmr,Pnn,Pnp,Pnr,Ppp,Ppr,Prr} based on which subtree the leaves i and j

are in. Define:

Pab = ∑
i ∈ La, j ∈ Lb

a,b ∈ {m,n, p,r}

(Ei j−Di j)2. (2.2)

Combining (2.1) and (2.2) we can express the distortion in terms of P:

∑
i, j

(Ei j−Di j)2 = ∑
a,b∈{m,n,p,r}

Pab. (2.3)

In this way, the contributions to the distortion for distances between leaves in La and leaves in Lb are

contained in Pab. Note that Pmm, Pnn, Ppp, and Prr do not depend on v, w, x, y, or z. We have thus cut down

the part to be optimized down to:

Pmn +Pmp +Pmr +Pnp +Pnr +Ppr. (2.4)

Consider the distance between two distinct leaves i and j. In the six parts we are interested in, the paths
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between i and j will go through two of {m,n, p,r}. The path goes from i to a to b and finally to j, where

a,b ∈ {m,n, p,r}. Define δia, δab, and δb j to be the distances between i and a, a and b, and b and j along

the tree. Then, we can write:

Ei j = δia +δab +δb j. (2.5)

At this point, it is worthwhile to simplify things by defining two new quantities:

Rab = ∑
i∈La, j∈Lb

(δia +δb j−Di j)2, (2.6)

Kab = ∑
i∈La, j∈Lb

(δia +δb j−Di j). (2.7)

Next, rewrite Pab, for a 6= b, as follows:

Pab = ∑
i∈La, j∈Lb

(δia +δab +δb j−Di j)2

= ∑
i∈La, j∈Lb

(δia +δb j−Di j)2 +2 ∑
i∈La, j∈Lb

δab(δia +δb j−Di j)+ ∑
i∈La, j∈Lb

δ 2
ab

= Rab +2δabKab + |La||Lb|δ 2
ab.

Because Rab do not depend on v, w, x, y, or z, we may drop it from the quantity being optimized. Call

the quantity being optimized M:

M = ∑
a,b ∈ {m,n, p,r}

a 6= b

(2δabKab + |La||Lb|δ 2
ab). (2.8)
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2.1.3 Edge Weight Updates after Rotation

Restating δab in terms of unknown variables v, w, x, y, and z we have:

δmn = v+ x+ y,

δmp = v+ x+ z,

δmr = w+ x,

δnp = y+ z,

δnr = v+w+ y,

δpr = v+w+ z. (2.9)

Next, we compute partial derivatives of M with respect to v, w, x, y, and z, and let them be zero.

∂
∂v

M = 2 ∑
(a,b)∈{(m,n),(m,p),(n,r),(p,r)}

(Kab + |La||Lb|δab) = 0,

∂
∂w

M = 2 ∑
(a,b)∈{(m,r),(n,r),(p,r)}

(Kab + |La||Lb|δab) = 0,

∂
∂x

M = 2 ∑
(a,b)∈{(m,n),(m,p),(m,r)}

(Kab + |La||Lb|δab) = 0,

∂
∂y

M = 2 ∑
(a,b)∈{(m,n),(n,p),(n,r)}

(Kab + |La||Lb|δab) = 0,

∂
∂ z

M = 2 ∑
(a,b)∈{(m,p),(n,p),(p,r)}

(Kab + |La||Lb|δab) = 0.

Collecting all this into matrix form as a linear equation, we get the beautiful equation:
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µν + µρ +νζ +ρζ νζ +ρζ µν + µρ µν +νζ µρ +ρζ

νζ +ρζ µζ +νζ +ρζ µζ νζ ρζ

µν + µρ µζ µρ + µν + µζ µν µρ

µν +νζ νζ µν µν +νζ +νρ νρ

µρ +ρζ ρζ µρ νρ µρ +νρ +ρζ







v

w

x

y

z




=−




Kmn +Kmp +Knr +Kpr

Kmr +Knr +Kpr

Kmp +Kmn +Kmr

Kmn +Knr +Knp

Kmp +Knp +Kpr




. (2.10)

Noting the factors in rows and columns we can rewrite this a bit. Letting s = µ +ν +ρ +ζ , t = µ +ζ ,

and u = ν +ρ we can rewrite (2.10) as:




tu u u t t

u s/ζ −1 1 1 1

u 1 s/µ−1 1 1

t 1 1 s/ν−1 1

t 1 1 1 s/ρ−1







v

ζ w

µx

νy

ρz




=−




Kmn +Kmp +Knr +Kpr

(Kmr +Knr +Kpr)/ζ

(Kmp +Kmn +Kmr)/µ

(Kmn +Knr +Knp)/ν

(Kmp +Knp +Kpr)/ρ




. (2.11)

The determinant is 16tu. Let σ = t−u and

ξ = ∑
a,b∈{ζ ,µ ,ν ,ρ},a6=b

a
b
. (2.12)

Solving yields:
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v

ζ w

µx

νy

ρz




=−1
4




ξ
tu

2µ−s
µu

2ζ−s
ζ u

2ρ−s
ρt

2ν−s
νt

2µ−s
µu

ζ s
µu −σ

u 0 0

2ζ−s
ζ u −σ

u
µs
ζ u 0 0

2ρ−s
ρu 0 0 νs

ρt
σ
t

2ν−s
νu 0 0 σ

t
ρs
νt







Kmn +Kmp +Knr +Kpr

(Kmr +Knr +Kpr)/ζ

(Kmp +Kmn +Kmr)/µ

(Kmn +Knr +Knp)/ν

(Kmp +Knp +Kpr)/ρ




. (2.13)

Moving the factors back into the matrix gives us:




v

w

x

y

z




=−1
4




ξ
tu

2µ−s
µζ u

2ζ−s
µζ u

2ρ−s
νρt

2ν−s
νρt

2µ−s
µζ u

s
µζ u − σ

µζ u 0 0

2ζ−s
µζ u − σ

µζ u
s

µζ u 0 0

2ρ−s
νρt 0 0 s

νρt
σ

νρt

2ν−s
νρt 0 0 σ

νρt
s

νρt







Kmn +Kmp +Knr +Kpr

Kmr +Knr +Kpr

Kmp +Kmn +Kmr

Kmn +Knr +Knp

Kmp +Knp +Kpr




. (2.14)

2.1.4 Degeneracies and Negative Values

At this point, there are two concerns. The first concern is that this solution will be undefined. This

occurs when one or more of µ , ν , ρ , or ζ is zero. (A physical interpretation is that one of the edge lengths

is arbitrary because the edge is irrelevant and does not contribute to the distortion.)

Let r = 0 (i.e., we are rotating about the root of the tree). Then Kmr = Knr = Kpr = 0. We no longer

need to solve for w. Thus, the entire equation can be reduced by one degree:




v

x

y

z




=−1
4




ξ
tu

2ζ−s
µζ u

2ρ−s
νρt

2ν−s
νρt

2ζ−s
µζ u

s
µζ u 0 0

2ρ−s
νρt 0 s

νρt
σ

νρt

2ν−s
νρt 0 σ

νρt
s

νρt







Kmn +Kmp

Kmp +Kmn

Kmn +Knp

Kmp +Knp




. (2.15)

This does not remove all occurrences of ζ from the denominators, so it is necessary to reconsider the
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original matrix with nonzero combinations of µ , ν , ρ , and ζ :




µν + µρ +νζ +ρζ νζ +ρζ µν + µρ µν +νζ µρ +ρζ

νζ +ρζ µζ +νζ +ρζ µζ νζ ρζ

µν + µρ µζ µρ + µν + µζ µν µρ

µν +νζ νζ µν µν +νζ +νρ νρ

µρ +ρζ ρζ µρ νρ µρ +νρ +ρζ




. (2.16)

By examining the characteristic polynomial of this matrix, we observe that the rank is five when

µ,ν ,ρ,ζ 6= 0. If one of these is zero, the rank drops immediately to thre. If two are zero, the rank be-

comes one. After three are zero, the matrix is identically zero. By construction of our matrix, the rotating

nodes always have two children. Thus, µ,ν ,ζ 6= 0 and only ρ = 0 is possible.

Consider the distances δab again, ignoring those relying on ζ (Since there are no nodes using these

distances). We can restate:

δmn = v+ x+ y,

δmp = v+ x+ z,

δnp = y+ z.

There are dependencies on v+ x, but no other dependence on either v or x. Letting v = 0, we have:




µν + µρ µν + µρ µν µρ

µν + µρ µρ + µν µν µρ

µν µν µν +νρ νρ

µρ µρ νρ µρ +νρ







0

x

y

z




=−




Kmn +Kmp

Kmp +Kmn

Kmn +Knp

Kmp +Knp




. (2.17)

The equation can now be reduced to:
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µρ + µν µν µρ

µν µν +νρ νρ

µρ νρ µρ +νρ







x

y

z




=−




Kmp +Kmn

Kmn +Knp

Kmp +Knp




. (2.18)

The determinant of the coefficient matrix is 4µ2ν2ρ2 > 0, so the matrix is invertible. Note that s =

µ +ν +ρ here:




x

y

z




=− 1
4µνρ




s 2ρ− s 2ν− s

2ρ− s s 2µ− s

2ν− s 2µ− s s







Kmp +Kmn

Kmn +Knp

Kmp +Knp




. (2.19)

For practical implementation, it may be better to choose v and x equal, in which case, assign x/2 to

each.

The second concern is harder to deal with; it may be possible for the values computed to be negative.

Changing negative values to zero seems like a fair approach. A much better approach is to use a quadratic

programming formulation, which we do in Section 2.2.

2.1.5 Efficient Computation

We make use of Kab and |La| in the computation of the edge weights. (The matrix depends only on

|La|.) Thus, balancing the tree can be done efficiently if these can be stored and updated upon rotation. |La|
is trivial; it is the number of leaves beyond a and does not change. However, we must also update these for

nodes α and β : |Lβ |r| = |Ln|+ |Lp| and |Lα|r|= |Lm|+ |Ln|+ |Lp|. Here, Lα|r and Lβ |r are taken to be the

leaves reachable from node r through α and β . Consider Kab:

Kab = ∑
i∈La, j∈Lb

(δia +δb j−Di j). (2.20)

If we define Sa = ∑i∈La δia, a ∈ {m,n, p,r,α,β} then Kab simplifies to:
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Kab = |Lb|Sa + |La|Sb− ∑
i∈La, j∈Lb

Di j. (2.21)

Note that:

Sβ = ∑
i∈Ln∪Lp

δiβ

= ∑
i∈Ln

(δin +δnβ )+ ∑
i∈Lp

(δip +δpβ )

= ∑
i∈Ln

δin + |Ln|δnβ + ∑
i∈Lp

δip + |Lp|δpβ

= Sn +Sp + |Ln|y+ |Lp|z.

Similarly, we get Sα from Sβ :

Sα = ∑
i∈Lm∪Lβ |r

δiα

= ∑
i∈Lm

(δim +δmα)+ ∑
i∈Lβ |r

(δiβ +δβα)

= ∑
i∈Lm

δim + |Lm|δmα + ∑
i∈Lβ |r

δiβ + |Lβ |r|δβα

= Sm +Sβ + |Lm|x+ |Lβ |r|v.

Let:

Fab = ∑
i∈La, j∈Lb

Di j. (2.22)

Store Fab for all node pairs a,b, noting that Fab = Fba. Consider the process of updating Fab. Let a’s

neighbors be i, j, and k, and assume that k is its neighbor along the path ab, as shown in Figure 2.2. Then:
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Figure 2.2: Let a’s neighbors be i, j, and k. Assume that k is the neighbor along the path ab.

Fab = ∑
u∈La,v∈Lb

Duv

= ∑
u∈Li∪L j ,v∈Lb

Duv

= ∑
u∈Li,v∈Lb

Duv + ∑
u∈L j ,v∈Lb

Duv

= Fib +Fjb.

Thus, we can compute an entry by looking just beyond one of the ends (looking beyond a in this case).

Next we will consider the update rules. Consider first the ways in which Fab can remain unchanged. It

is unchanged if a,b ∈ Tm∪Tn∪Tp∪Tr. This is because the value of Fab depends only on which leaves lie

beyond a and b. Since La and Lb are not changed, Fab is unchanged. Fab is also unchanged if a = α,b ∈ Tm

or a = β ,b ∈ Tp. This is because the nodes beyond α and β in these cases are the same before and after the

rotation. The cases that need to be updated are Fαβ , Fαx, Fβy where x ∈ Tn∪Tp∪Tr and y ∈ Tm∪Tn∪Tr.

Next we can update by noting that Fαx = Frx + Fmx for x ∈ Tn ∪ Tp. Similarly, Fβy = Fny + Fpy for

x ∈ Tm∪Tr. Finally, we can compute the rest; Fαw = Fmw +Fβw for w ∈ Tr, Fβ z = Fpz +Fαz for z ∈ Tn, and

Fαβ = Fαn +Fα p. This completes the updates on Fab.
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2.1.6 Global Edge Weight Updates

The same ideas can be applied to the entire tree after an arbitrary change. In this case, we will be

updating all weights in the tree. Reusing the notation from the local updates, the total distortion P of the

tree is:

P = ∑
i, j

(Ei j−Di j)2. (2.23)

Let wk, 1≤ k≤ 2n−3, represent the weights to be assigned to the edges of the tree. Because the weights

of the edges leaving the root of the tree are not independent, for the purposes of computing weights, we

take one of the weights to be zero and do not assign to it a variable. There are n leaves, 2n−2 edges, and

2n−3 weights.

Let Ai jk = 1 if wk is on the path from leaf i to leaf j; Ai jk = 0 otherwise. Note that Ai jk = A jik, so that A

is symmetric in its first two indices. Note that Ai jk is fixed, since it is determined by the tree’s topology and

the leaf and weight labels. We can use Ai jk to express Ei j in terms of the weights wk:

Ei j = ∑
k

Ai jkwk. (2.24)

Combining (2.23) and (2.24) we have:

P = ∑
i, j

(
∑
k

Ai jkwk−Di j

)2

. (2.25)

We must minimize P with respect to the variables wk. We accomplish this by computing the partials of

P with respect to those variables.
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∂
∂wk

P =
∂

∂wk
∑
i, j

(
∑
m

Ai jmwm−Di j

)2

= ∑
i, j

∂
∂wk

(
∑
m

Ai jmwm−Di j

)2

= 2∑
i, j

(
∑
m

Ai jmwm−Di j

)
∂

∂wk

(
∑
m

Ai jmwm−Di j

)

= 2∑
i, j

(
∑
m

Ai jmwm−Di j

)
∂

∂wk
∑
m

Ai jmwm

= 2∑
i, j

Ai jk

(
∑
m

Ai jmwm−Di j

)

= 2∑
i, j

Ai jk ∑
m

Ai jmwm−2∑
i, j

Ai jkDi j.

Setting these to zero gives us 2n−3 equations in 2n−3 unknowns, which we can write this as a system

of equations:

Mw = b, (2.26)

where w = (wk) is the unknown vector, and the kth entry of the right hand vector is:

bk = ∑
i, j

Ai jkDi j. (2.27)

Substituting these and comparing with the equations, we find that Mkm must be given by:

Mkm = ∑
i, j

Ai jkAi jm. (2.28)

The weights are now w = M−1b, provided M is invertible. As before, the weights obtained in this way

may be negative. When this happens, these weights must be forced into the feasible region, such as by
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making them zero.

Theorem 1. Matrix M is invertible.

A splitting tree T is a tree in which every non-leaf has degree three. Let T have n leaves and 2n− 3

edges. Call the weights of these edges wk, 1 ≤ k ≤ 2n− 3, and label the leaves 1 through n. Define

δ : [n]× [n]→R so that δ (i, j) is the weight of the path from leaf i to leaf j, the sum of the weights of the

edges along the path.

Claim 2. Every splitting tree T has the property that there exists a list L of 2n− 3 pairs (i, j) ∈ [n]× [n],

such that the 2n−3 weights δ (Li) uniquely determine the 2n−3 weights wk.

Proof: The proof is inductive on the size of the tree. For the inductive step, n ≥ 3. Let l be some leaf,

w2n−3 be the weight of edge (l,m) for some node m, w2n−4 be the weight of edge (m,r) for some r, and

w2n−5 be the weight of edge (m,s) for some s. Create from this tree T on n leaves a tree T ′ on n−1 leaves

by removing leaf c and node m. Let w′k = wk for k < 2n− 5 and replace the edges (m,r) and (m,s) with

an edge (r,s) whose weight is w′2n−5 = w2n−5 + w2n−4. Compute path weights δ ′(i, j) using edge weights

w′. Tree T ′ is a splitting tree, since the remaining nodes and leaves have the same degree as in T . By the

inductive hypothesis, this tree has a list L′ of 2n−5 pairs (i, j)∈ [n]× [n], such that the 2n−5 weights δ ′(L′i)

uniquely determine the 2n−3 weights wk. We can write the path weights δ ′(L′i) as a linear combination of

the edge weights w′k:

δ ′(L′i) =
2n−5

∑
k=1

B′ikw′k, (2.29)

where B′ik = 1 if the edge with weight w′k is along path L′i, and B′ik = 0 otherwise. Because w′k are uniquely

defined in this way, |B′| 6= 0. Let a be a leaf in T reachable from l through r, and let b be some leaf in T

reachable from l through s. Let Li = L′i for 1≤ i≤ 2n−5, L2n−4 = (l,a), and L2n−3 = (l,b). Letting single

indices B′[i] indicate columns. The corresponding matrix B has the following form:
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B =




B′[1] · · · B′[2n−6] B′[2n−5] B′[2n−5] 0

* · · · * 0 1 1

* · · · * 1 0 1




, (2.30)

where ∗ indicate entries whose values do not affect later computations. The determinant |B| is

|B| =

∣∣∣∣∣∣∣∣∣∣

B′[1] · · · B′[2n−6] B′[2n−5] B′[2n−5] 0

* · · · * 0 1 1

* · · · * 1 0 1

∣∣∣∣∣∣∣∣∣∣

= −
∣∣∣∣∣∣

B′[1] · · · B′[2n−6] B′[2n−5] B′[2n−5]

* · · · * 1 0

∣∣∣∣∣∣
+

∣∣∣∣∣∣
B′[1] · · · B′[2n−6] B′[2n−5] B′[2n−5]

* · · · * 0 1

∣∣∣∣∣∣

= 2

∣∣∣∣∣∣
B′[1] · · · B′[2n−6] B′[2n−5] B′[2n−5]

* · · · * 0 1

∣∣∣∣∣∣

= 2
∣∣∣ B′[1] · · · B′[2n−6] B′[2n−5]

∣∣∣

= 2|B′|. (2.31)

The first expansion by minors is along the last column, and the second is along the last row, noting

that all other cofactors will have zero determinant due to the duplicate columns B′[2n−5]. The important

observation is that |B| 6= 0, implying that the path weights δ (Li) uniquely define edge weights wk.

The base case is the tree with n = 2 leaves i and j and an edge connecting them. In this case, B is just

the 1× 1 identity matrix, and L1 = (i, j). Note that in the general case, this construction produces a B for

any splitting tree such that |B|= 2n−2. ¥

Proof of Theorem 1: Return to the situation where we have a rooted tree T on n leaves. Removing the

root and setting the weight of one of the edges to the root to zero yields a splitting tree. From this, we have

a nonsingular matrix B that expresses the path weight δ (Li) in terms of the weights wk. If Li = (a,b), then

we let Li1 = a and Li2 = b. The relationship between Ai jk and Bmk can be expressed as:



28

Bmk = ALm1Lm2k. (2.32)

Regarding A as an n2×(2n−3) matrix by merging the first two indices, then M = AT A. The relationship

between A and B implies that A contains a (2n−3)× (2n−3) submatrix with nonzero determinant, so that

A has rank 2n−3. It follows that M has rank 2n−3 and is invertible. ¥

2.2 Quadratic Programming Formulations

The least squares formulation left one question unanswered. That is, how should the case of negative

edge weights be handled? An alternate formulation using quadratic programming solves this problem,

while retaining a polynomial runtime. There are again three situations that need to be treated: local update,

degenerate local update, and global update.

2.2.1 Local Update

Much of the least squares framework is directly applicable to quadratic programming. In particular, if

we expand (2.8) we get:

M = 2δmnKmn +2δmpKmp +2δmrKmr +2δnpKnp +2δnrKnr +2δprKpr

+ |Lm||Ln|δ 2
mn + |Lm||Lp|δ 2

mp + |Lm||Lr|δ 2
mr + |Ln||Lp|δ 2

np + |Ln||Lr|δ 2
nr + |Lp||Lr|δ 2

pr.

= 2δmnKmn +2δmpKmp +2δmrKmr +2δnpKnp +2δnrKnr +2δprKpr

+ µνδ 2
mn + µρδ 2

mp + µζ δ 2
mr +νρδ 2

np +νζ δ 2
nr +ρζδ 2

pr.

This suggests the following definitions for a matrix Q and vectors x and c:
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Q =




µν 0 0 0 0 0

0 µρ 0 0 0 0

0 0 µζ 0 0 0

0 0 0 νρ 0 0

0 0 0 0 νζ 0

0 0 0 0 0 ρζ




,

x =




δmn

δmp

δmr

δnp

δnr

δpr




, c =




Kmn

Kmp

Kmr

Knp

Knr

Kpr




.

This allows us to write M as a quadratic programming objective function:

1
2

M =
1
2

xT Qx+ cT x. (2.33)

This objective function has five inequality constraints. In particular, the six equations from (2.9) and

the nonnegativity conditions v,w,x,y,z ≥ 0 yield constraints on x. We only need five of those equations to

express the variables v, w, x, y, and z. In matrix form, we have:
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x =




1 0 1 1 0

1 0 1 0 1

0 1 1 0 0

0 0 0 1 1

1 1 0 1 0

1 1 0 0 1







v

w

x

y

z




. (2.34)

We need to invert this equation, but the matrix is not square. We may overcome this by ignoring the last

row of the matrix, invert as a 5×5 matrix, and insert zeros as the last column.




v

w

x

y

z




=
1
2




0 1 −1 −1 1 0

−1 0 1 0 1 0

1 0 1 0 −1 0

1 −1 0 1 0 0

−1 1 0 1 0 0




x ≥ 0.

This takes care of the inequality constraints, but there is still a problem with this formulation. In

particular, there are six independent variables where before there were just five. We must eliminate one

degree of freedom by introducing a constraint. This constraint may be found by examining the nullspace of

the transpose of the 6×5 matrix in (2.34). The nullspace is (1,−1,0,0,−1,1). This leads to the constraint

δmn−δmp−δnr +δpr = 0, where the equality to zero is obtained by substitution of (2.9). At this point, it is

worth noting that the form of the nullspace implies that we could not have ignored the third or fourth rows

before taking the inverse, since the nullspace is identically zero on those coordinates. Taking advantage of

the fact that a≥ 0 and −a≥ 0 imply a = 0, we can express all of the constraints as one matrix inequality:
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0 1 −1 −1 1 0

−1 0 1 0 1 0

1 0 1 0 −1 0

1 −1 0 1 0 0

−1 1 0 1 0 0

1 −1 0 0 −1 1

−1 1 0 0 1 −1




x ≥ 0 (2.35)

It only remains to show that we can solve this problem in polynomial time. In particular, the problem

can be solved in polynomial time to any prescribed error with the ellipsoid method if Q is positive-definite

[15, 16, 6]. However, we have |La| ≥ 1 for a ∈ {m,n, p,r} or µ,ν ,ρ ,ζ ≥ 1. Then, Q is a diagonal matrix

with positive elements along the diagonal. It follows that Q is positive-definite, and the problem of local

updates can be solved in polynomial time. This statement has actually only been shown to be true in the

general case, since it does not consider the degenerate case of rotations at the root, which is the topic of the

next section.

2.2.2 Degenerate Local Update

The degenerate case is where the rotation was performed at the root. In this case, |Lr| = ζ = 0, so the

analysis above does not suffice. Further, δmr, δnr, and δpr do not make sense. Substituting ζ = 0 in Q, we

see that three of the six diagonal entries become zero, and those portions will contribute nothing to the sum.

Further Kmr = Knr = Kpr = 0 as before. Removing the terms that do not contribute from the definitions of

Q, x, and c, define:

Q′ =




µν 0 0

0 µρ 0

0 0 νρ




,
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x′ =




δmn

δmp

δnp




, c′ =




Kmn

Kmp

Knp




.

Once again we have a diagonal matrix Q′ with positive entries along the diagonal. If we can update the

constraints appropriately, we will have a solution in polynomial time using the ellipsoid method. We return

to (2.34) and remove the third, fifth, and sixth rows to account for the rows eliminated from x:

x′ =




1 0 1 1 0

1 0 1 0 1

0 0 0 1 1







v

w

x

y

z




.

This 3×5 matrix has a nullspace with two basis vectors (0,1,0,0,0) and (1,0,−1,0,0). The first states

that w = 0, and the second states that v+x = 0, which are precisely what we determined in the least squares

formulation. We let v = x and remove v and w from the equation, yielding:

x′ =




1 1 0

1 0 1

0 1 1







x

y

z




The constraints x,y,z≥ 0 are obtained by inverting this equation:




x

y

z




= 2




1 1 −1

1 −1 1

−1 1 1




x′ ≥ 0.
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Unlike the general case, we do not have any extra degrees of freedom, so there are no equality constraints

needed. The degenerate case of the local update problem is solvable in linear time by this formulation.

2.2.3 Global Update

We now turn our attention to the global update problem for formulation as a quadratic programming

problem. This formulation, like the local formulation, begins by reusing some of the results from the least

squares formulation. We begin by rewriting (2.25) by expanding the square:

P = ∑
i, j

(
∑
k

Ai jkwk−Di j

)2

= ∑
i, j




(
∑
k

Ai jkwk

)2

−2Di j ∑
k

Ai jkwk +D2
i j




= ∑
i, j

(
∑
k

Ai jkwk

)2

−2∑
i, j

Di j ∑
k

Ai jkwk +∑
i, j

D2
i j

= ∑
i, j,k,m

Ai jkwkAi jmwm−2∑
k

wk ∑
i, j

Di jAi jk +∑
i, j

D2
i j

= ∑
k,m

wkMkmwm−2wk ∑
i, j

Di jAi jk +∑
i, j

D2
i j.

We simplify this by defining

ck = −∑
i, j

Di jAi jk,

P′ =
1
2

P− 1
2 ∑

i, j
D2

i j.

In particular, P′ differs from P by a positive constant factor and a constant shift, so minimizing P′ and P are

equivalent. Writing out P′ gives:
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P′ =
1
2 ∑

k,m
∑
k

wkMkmwm +∑
k

wk ∑
i, j

ck

=
1
2

wT Mw+ cT w

The global update problem is solved in polynomial time if we can show two things. The first is that M

is positive-definite. From (2.28) we know that M is positive-semidefinite. Theorem 1 strengthens this and

shows that M is positive-definite. This leaves only the final piece, expressing the constraints in linear form.

This is trivial, because the constraints are expressed as w≥ 0.

Note that the choice of weights as variables made the constraints trivial but the matrix M less so. The

same choice is possible with the local update case by substituting (2.34) into (2.33) and taking the column

of weights to be the new variable vector.

2.3 Conclusion

The problem of exact computation of local edge weights for a metric tree under the L2 norm can be

formulated as a linear system of equations with a fixed number of constraints, thus allowing efficient re-

computation of edge weights after a rotation operation. Updating all edges in the tree at once under the

same norm can be formulated as a system of linear equations that is linear in the size and admits a poly-

nomial time solution. Both solutions, however, may result in negative weights being chosen for edges, so

the solutions obtained may need to be revised. An alternate formulation in terms of quadratic programming

solves the negative weight problem by including the constraints in the actual solution. The result is an

optimal polynomial algorithm for both local and global updates.
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3. Balancing Metric Trees under L∞

In this section, we shift our focus from the L2 to the L∞ norm. There is an efficient 3-approximate

embedding of an arbitrary distance metric into a tree [2]. This makes the L∞ norm particularly attractive

for trees. As with the L2 norm, the focus is on rotations. Both local and global edge weight updates are

considered.

3.1 Local Edge Weight Updates

The case of a local update is considered first. In this case, it is assumed that we have a tree approximating

the original metric, and we have just finished performing a rotation operation. This section begins with an

introduction to the notation used throughout the chapter. The notation is the same as the notation from the

previous chapter and is included for purposes of being self-contained.

3.1.1 Notation

Let D = [Di j]n×n be the original metric, and E = [Ei j]n×n denote the metric for the tree T after a single

rotation has been performed. Let Ta, where a ∈ {m,n, p,r}, denote the nodes of T reachable from α and

β through a. Let La denote the leaves of Ta. We will use µ = |Lm|, ν = |Ln|, ρ = |Lp|, and ζ = |Lr|.
Define these edge lengths: v = αβ , w = αr, x = αm, y = βn, and z = β p. These are the quantities to be

determined, and they must be nonnegative.

3.1.2 Distortion

The total distortion after the rotation under the L∞ norm is:

P = ‖E−D‖∞ = max
i, j
|Ei j−Di j|. (3.1)

Consider the pairwise distances split into ten categories Pab ∈{Pmm,Pmn,Pmp,Pmr,Pnn,Pnp,Pnr,Ppp,Ppr,Prr},

where one leaf is in subtree La, the other leaf is in Lb, and a,b ∈ {m,n, p,r}:
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Figure 3.1: Local structure of the tree T (a) before and (b) after rotation about the node β

Pab = max
i∈La, j∈Lb

|Ei j−Di j|. (3.2)

Combining (3.1) and (3.2) we can express P in terms of Pab:

P = max
a,b

Pab. (3.3)

Changing the weights of edges around the rotation does not affect distances between nodes lying com-

pletely within a subtree La, so Paa is unaffected by the choice of weights.

Fix a choice of a,b, where a 6= b. We now deal with distances between leaves in La and Lb. Let γab

denote contribution of edge weights v, w, x, y, and z to the weight of a path from a leaf in La to a leaf in Lb.

Fix v = w = x = y = z = 0 so that γab = 0, and compute the quantities:

P∗+ab = max
i∈La, j∈Lb

(E∗i j−Di j), (3.4)

P∗−ab = max
i∈La, j∈Lb

−(E∗i j−Di j). (3.5)

The star superscript indicates that the value was computed with γab = 0. Now, unfix v, w, x, y, and z and

consider that γab ≥ 0, as it will be in the general case, and let:
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P+
ab = max

i∈La, j∈Lb
(Ei j−Di j), (3.6)

P−ab = max
i∈La, j∈Lb

−(Ei j−Di j). (3.7)

These two sets of quantities are related:

P+
ab = max

i∈La, j∈Lb
(Ei j−Di j)

= max
i∈La, j∈Lb

((E∗i j + γab)−Di j)

= max
i∈La, j∈Lb

(γab +(E∗i j−Di j))

= γab + max
i∈La, j∈Lb

(E∗i j−Di j)

= γab +P∗+ab .

Similarly, we have:

P−ab = max
i∈La, j∈Lb

−(Ei j−Di j)

= max
i∈La, j∈Lb

−((E∗i j + γab)−Di j)

= max
i∈La, j∈Lb

(−(E∗i j−Di j)− γab)

= max
i∈La, j∈Lb

−(E∗i j−Di j)− γab

= P∗+ab − γab.

Using (3.8) and (3.8) we can express Pab in terms of P∗+ and P∗−:

Pab = max(P+
ab,P

−
ab)

= max(P∗+ab + γab,P∗−ab − γab).
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The quantities P∗+ab and P∗−ab are not affected by the choice of weights (and thus the choice of γab). Unfix

a and b, and let Peq = maxa Paa. Our distortion can be written:

P = max
(

Peq,max
ab

(P∗+ab + γab),max
ab

(P∗−ab − γab)
)

. (3.8)

The inner maxima are over six quantities. Thus, the outer maximum is to be computed over 13 quanti-

ties.

3.1.3 Edge Weight Updates after Rotation

Using the variables v, w, x, y, and z, we have: γmr = w+x, γmn = x+v+y, γmp = x+v+z, γnr = w+v+y,

γnp = y+ z, and γpr = w+ v+ z.

MINIMIZE: M

SUBJECT TO: P∗+mr +w+ x≤M, P∗−mr −w− x≤M,

P∗+mn + x+ v+ y≤M, P∗−mn − x− v− y≤M,

P∗+mp + x+ v+ z≤M, P∗−mp − x− v− z≤M,

P∗+nr +w+ v+ y≤M, P∗−nr −w− v− y≤M,

P∗+np + y+ z≤M, P∗−np − y− z≤M,

P∗+pr +w+ v+ z≤M, P∗−pr −w− v− z≤M,

Peq ≤M, v,w,x,y,z,M ≥ 0.

In canonical form:

MAXIMIZE: −M

SUBJECT TO: M−w− x≥ P∗+mr , M +w+ x≥ P∗−mr ,

M− x− v− y≥ P∗+mn , M + x+ v+ y≥ P∗−mn ,

M− x− v− z≥ P∗+mp , M + x+ v+ z≥ P∗−mp ,

M−w− v− y≥ P∗+nr , M +w+ v+ y≥ P∗−nr ,

M− y− z≥ P∗+np , M + y+ z≥ P∗−np ,

M−w− v− z≥ P∗+pr , M +w+ v+ z≥ P∗−pr ,

M ≥ Peq, v,w,x,y,z,M ≥ 0.
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This is a linear programming problem with 13 constraints and six variables. Observe that v = w = x =

y = z = 0 and M sufficiently large is a feasible solution and provides an upper bound on M. Further, M ≥ 0,

showing that M is bounded and thus has an optimal solution.

Look back to the first statement of the constraints. Each constraint consists of a quantity that is less

than M, and the equations collectively state that M is (at least) the maximum of all values to be maximized.

Because M is to be minimized, it will be no larger than the maximum. Thus, we are minimizing the

maximum distortion, which is what we want to do. (Note that M, being the maximum, will always be

nonnegative, so the explicit requirement that it be so is redundant.)

Special Case: Rotating the Root

It still remains to consider the special case, where α becomes the root. This eliminates all equations

involving w, since those deal with paths that no longer exist. This leaves:

MINIMIZE: M

SUBJECT TO: P∗+mn + x+ v+ y≤M, P∗+mp + x+ v+ z≤M,

P∗+np + y+ z≤M, P∗−mn − x− v− y≤M,

P∗−mp − x− v− z≤M, P∗−np − y− z≤M,

Peq ≤M, v,x,y,z,M ≥ 0.

By letting x = v, we are able to reduce this to:

MINIMIZE: M

SUBJECT TO: P∗+mn +2x+ y≤M, P∗+mp +2x+ z≤M,

P∗+np + y+ z≤M, P∗−mn −2x− y≤M,

P∗−mp −2x− z≤M, P∗−np − y− z≤M,

Peq ≤M, x,y,z,M ≥ 0.

This is just a linear programming problem with seven constraints and four variables. Again, it is always

feasible by letting x = y = z = 0 and letting M be arbitrarily large. Each constraint consists of a quantity

that is less than M, and the equations collectively state that M is (at least) the maximum of all values to be

maximized. Because M is to be minimized, it will be no larger than the maximum. Thus, we are minimizing

the maximum distortion, which is what we want to do.
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3.2 Global Edge Weight Updates

Note that the local edge weight update formulation extends to allow the optimal choice of edge lengths

for the entire tree. In this section, we consider the problem of choosing edge weights for each edge of the

tree such that the L∞ norm will be minimized.

3.2.1 Formulation

In this case, there will be N leaves, N−1 internal nodes, 2N−2 edges, of which two should be chosen

equal (those connected to the root). We also have the M variable, leaving 2N−2 variables in the problem.

Each pairwise distance yields two constraints. The quantity Peq is zero since it consists of distances between

leaves and themselves. This yields a total of N2−N constraints. In particular, given a tree structure and an

ideal distance metric, the weights of the tree can be chosen optimally (under the L∞ norm) in polynomial

time.

This can be expressed in the form Ax ≥ b. The variables xi for 1 ≤ i < 2N− 1 correspond to weights

for each edge, with x1 corresponding to the weight of both edges connected to the root, and x2N−2 = M and

plays the part of the maximum. Let S = 1
2 (N2−N) denote the number of distinct paths, and let p j, j ≤ S,

denote the paths between distinct leaves listed in some order. Observe that b j is the distance between the

leaves at the endpoints of path p j according to the original metric. The objective to be maximized is just

−x2N−2.

Finally, we must describe the coefficients in A. The case corresponding to the variable M is Ai,(2N−2) =

1. The rest of this paragraph assumes j < 2N−2. If i ≤ S then Ai j = 1 if weight xi occurs along the path

p j, and Ai j = 0 otherwise. The remaining elements are determined by A(i+M), j =−Ai j.

3.2.2 Efficient Computation

Let nodes r and s lie just beyond b, as shown in Figure 3.2. Then, Lb = Lr ∪Ls, Lr ∩Ls = /0. Let δab

denote the distance between a and b. Then, x = δab. Note that the starred quantities depend on x and thus

depend on the δab. However, the unstarred quantities do not:
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Figure 3.2: Nodes r and s are adjacent to b but not along the path from b to a.

P∗+ab = −δab +P+
ab

= −δab + max
i∈La, j∈Lb

(Ei j−Di j)

= −δab + max
i∈La, j∈Lr∪Ls

(Ei j−Di j)

= −δab +max( max
i∈La, j∈Lr

(Ei j−Di j), max
i∈La, j∈Ls

(Ei j−Di j))

= max(−δab + max
i∈La, j∈Lr

(Ei j−Di j),−δab + max
i∈La, j∈Ls

(Ei j−Di j))

= max(−δab +P+
ar ,−δab +P+

as)

= max(δar +P∗+ar ,δas +P∗+as ).

A similar approach holds for the other sign:
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P∗−ab = δab +P−ab

= δab + max
i∈La, j∈Lb

(Ei j−Di j)

= δab + max
i∈La, j∈Lr∪Ls

(Ei j−Di j)

= δab +max
(

max
i∈La, j∈Lr

(Ei j−Di j), max
i∈La, j∈Ls

(Ei j−Di j)
)

= max
(

δab + max
i∈La, j∈Lr

(Ei j−Di j)δab + max
i∈La, j∈Ls

(Ei j−Di j)
)

= max(δab +P−ar ,δab +P−as)

= max(−δar +P∗−ar ,−δas +P∗−as ).

This allows us to build up a table of these values and obtain each additional entry in constant time.

However, any modification to the tree can invalidate these entries. If a and b are leaves, then x = Ei j and

E∗i j = Ei j − x = 0. Further, being leaves implies {a} = La and {b} = Lb. Thus, P∗+ab = (E∗ab −Dab) =

−Dab and P∗−ab = −(E∗ab−Dab) = Dab. This gives us base cases from which the values can be recursively

computed.

Unfortunately, these quantities are all invalidated when La or Lb changes, when any edge between a and

b changes, or when any edge inside of La or Lb changes. This leads immediately to an O(n2) algorithm for

recomputing the twelve quantities required to do the update, but it would be nice to have a more efficient

updating algorithm. Unfortunately, maxima are not linear in the way sums are, so we cannot split these

expressions up further. Assuming an upper bound of O(n) rotations, this yields a cubic algorithm.

Next we will compute:

Peq = max
i, j∈La

|Ei j−Di j|. (3.9)

If a is a leaf, then Peq = Paa = |Eaa−Daa|= |0−0|= 0. Otherwise, assume that r and s are the children of

a, with La = Lr ∪Ls and Lr ∩Ls = /0. We have:
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Peq = Paa

= max
i, j∈La

|Ei j−Di j|

= max
(

max
i, j∈Lr

|Ei j−Di j|, max
i, j∈Ls

|Ei j−Di j|, max
i∈Lr , j∈Ls

|Ei j−Di j|, max
i∈Ls, j∈Lr

|Ei j−Di j|
)

= max(Prr,Pss,Prs,Psr)

= max(Prr,Pss,Prs).

This requires the additional computation:

Prs = max(P+
rs ,P

−
rs )

= max(P∗+rs +δar +δas,P∗−rs −δar−δas).

3.3 Distortion Lower Bounds

In this section, we seek inequalities that remain unchanged by local updates and inequalities that limit

how much distortion may be caused by the local update.

3.3.1 Invariant Inequalities

Consider again the canonical form of the solution.

MAXIMIZE: −M

SUBJECT TO: M−w− x≥ P∗+mr , M +w+ x≥ P∗−mr ,

M− x− v− y≥ P∗+mn , M + x+ v+ y≥ P∗−mn ,

M− x− v− z≥ P∗+mp , M + x+ v+ z≥ P∗−mp ,

M−w− v− y≥ P∗+nr , M +w+ v+ y≥ P∗−nr ,

M− y− z≥ P∗+np , M + y+ z≥ P∗−np ,

M−w− v− z≥ P∗+pr , M +w+ v+ z≥ P∗−pr ,

M ≥ Peq, v,w,x,y,z,M ≥ 0.
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One can create new constraints by adding the second six constraints to the first six constraints and divide

by two. With these six new constraints and six weaker constraints obtained by applying the observation that

v,w,x,y,z≥ 0 to the first six constraints, we have 13 constraints that do not depend on v, w, x, y, or z:

M ≥ P∗+mr , M ≥ 1
2 (P∗+mr +P∗−mr ),

M ≥ P∗+mn , M ≥ 1
2 (P∗+mn +P∗−mn ),

M ≥ P∗+mp , M ≥ 1
2 (P∗+mp +P∗−mp ),

M ≥ P∗+nr , M ≥ 1
2 (P∗+nr +P∗−nr ),

M ≥ P∗+np , M ≥ 1
2 (P∗+np +P∗−np ),

M ≥ P∗+pr , M ≥ 1
2 (P∗+pr +P∗−pr ),

M ≥ Peq.

It is also very important to note that these constraints do not depend on the combinations of variables v,

w, w, y, and z that were used to construct the constraints, and this combination is the only thing separating

the optimal choice of weights before and after the rotation. Thus, these 13 lower bounds hold before and

after the rotation.

3.3.2 Lower Bound on Distortion Change

It will be helpful to write out the optimization problem prior to the rotation. Here, the variable naming

is similar in that w is the weight connected to r, x is the weight next to m, . . . , and v is the weight between

α and β . Then, the original problem is:

MAXIMIZE: −M

SUBJECT TO: M− v−w− x≥ P∗+mr , M +w+ v+ x≥ P∗−mr ,

M− x− y≥ P∗+mn , M + x+ y≥ P∗−mn ,

M− x− v− z≥ P∗+mp , M + x+ v+ z≥ P∗−mp ,

M−w− v− y≥ P∗+nr , M +w+ v+ y≥ P∗−nr ,

M− v− y− z≥ P∗+np , M + v+ y+ z≥ P∗−np ,

M−w− z≥ P∗+pr , M +w+ z≥ P∗−pr ,

M ≥ Peq, v,w,x,y,z,M ≥ 0.

With the optimal solution before the rotation, we get an assignment of v, w, x, y, and z. Applying this to

our new problem, with an extra variable ε to account for changes in M gives:
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MAXIMIZE: −M

SUBJECT TO: M + ε−w− x≥ P∗+mr , M + ε +w+ x≥ P∗−mr ,

M + ε− x− v− y≥ P∗+mn , M + ε + x+ v+ y≥ P∗−mn ,

M + ε− x− v− z≥ P∗+mp , M + ε + x+ v+ z≥ P∗−mp ,

M + ε−w− v− y≥ P∗+nr , M + ε +w+ v+ y≥ P∗−nr ,

M + ε− y− z≥ P∗+np , M + ε + y+ z≥ P∗−np ,

M + ε−w− v− z≥ P∗+pr , M + ε +w+ v+ z≥ P∗−pr ,

M + ε ≥ Peq, v,w,x,y,z,M ≥ 0.

If we agree to assume ε ≥ 0, some of these constraints follow from the definition of the remaining

variables and the observation that v ≥ 0. Note that ε can be increased without losing the feasibility of a

solution. While forcing it to be nonnegative may omit the optimal solution, it cannot cause the system to be

infeasible. Eliminate these equations:

M + ε− x− v− y≥ P∗+mn , M + ε +w+ x≥ P∗−mr ,

M + ε−w− v− z≥ P∗+pr , M + ε + y+ z≥ P∗−np .

Letting ε = v causes these to follow as well, and a feasible solution results. Thus, v is a bound on the

distortion, which is also trivially observed by examining the way the rotation affects the tree. Unfortunately,

there is no limit to how large v may be.

To see this, consider a tree with all edge weights equal to one, except the weight where v would be. Let

this weight be arbitrarily large. To see how bad it is, consider the distance from any point beyond r to any

point beyond p. This path has lost the edge of length s, so let the other edges change by ∆w and ∆z. For

the distances between m and n, let the changes be ∆x and ∆y. This puts bounds of M ≥ s−∆w−∆z and

M ≥ s−∆x−∆y. The distances from r to m give a distortion bound of M ≥ s + ∆w + ∆x. Similarly, the

distance from n to p gives a distortion bound of M ≥ s + ∆x + ∆y. Adding up all four inequalities gives:

4M ≥ 4s, so that the distortion is bounded below by s, which was chosen arbitrarily large.

3.4 Conclusion

The problem of exact computation of local edge weights for a metric tree under the L∞ norm can be

formulated as a linear programming problem with a fixed number of constraints, thus allowing efficient
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recomputation of edge weights after a rotation operation. Simultaneously updating all weights in the tree

can also be formulated as a linear programming problem. In this case, the linear programming problem has

a linear number of variables and constraints and thus admits a polynomial time solution.
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4. Tree Operations As Groups

There are a large number of ways to balance a single tree. Understanding how the balancing operations

work and interact can provide insight when the way balancing is performed matters. We consider and

analyze tree operations using the tools of abstract algebra. Flips can always be performed on a metric tree

without affecting the distortion of the tree, as is shown in 5.4. We concentrate on rotations and flips. It is

possible to consider tree operations in such a way that they form a group structure. Although the group

structure is complicated and does not yield a simple answer to the balancing question, it is worth studying

in its own right.

4.1 Infinite Complete Binary Trees

Consider a binary tree t rooted at a node n0. All nodes have two children. Label the left child of ni as

n2i+1 and the right child n2i+2. Letting L(i) = Li = 2i+1 and R(i) = Ri = 2i+2, we have the notation nRi

and nLi for the children of ni. Similarly, let πi = b i−1
2 c, so that the parent of ni is nπi. The first three levels,

including the root, are shown in Figure 4.1.

Next, consider operations that we can perform on the binary tree t. We can perform a left rotation on

node ni. Denote this operation ri, and denote its affect on the tree t as rit, using concatenation to indicate

operator composition and operator action. Similarly, we can perform a left rotation at node ni, which we

denote li. We can also perform a child flip (or just “flip”) at node ni, which we denote fi. Analogously, lit

and fit are trees resulting from the left rotation and flip. In particular, r0 and l0 are rotations around the root.

The operations f0, r0, and l0 are shown in Figure 4.2. The convention used in these illustrations, and the

convention we shall use for the remainder of the figures in this chapter, is that “leaves” of these diagrams

are really subtrees, and those subtrees are not changed.

Let t0 be a fixed, infinite, complete binary tree. We will now define a set T of infinite, complete binary

trees.

• t0 ∈ T .

• ∀t ∈ T,∀i,rit ∈ T .
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Figure 4.1: First three levels of the infinite tree. The numbers indicate the position with respect to the root.

(a) t0 (b) f0t0 (c) r0t0 (d) l0t0

Figure 4.2: The three generating operations applied to the root of a tree.

• ∀t ∈ T,∀i, lit ∈ T .

• ∀t ∈ T,∀i, fit ∈ T .

Similarly, we define a set S of actions. We denote the composition of two operations by concatenation

and refer to this operation accordingly as multiplication. For example, flipping about the root followed by

right rotation about the root is r0 f0. Note that the operations are performed right to left, as is more evident

when written as r0 f0t = r0( f0t). Let e be the identity action.

• ∀i,ri ∈ S

• ∀i, li ∈ S

• ∀i, fi ∈ S

• ∀a,b ∈ S,ab ∈ S
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Additionally, we let Ti be the subtree rooted at ni and Si the subgroup of S generated by rotations and

flips in subtree Ti. From this definition and two observations about the generators of S, we can make a very

important claim about S.

Proposition 3. The set S is a group under composition.

Proof: Inverses arise from relations in S. The first such relation follows from the observation that flips undo

themselves:

f 2
i = e, (4.1)

and the second relation comes from the observation that left and right rotations are inverse operations:

liri = rili = e. (4.2)

These two observations show that the generators have inverses: f−1
i = fi, r−1

i = li, and l−1
i = ri. In-

verses for composite elements are obtained from the formula (αβ )−1 = β−1α−1. Observe that S has an

identity element, since f 2
i = e ∈ S. Closure under composition is explicitly provided by the definition of S.

Associativity follows from the associativity of function composition, and it follows that S is a group. ¥

Note that li and ri possess inverses because they have been explicitly included. It was not actually

necessary to do this. This statement is made explicit by the following proposition.

Proposition 4. The operation ri can be obtained from the composition of flips and left rotations, and the

operation li can be obtained from the composition of flips and right rotations.

Proof: The proof is constructive, and follows from the observation of the following two identities:

ri = fi fLili fi fLi, (4.3)

li = fi fRiri fi fRi. (4.4)
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(a) t0 (b) f1t0 (c) f0 f1t0

(d) l0 f0 f1t0 (e) f1l0 f0 f1t0 (f) f0 f1l0 f0 f1t0

Figure 4.3: The three generating operations applied to the root of a tree.

¥

Note that fLi is a flip about the left child of ni. The first identity is illustrated in Figure 4.3. The second

identity is just a mirror image. It also follows algebraically from the first identity and the flip relations

below. Multiplying the first equation by li and the second by ri gives us the relations:

(li fi fLi)2 = (ri fi fRi)2 = e. (4.5)

Comparing t0 to l0 f0 f1t0 in Figure 4.3 shows that l0 f0 f1 performs two operations on t0. It swaps n0,n1

and swaps T2,T3. Described in this way, it is clear why it is its own inverse.

Proposition 5. An operation applied to the subtree TLi of a node ni is related to the same operation applied

to the subtree TRi by the flip fi.

Proof: This follows immediately from the following two relations, illustrated in Figure 4.4:
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(a) t0 (b) f0t0 (c) fR0 f0t0 (d) f0 fR0 f0t0

(e) t0 (f) f0t0 (g) rR0 f0t0 (h) f0rR0 f0t0

Figure 4.4: Illustration of αLi = fiαRi fi at the root with αi = fi and αi = ri.

αRi = fiαLi fi, (4.6)

αLi = fiαRi fi. (4.7)

¥

Theorem 6. The group S is finitely generated; in particular S = 〈r0, f0,r1, f1〉.

Proof: It is possible to write down relations that reduce an operation on node i in terms of operations on its

ancestors. Let αi denote one of li,ri, fi. Then, we have the relations:
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(a) t0 (b) l0t0 (c) αR0l0t0 (d) r0αR0l0t0

(e) fR0t0 (f) l0 fR0t0 (g) αR0l0 fR0t0 (h) r0αR0l0 fR0t0 (i) fR0r0αR0l0 fR0t0

Figure 4.5: Level-reduction illustrations at the root for the fourth and third cases, respectively.

αLLi = liαLiri, (4.8)

αLRi = fRiriαRili fRi, (4.9)

αRLi = fLiliαLiri fLi, (4.10)

αRRi = riαRili. (4.11)

The last two relations are shown in Figure 4.5. In the figure, nodes with a primed label indicate that the

subtree rooted at that node has changed in some arbitrary way described by αi. Note that αLLi, αLRi, αLLi,

and αLRi work by rotating an element closer to the root so that the operation αi can be applied instead as

απi. Using these reduction formulas, we can write any of li, ri, or fi in terms of l0, r0, f0, l1, r1, f1, l2, r2,

and f2, so that:

S = 〈l0,r0, f0, l1,r1, f1, l2,r2, f2〉 . (4.12)
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It immediately follows that S is finitely generated. In fact, we note that the only rotations required for

the reductions (not including α , if it is a rotation) are two levels up. Thus, we are able to express flips two

levels below the root in terms of flips at the first two levels and rotations at the top level. Combining (4.3)

and (4.4) with (4.6) and (4.7), we can conclude:

S = 〈r0, f0,r1, f1,r2, f2〉 . (4.13)

Using (4.6) and (4.7), we are able to express r2 and f2 in terms of the other four generators. This reduces

the number of generators further, giving us the desired result:

S = 〈r0, f0,r1, f1〉 . (4.14)

¥

Some of the relations above hint at the fact that the elements in S might not commute. This observation

is made explicit in the following proposition.

Proposition 7. The group S is not Abelian.

Proof: Assume to the contrary that S is Abelian. Expand (4.5):

e = (ri fi fRi)2 = r2
i f 2

i f 2
Ri = r2

i ee = r2
i . (4.15)

This implies that rotations are their own inverses, which is false. It follows that S is not Abelian. ¥

There are, however, some commutativity relations. In particular, consider that we have two actions

αi, β j. These actions change subtrees A and B respectively. If A∩B = /0 then αiβ j = β jαi; in particular

αLiβRi = βRiαLi.
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4.2 Subgroup of Invariant Operations

The operations that leave a metric unchanged are fi, r0, and l0. Call this subgroup F = 〈r0, f0, fi〉. Note

that (4.8), (4.9), (4.10), and (4.11) are valid for any αi that acts only on the subtree rooted at i. Thus, we

can use the relations, applied with i = 0, to move ri, li, and fi to the level below the root. This allows us to

conclude that fi are included in a definition of F with only three generators: F = 〈r0, f0, f1〉. Unfortunately,

F is not a normal subgroup of S, as established by the complete classification of normal subgroups of S in

Theorem 52.

4.3 Subgroups of F

An important part of understanding a group’s structure is understanding what subgroups it contains.

Before getting into the machinery for dealing with this question carefully, we will point out a couple groups

that exist as subgroups of this group.

Proposition 8. The group Z is a subgroup of F.

Proof: Consider the subgroup 〈r0〉. The elements are just rn
0 for all integers n. Note that r−n

0 = ln
0 . This

forms a subgroup isomorphic to Z. ¥

Proposition 9. The group D4 is a subgroup of F.

Proof: Consider the subgroup 〈 f0, f1〉. Since f2 = f0 f1 f0 and f1 f2 = f2 f1, we have f1 f0 f1 f0 = f0 f1 f0 f1.

Note that f0 f0 = f1 f1 = e, so that the f0 and f1 terms must alternate. The relation above tells us that

( f0 f1)4 = e. Thus, we obtain the eight elements: {e, f0, f1, f0 f1, f1 f0, f0 f1 f0, f1 f0 f1, f0 f1 f0 f1}. Letting

f = f0 and r = f0 f1 we see that we have D4 the dihedral group of order eight. ¥

Example: One of the subgroups contained in S is 〈 f0,r0〉. A little inspection reveals the additional relation

( f0r0)6 = e, indicating the presence of a group not yet observed in S: Z6. The main point of this example,

however, is to point out the large number of relations that even this highly restricted subset contains. First,

however, let r = r0 and s = f0r0. This subgroup contains these relations:

• s6 = e,

• (s3rns3r−n)2 = e, n≥ 2,
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• (s2r)6 = e,

• (s3rsr−2)4 = e,

• (s3r−2sr)4 = e.

The fact that there is a countable sequence of relations is an indication that the group is not finitely

presented. This subgroup is very interesting, and we call it G. It will be considered in more detail in

Section 4.4. For now, it is just an example. The operation s is also very important. It is a permutation

consisting of two cycles, one of order two and one of order three, which explains why it has order six. This

also sheds light on where the sequence of relations comes from. The operation s3 swaps the root with one

of its children. The second relation swaps two nodes, moves to a different spot in the tree, swaps two nodes,

then moves back to the original spot. These observations will prove useful in building up machinery in later

sections.

Theorem 10. The group S contains an infinite number of copies of itself, which are disjoint except for the

identity element.

Proof: We begin the proof by establishing the weaker result that S actually contains a subgroup isomorphic

to itself. More precisely:

S′ = 〈r1, f1,r3, f3〉 ∼= S. (4.16)

This follows from the observation that these operations are just the original operations, but applied to a

subtree of the root. In particular, their interaction is identical to the interaction of the generators of S. Next,

we strengthen this to the observation that every subtree is an isomorphic copy of S:

S′′i = 〈ri, fi,rLi, fLi〉 ∼= S (4.17)

This is just a generalization of the previous observation. Building on this, we note that we can find a

subset of these that are disjoint, except for the identity element:
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S′′′i = 〈rRLn0, fRLn0,rLRLn0, fLRLn0〉 ∼= S, (4.18)

so that for i 6= j:

S′′′i ∩S′′′j = {e}. (4.19)

¥

4.4 Understanding 〈r0, f0〉

We begin with the definition G = 〈r0, f0〉, as this group will be studied in more depth. This analysis

begins by identifying important elements that will become the building blocks for a construction that will

ultimately construct copies of all finite groups in G.

This construction begins with the simple operator that is contained in G. It is simply s = f0r0. It has

two effects on the tree. First, it swaps n0 and n1. Second, it cycles the three nodes n2, n3, and n4 and the

subtrees rooted at those nodes. (It moves n2 to the location n4 occupied originally.) This simple operation

is worth a quick note. First, it can be treated as a simple permutation on five elements. Second, it has order

six. Thus, s6 = e. A critical observation is that the two cycles can be isolated. In particular, s4 is just the

three cycle and s3 is just the two cycle. In our case, we care about the latter, and we shall give it a special

name: ω = s3. This operation is the primary building block of constructing the contents of G. It simply

swaps n0 and n1. Figure 4.6 shows the effects s and a few of its powers have on an initial tree.

4.5 Outer Ribbon

Consider the nodes . . . ,nR20,nR0,n0,nL0,nL20, . . .. These nodes lie along the left and right sides of the

tree, which we shall call the outer ribbon. This set of nodes is preserved by r0 and its inverse. We will refer

to these nodes as . . . ,m−2,m−1,m0,m1,m2, . . .. In particular, m0 is the root and m1 is its left child. ω swaps

these two nodes and leaves all other nodes of the tree untouched. r0 has the effect of shifting these nodes
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(a) t0 (b) r0t0 (c) st0 = f0r0t0 (d) s2t0

(e) ωt0 = s3t0 (f) s4t0 (g) s5t0 (h) s6t0

Figure 4.6: Illustration of s and a few of its powers.

in the following way: wi → wi−1. We will be dealing with only r0 and ω for a while, so the effect of the

rotations on the rest of the tree is inconsequential; as long as the number of applications of r0 equals the

number of applications of its inverse, the rest of the tree will be returned to its original position. Note that

since ω does not affect the rest of the tree, and the rotations do not cause the elements mi to mix with the

rest of the tree, removing them from the sequence will not affect the rest of the tree.

Proposition 11. The group G contains the operator ωi j that swaps elements mi and m j along the outer

ribbon.

Proof: This proof is constructive and uses the operator ω to construct ωi j. First, we begin by constructing

ωi j for the case where j = i+1:

ωi,i+1 = r−i
0 ωri

0. (4.20)

Note that the number of right rotations is precisely balanced by the number of left rotations. Thus, the

rest of the tree is unchanged by these operations. Note also that the above definition is valid for all integers

i, including those that are negative. In particular, ω01 = ω , and the comma is omitted when its absence does
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A

B C

D E

F G

(a) t0 (b) r0t0 (c) ωr0t0 (d) ω12 = r−1
0 ωr0t0

Figure 4.7: Illustration of (4.20) with i = 1.

not cause ambiguity. The equation (4.20) is shown in Figure 4.7 for the case where i = 1.

Using this we construct the operator ωi j in its full generality using the recursive definition:

ωi j = ωi, j−1ω j−1, jωi, j−1 (4.21)

where i < j−1 and (4.20) is the base case i = j−1. Note that (4.20) preserves the rest of the tree, so (4.21)

will as well. The case i > j is covered by ωi j = ω ji. Finally, the case i = j follows from ωii = e. ¥

Theorem 12. The group G contains a copy of Sn, the group of permutations on n elements, for all n≥ 1.

Proof: Consider a permutation on the numbers {1, . . . ,n}. Decompose this permutation into a product of

two-cycles. Replace each (a b) with the element ωab. The result is an operator that acts on {m1, . . . ,mn}
in precisely the same way as the original permutation acted on the integers. Repeat this for all σ ∈ Sn to

construct elements σm. Let the set of these elements be S′n. It is clear that this construction creates an

isomorphism from Sn to S′n, so that S′n ∼= Sn. ¥

Theorem 13. The group G contains a subgroup isomorphic to every finite group.

Proof: Because all finite groups are a subgroup of some permutation group Sn, it follows that there is a

copy of all finite groups in G. In fact, the same construction can be repeated on the half of the ribbon

with negative indices to construct a disjoint second copy of Sn. Because G ⊂ F ⊂ S, it follows that these
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groups contain copies of all finite groups. Repeating the construction starting at different indices, we have

a countable number of copies of any finite group. ¥

4.6 Constructing Permutations on Trees

Using what we have learned, we are ready to construct permutation groups in S, F , and G. This con-

struction will made independently for S, F , and G. Each uses its own machinery to reach that conclusion.

It should be noted that the construction on G implies the other two. Nevertheless, we have chosen this

presentation, as it illustrates the amount of freedom we have in each group to work with and the powerful

machinery that the groups possess.

We will use a different notation for swaps in the full group S to avoid confusion with the swaps in G, as

the two will be indexed differently. We will use γi j to indicate the operation swapping ni and n j but leaving

the rest of the nodes untouched. We call two subgroups disjoint when their intersection is the subgroup

consisting of only the identity element.

We now begin the process of showing that γi j’s are all in S, a result stated and proved as Proposition 15.

We already know that two of them are, and we shall use them as base cases for constructing the rest. The

two of interest that we have seen are:

γ01 = ω01, γ02 = ω−1,0. (4.22)

Proposition 14. The operator γ0i ∈ S, for all i≥ 0.

Proof: The case i = 0 is just the identity. The cases i = 1 and i = 2 are from (4.22). The rest we construct

recursively using the two relations:

γ0Li = r−1
i γ0iri, (4.23)

γ0Ri = riγ0ir−1
i . (4.24)

To see that these are correct, consider the first one (the second one is similar). The elements of the set
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Ti−{ni,nLi} are moved by the rotation, untouched by the swap, and restored by the inverse of the rotation.

The elements of the set S−Ti−{n0} are left untouched by all three operations and are thus untouched by

the swap. This leaves just three nodes to be considered: n0, ni, and nLi. n0 is untouched by the first rotation.

It is swapped to ni, then rotated to nLi. nLi is rotated to ni by the first rotation, swapped to n0, and left

untouched by the left rotation. ni is rotated to nRi, left untouched by the swap, and rotated back to ni by the

left rotation. Thus, the only nodes that are not restored to their original positions are n0 and nLi, and these

nodes are swapped. This completes the construction. ¥

We immediately use Proposition 14 to form the basis for the following much stronger theorem.

Proposition 15. The operator γi j ∈ S, for all i, j ≥ 0. That is, it is possible to swap arbitrary nodes in S.

Proof: This theorem extends Proposition 14 using the following construction:

γi j = γ0iγ0 jγ0i. (4.25)

¥

At this point, we have the machinery to state and prove one of the more important theorems regarding

S.

Theorem 16. Every operator representing a finite permutation of nodes is in S.

Proof: Choose an arbitrary finite permutation and express it as the product of swaps in the same way a

permutation would be written as the product of two-cycles. Because the permutation is finite, only a finite

number of swaps are required. By Proposition 15, each of these swap operators is in S, so their product, the

arbitrary permutation, is in S. ¥

This theorem is important in understanding S. It plays a key role in characterizing S in Theorem 24 and

in the classification of its normal subgroups in Theorem 52.

Corollary 17. There are an infinite number of disjoint copies of Sn in S, for any n≥ 1.

Proof: Choose an infinite number of disjoint subtrees, such as TRLk0, for k ≥ 0. Choose n nodes in each

subtree. Permutations on these n nodes are a finite permutation in S, so that each element in Sn exists in



61

each subtree. Because the subtrees are disjoint, the permutations acting on them must be disjoint, with the

exception of the identity element. ¥

At this point, we switch our attention from S to its subgroup F .

Proposition 18. The operator γi j ∈ F, for all i, j ≥ 0.

Proof: Choose some element ni that is not the root. Consider the path from ni to n0: (ni,np1 ,np2 , . . . ,npk ,n0).

Let (q1, . . . ,qm) be the subsequence of (p1, p2, . . . , pk) such that ni lies in the right subtree of np j . Let

κ = fqm · · · fq2 fq1 , so κni lies on the outer ribbon, i.e., working from ni to the root, we flipped children

whenever the node was in the right subtree. Since flips affect ordering of children only for the node being

flipped, we end up with a path from the root to the node that follows left children. This location is on the

outer ribbon. In fact, if ni were s levels below the root, then κni = ms. Note that κn0 = n0, since no flips

move the root. We claim that:

γ0i = κ−1ω0sκ . (4.26)

First, note that all elements that are not n0 or ni will be moved by κ to some place that is neither n0

nor ms, because n0 and ni are moved to those locations. Thus, these elements will be moved somewhere

(possibly moved nowhere), left unchanged by ω0s, then moved back by κ−1. Node n0 is left unchanged by

κ , moved to ms by the swap, then moved to ni by κ−1. Node ni is moved to ms by κ , to n0 by ω0s, and

is left there by κ−1. Thus, this is a swap with the root as claimed. The operators γi j are constructed as in

Proposition 15. ¥

As with S, we can make the jump to arbitrary permutations.

Theorem 19. Every operator representing a finite permutation of nodes is in F.

Proof: The proof is similar to the proof of Theorem 16. ¥

With the finite permutation theorem established for F , we turn our attention to establishing the same

theorem for G.

Proposition 20. The operator γi j ∈ G, for all i, j ≥ 0.
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Proof: The tricks used to construct swaps in F and S will not work here. Thus, we will have to develop a

little more machinery to construct them here. First, though, note that γ01 = ω01 and γ02 = ω−1,0 are in G as

was the case for F .

Recall the operator s = f0r0. It swapped n0 and n1 and cycled the subtrees T2 → T3 → T4 → T2. Then,

s2 loses its two-cycle and cycles the subtrees T2 → T4 → T3 → T2. What we want is a way to move any

subtree rooted two levels below the root to T2 without moving the root node. This will have the effect of

moving every node in the subtree up one level in the tree, so that we can use a swap with an element closer

to the root to construct a swap with the original node. We can construct such an operator νi for each of the

of the four subtrees rooted two levels below the root:

• ni ∈ T3: νi = s2,

• ni ∈ T4: νi = s4,

• ni ∈ T5: νi = s2 f0,

• ni ∈ T6: νi = s4 f0.

Now, we can construct γ0i directly. Using nk = νini as a definition of k, we have:

γ0i = ν−1
i γ0kνi. (4.27)

Since k is strictly closer to the root than i, this constructs the remaining swaps recursively by distance

from the root. The correctness argument is similar to the one used with κ and F . All elements other than

n0 and ni are preserved because νi moves them where γ0k will not touch them, and ν−1
i moves them back.

The other two nodes move as follows: n0 → n0 → nk → ni and ni → nk → n0 → n0. The operators γi j are

constructed as in Proposition 15.

As with S and F , we can make the jump to arbitrary permutations.

Theorem 21. Every operator representing a finite permutation of nodes is in G.

Proof: The proof is similar to the proof of Theorem 16. ¥
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The theorems up to this point have been about finding operators that exist in S. The next theorem is

about establishing that there are things that can be done to trees for which S possesses no operator. The

theorem regards the tree as a linked data structure, where each node has a pointer to its left child and a

pointer to its right child.

Proposition 22. Any operation that requires changing an infinite number of child pointers cannot be in S.

Proof: Let ρ(s) be the number of “child pointers” that are changed by the action s ∈ S. ρ( fi) = 2, since

the only two children of ni are changed. ρ(r0) = ρ(r−1
0 ) = 2. ρ(ri) = ρ(r−1

i ) = 3 for i > 0. Further, we

have, for a,b ∈ S, ρ(ab) ≤ ρ(a)+ ρb. Since actions s ∈ S consist of a finite number of such operations,

we find that a necessary condition for s being in S is that ρ(s) be finite. This leads immediately to a way

of constructing operations not in S. For example, the action that swaps n4i and n4i+1 for all i ≥ 1. Each

swap changes six child pointers, and there is no interaction between swaps due to the two-layer separation

between the levels of the swaps. ¥

We now begin building the machinery to prove the converse of Proposition 22.

Theorem 23. There exists an operator in S that swaps disjoint subtrees Ti and Tj.

Proof: We will do this by showing that we can move subtrees beyond a certain level closer to the root and

swap every pair above that level. Let h(x) be the depth of node x, if x is a node, or the depth of the root of

x, if x is a subtree. We take h(n0) = 0, that is to say the root has depth zero.

We begin with the subtrees rooted at the great-grandchildren of the root subtrees rooted below them.

There eight nodes at this depth: n7, . . . ,n14. Either the subtrees x,y are at or below different nodes or

they are both below a single node. Either way, the approach is to find for each possibility an operation ν

such that ν−1αν has the effect of swapping x and y, such that α is an operation that swaps subtrees w,z,

and h(w)+ h(z) < h(x)+ h(y). Thus, we are performing induction on h(x)+ h(y). Table 4.1 summarizes

suitable choices for ν for each possible combination of grandchildren.

The next possibility is that one subtree is at the third level or beyond, but the other subtree is not. In

this case, we are looking for a ν that will bring the subtree furthest from the root closer to the root while

preserving the level of the other subtree. The choices for ν for these cases are summarized in Table 4.2.

At this point, all we have to deal with is the pairs of subtrees at the first and second levels below the root.

These comprise the base cases and are shown in Table 4.3. These are operations α that swap the subtrees



64

7 8 9 10 11 12 13 14
7 r0 r0 r0 r0 r1 r1 r1 r1
8 r0 r0 r0 r0 r2 r1 f3 r1 f3 l2
9 r0 r0 l1 f4 l1 r2 l1 f4 l1 f4 l2
10 r0 r0 l1 l1 l1 l1 l1 l1
11 r1 r2 r2 l1 r2 r2 l0 l0
12 r1 r1 f3 l1 f4 l1 r2 r2 f5 l0 l0
13 r1 r1 f3 l1 f4 l1 l0 l0 l0 l0
14 r1 l2 l2 l1 l0 l0 l0 l0

Table 4.1: Choosing ν in the case where both nodes are three levels below the root.

1 2 3 4 5 6
7 - r1 - r0 r1 r1
8 - r1 f3 - r0 r1 f3 r1 f3
9 - l1 f4 r0 - l1 f4 l1 f4
10 - l1 r0 - l1 l1
11 r2 - r2 r2 - l0
12 r2 f5 - r2 f5 r2 f5 - l0
13 l2 f6 - l2 f6 l2 f6 l0 -
14 l2 - l2 l2 l0 -

Table 4.2: Choosing ν in the case where exactly one node is three levels below the root.

rooted at the specified nodes.

This completes the construction of subtree swaps. ¥

Theorem 16 and Theorem 23 provide the basis for the following theorem, which provides a necessary

and sufficient condition for an operation on an infinite tree being found in S.

Theorem 24. An operator exists in S if and only if it requires changing only a finite number of child pointers

and preserves the infinite complete binary tree structure.

Proof: We now have the machinery that we will need to construct an arbitrary finite change α to a tree, i.e.,

any change to a tree that requires changing only a finite number of child pointers and preserves the infinite

complete binary tree structure.

We claim that we can identify a set of subtrees U = {Ta1 , . . . ,Tak} that satisfies the following properties.
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1 2 3 4 5 6
1 - f0 - - r0 f1l0 f0l0 f2r0 f0
2 f0 - f0r0 f1l0 f0 l0 f2r0 - -
3 - f0r0 f1l0 f0 - f1 f1y f1 f1 f2y f2 f1
4 - l0 f2r0 f1 - y f2y f2
5 r0 f1l0 - f1y f1 y - f2
6 f0l0 f2r0 f0 - f1 f2y f2 f1 f2y f2 f2 -

Table 4.3: Choosing α when both nodes are children or grandchildren of the root. Here, y = l0r2 f5l2r0. The
operation y effectively flips subtrees T4, t5.

Let N be the set of nodes that are not contained in any of the subtrees in U .

• U is finite.

• The subtrees in U are disjoint.

• N is finite.

• No child pointer in any subtree in U is changed.

To show that we can always do this, we will construct such a set U . Let M be the set of nodes with a

child pointer changed by α , n = maxm∈M h(m), and U = {Ta : h(a) = n + 1}. Observe that M and U are

finite, and the subtrees in U are disjoint. Let N = {a : h(a) ≤ n}, so N is also finite. By the way n was

chosen, no child pointers in any subtree in U will be changed. It follows that we can always choose U and

N with these properties.

Note that the subtrees of U will be preserved by α . Thus, changes of this type consist of moving the

subtrees in U and the nodes in N around. From this observation we can construct the change α .

The subtrees in U move to new locations in the tree, but they are not modified. Using the subtree swap

operation constructed above, we can move these subtrees around in a finite number of steps. Note that the

subtrees are not necessarily permuted, i.e., subtrees may be moved to locations where none of the subtrees

were rooted before. This construction is inductive.

Let t be a subtree as it is currently situated due to the operations that have been performed so far, γ . Let

β be the effects that have yet to be performed, i.e., β = αγ−1. Then, β t will be the subtree as it would be
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situated after applying α to the corresponding subtree in U . At each step of the construction, at least one of

these two conditions is true for t:

• h(t)≥ n and h(β t)≥ n,

• β t = t.

While there is a t such that h(β t) = n and β t 6= t, then we will swap subtrees t and β t. Now, t is correctly

placed. (After updating β to β ′, we will have t = β ′t.)

While there is a t such that h(β t) > n and h(t) = n, we must move this subtree down a level. Consider

now the locations of the nodes of N before and after β is applied to the tree. |{βx : x ∈ N,h(βx) < n}|+
|{βx : x∈N,h(βx) = n}|+ |{βx : x∈N,h(βx) > n}|= |{x : x∈N,h(x) < n}|+ |{x : x∈N,h(x) = n}|+ |{x :

x ∈ N,h(x) > n}|.
Because all t ∈ U , h(t) < n are correctly placed, and the number of nodes x,h(x) < n is constant, it

follows that |{βx : x ∈ N,h(βx) < n}|= |{x : x ∈ N,h(x) < n}|.
Next, note that the nodes x,h(x) = n can be split into two groups: those in N and those in a subtree

in U . The only difference at this point is that there are h(t) = n where h(β t) > n. However, β t = t

whenever h(β t) ≤ n. Thus, the number of nodes at depth n in a subtree is strictly greater before β . Thus,

|{βx : x ∈ N,h(βx) = n}|> |{x : x ∈ N,h(x) = n}|. Combining the these equations we have:

|{x : x ∈ N,h(x) > n}|> |{βx : x ∈ N,h(βx) > n}| ≥ 0. (4.28)

This implies that there is some element x ∈ N,h(x) > n; swap Tx and t. At this point, it is true that one

of these is true for each t:

• h(t) > n and h(β t) > n,

• β t = t,

so the conditions now hold for n+1. Initially, the conditions trivially hold for n = 1. Let H = maxt∈U h(αt).

When n > H, the conditions imply that all subtrees have been correctly placed. It follows that the algorithm

will terminate after a finite number of steps and is correct. Note that each step requires a finite number of
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swaps, since each swap either correctly places a subtree at a level or moves a subtree out of the level, and

neither operation undoes the other.

At this point in the algorithm, all of the subtrees in U have been correctly placed. The positions held

by elements in N are precisely the positions in which elements of N must end up. This is because the

other positions are taken up by subtrees, which are correctly placed and cannot be modified. Thus, moving

elements of N to the right place is simply a matter of performing a permutation on the nodes in N. Since N

is finite, we already have an algorithm for doing this. It follows that we have a construction for performing

the arbitrarily chosen valid operation α . This completes the proof. ¥
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5. Generating Generators

The focus of this chapter is understanding the structure and normal subgroups of the group S. It begins

with an analysis of the effects of removing generators at the root. It continues by introducing an invariant

that leads to the isolation of the first nontrivial normal subgroup and the consequent conclusion that S is not

simple. Finally, the concept of a conjugate closure is introduced, and it is used to build the machinery that

ultimately reveals all of the normal subgroups of S.

5.1 Generator Removal

The topic for this section is the effect of removing generators from the root of S. Let S−κ = 〈{ fi,ri}−κ}〉.
That is, all of the original generators for S are used, and the generators listed in κ are removed. Note that

the original set of generators contains an infinite number of flips and rotations. It is not true, for example,

that S−{ f0}= 〈r0, f1,r1〉.

Proposition 25. Removing f0 from the original set of generators of S does not change the group generated,

so that S−{ f0}= S.

Proof: The element f0 ∈ S−{ f0} because:

f0 = l0l2 f2r0r1 f1r1l0 f2l0. (5.1)

This identity is illustrated in Figure 5.1. ¥

Proposition 26. The group S−{ f0} is finitely generated by 〈r0, f1,r1, f2〉.

Proof: Requiring the elements from (5.1) to be present along with the rest of the usual generators of S, we

have S = 〈r0, f1,r1, f2,r2〉. We can trim this down by generating f0 differently:

f0 = r0 f2r0l1 f1l1l0 f2r0r0l1. (5.2)
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(a) t0 (b) l0t0 (c) f2l0t0

(d) l0 f2l0t0 (e) r1l0 f2l0t0 (f) ξ (g) r1ξ

(h) r0r1ξ (i) f2r0r1ξ (j) l2 f2r0r1ξ (k) l0l2 f2r0r1ξ

Figure 5.1: Illustration of (5.1) with ξ = f1r1l0 f2l0t0.
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(a) t0 (b) l1t0 (c) r0l1t0 (d) r0r0l1t0

(e) f2r0r0l1t0 (f) l0 f2r0r0l1t0 (g) ξ (h) f1ξ

(i) l1 f1ξ (j) r0l1 f1ξ (k) f2r0l1 f1ξ (l) r0 f2r0l1 f1ξ

Figure 5.2: Illustration of (5.2) with ξ = l1l0 f2r0r0l1t0.
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This identity is illustrated in Figure 5.2. It allows us to immediately remove two generators:

S = 〈r0, f1,r1, f2〉 . (5.3)

This is the desired result. ¥

Consider group V = S−{ f0,r0}. Because no operations in this group can affect the root, the element

r0 6∈ S, so that V 6= S. Let S1 and S2 be all of the operations in subtrees T1 and T2, respectively.

Proposition 27. The group V is isomorphic to the direct product of S and itself, or V ∼= S×S.

Proof: Note that V can be written in terms of generators in S1 and generators in S2. Further, the generators

in S1 commute with the generators in S2. Using this, we can commute the operators in S1 to the left of all

operators in S2. Thus, for any α ∈ V we can find β1 ∈ S1 and β2 ∈ S2 such that α = β1β2. Noting that

S∼= S1 ∼= S2 lets us write:

V = S1×S2 ∼= S×S. (5.4)

¥

Next, we take a look at the group W = S−{r0}. This group is slightly more interesting than V , which

turns out to be a normal subgroup of W .

Proposition 28. The group V is a normal subgroup of W, and W ∼= (S×S)oZ2.

Proof: To prove that V is a normal subgroup, we need to show that if we pick any x ∈W and y ∈ V , then

xyx−1 ∈V . The following observations make this process a lot easier.

1. The requirements are trivial if x ∈V ; in particular, this case follows from V being a group.

2. Let x ∈W and y,z,xyx−1,xzx−1 ∈V . Then x(yz)x−1 ∈V . This is a simple consequence of x(yz)x−1 =

(xyx−1)(xzx−1) and the assumptions.

3. Let w,x ∈W and assume xyx−1,wyw−1 ∈V for any y ∈V . Then (wx)y(wx)−1 ∈V . To see this, note

that (wx)y(wx)−1 = w(xyx−1)w−1, where xyx−1 ∈V .
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Because of these three observations, it is sufficient to consider x as any generator of W that is not in V

and y as any generator of V . The second observation extends this to all y. The first and third observations

extend this to all x and y and complete the proof.

By the definitions of W and V , we have x = f0. Every generator of V is of the form αLi or αRi for some

generating operation αi. Because αLi = f0αRi f0 and αRi = f0αLi f0, we have shown everything that needs

to be shown.

We have a normal subgroup, so we can take quotients. Let Q = W/V and let φ(x) = xV , so that

φ : W → Q. We claim that Q = {V, f0V}. We do this by showing that for any xV ∈ Q, where x 6= {e, f0}
and x is written as a concatenation of generators, there is a shorter concatenation of generators y such that

xV = yV . We proceed in cases. In each case, let w be an arbitrary element in W and α be a generator of V .

Let β be the generator such that α = f0β f0.

• If x = wα then choose y = w.

• If x = wα f0 = w f0β then choose y = w f0.

• If x = w f0 f0 then choose y = w.

If x contains at least two generators, look at the last generator. If it is not f0, the first case applies.

Otherwise, look at the generator before it. If it is not f0, the second case applies. Otherwise, the last two

generators are f0, and f0 f0 = e, so that the two generators cancel each other and yield a shorter description.

This leaves x being a generator or the identity. If it is a generator other than f0, the first case applies. This

leaves e and f0, which we claim to be Q. We need only show that they are distinct. This is easy, since all

generators of V lack the ability to moving an element across the root, which f0 can do.

In the same vein as the simplification of Q, we can take an element in W and use α f0 = f0β to shift all

of the occurrences of f0 to the rightmost positions in the string, and the f0’s will cancel in pairs. Thus, we

can write every element in W in the form vq, where q ∈ {e, f0} and v ∈V . Let (v,q) = vq and (w, p) = wp.

We want to define a multiplication of these ordered pairs so that the product is just vqwp.
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(v,q)(w, p) = (vq)(wp)

= vqwp

= vqw(q−1q)p

= v(qwq−1)qp

= (v(qwq−1),qp).

Thus, W is just the semidirect product of V and Q, i.e.,

W = V oQ, (5.5)

where the homomorphism φ(e)(x) = x and φ( f0)(x) = f0x f0. What is more, V itself can be broken down.

In particular, let S1 and S2 be all of the operations in subtrees T1 and T2, respectively. Then, V = S1× S2.

However, S∼= S1 ∼= S2, so that:

W ∼= (S×S)oZ2. (5.6)

¥

5.2 Flip Parity

There are many representations of the identity in terms of generators {ri, li, fi}, e.g., r0l0 = f 2
0 =

(r0 f0)6 = e. The number of flips in each representation of the identity has always been even. This ob-

servation is not a coincidence. In fact, it is possible to identify whether an even or odd number of flips were

used to describe an operator α ∈ S given only the trees t0 and αt0 and without actually finding such an α .

One interesting place to look is the relative order of invariant subtrees, as rotations do not affect this.

However, this ordering does not contain enough information to distinguish the parity of the number of flips,
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e.g., ( f0r0)3 has the same effect on the position or ordering of any set of invariant subtrees as the identity. If

we keep track of more information, we can remedy this situation. This forms the basis of the main theorem

of this section. However, some simpler results are needed to build up to that theorem.

Choose a set of invariant subtrees such that the number of nodes not in such a subtree is finite. Replace

each subtree with a leaf. Each node of the tree is either an internal node with two children or a leaf. Give

each node and leaf a unique symbol.

Proposition 29. Each subtree contains an odd number of symbols.

Proof: We show this inductively on the size of the subtree. If the subtree is rooted at a leaf, the number

of symbols is one. Otherwise, the number of symbols in a subtree Ti is the sum of the number of symbols

in TLi and TRi plus the symbol for ni. Because ni is not a leaf, both TLi and TRi exist, and the number of

symbols contained in them is odd by the inductive hypothesis. Thus, the number of symbols in Ti is the

sum of three odd numbers and is odd itself. ¥

Let σ(t) be the list of symbols of the tree t as obtained by an inorder traversal of the tree. Then, σt0

is the list obtained from the original tree. Let α be an operator expressed as a string of generators from

{ri, li, fi}.

Theorem 30. The permutation σ(αt0) is an even permutation if and only if α contains an even number of

flips.

Proof: Assume that the invariant subtrees were chosen so that they are never changed at any point in the

application of α . Look at the effect of a single generating operation on the parity of the permutation.

Because rotations do not affect the relative ordering of elements in a tree, σ(t) = σ(rit) = σ(lit). All that

remains is σ( fit). The permutation σ(t) has the form:

[a1 . . . au b1 . . . bv c d1 . . . dw e1 . . . ex], (5.7)

where a1 . . . au are symbols occurring before symbols from the subtree Ti, b1 . . . bv are the symbols from

TLi, c is the symbol for ni, d1 . . . dw are the symbols from TRi, and e1 . . . ex are the symbols occurring after

the symbols from Ti. Note that v and w are odd. After applying fi we have σ( fit), which has the form:
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[a1 . . . au d1 . . . dw c b1 . . . bv e1 . . . ex]. (5.8)

Move b1 in front of d1 by repeatedly swapping b1 with the symbol before it. There are w + 1 swaps

required to do this, and the result is:

[a1 . . . au b1 d1 . . . dw c b2 . . . bv e1 . . . ex]. (5.9)

Repeat with b2, . . . ,bv:

[a1 . . . au b1 . . . bv d1 . . . dw c e1 . . . ex], (5.10)

Do the same thing with c:

[a1 . . . au b1 . . . bv c d1 . . . dw e1 . . . ex], (5.11)

This is just σ(t). The process required shifting v elements bk, requiring (w + 1) swaps each. Shifting

c requires w swaps. Thus, v(w + 1)+ w swaps were required. Because v and w are both odd, the number

of swaps is odd, and the parity the permutation is inverted. Because each flip inverts the parity and each

non-flip preserves the parity, the parity is zero if and only if the number of flips is even. ¥

Note that this was proven with the restriction that the invariant subtrees remain invariant through the

action of α . This restriction is not necessary, as is shown by the following proposition.

Proposition 31. The parity of the number of flips in the description of α can be determined from any set of

invariant subtrees.

Proof: The restriction on the invariant subtrees can be lifted so that the choice need not depend on the

representation of the operator α . Compare σ(t) and σ(t ′), where t ′ is formed by replacing an invariant



76

subtree Ti with two invariant subtrees TLi and TRi. Let t contain n+1 symbols and t ′ contain n+3 symbols,

and let all of the symbols in t and t ′ be the same, with a new symbols for nLi and nRi. The permutation σ(t)

looks like:

[a1 . . . au c e1 . . . en−u], (5.12)

and the permutation σ(t ′) looks like:

[a1 . . . au b c d e1 . . . en−u]. (5.13)

The permutation σ(αt) looks like:

[g1 . . . gv c h1 . . . hn−v], (5.14)

and the permutation σ(αt ′) looks like:

[g1 . . . gv b c d h1 . . . hn−v]. (5.15)

Let τσ(t) = σ(αt) and τ ′σ(t ′) = σ(αt ′). We claim that τ and τ ′ have the same parity. Let p =

(a1 . . . au b)(d ex . . . e1) be a permutation expressed as the product of two disjoint cycles. Then:

[b a1 . . . au c e1 . . . en−u d] = pσ(t ′). (5.16)

Similarly, let q = (g1 . . . gv b)(d hn−v . . . h1). Then,
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[b g1 . . . gv c h1 . . . hn−v d] = qσ(αt ′). (5.17)

Let κ pσ(t ′) = qσ(αt ′). If τ is expressed in cycle notation as τ = C1 . . .Cn, then κ is expressed in cycle

notation as κ =C1 . . .Cn(b)(d). Let τ be expressed as the product of j two cycles. Then, κ is also expressed

as the product of j two cycles. Because a cycle on m symbols can be expressed as the product of m−1 two

cycles, p and q can both be written as the product of n two cycles. Because τ ′ = q−1κ p, τ ′ can be expressed

as the product of 2n+ j two cycles, and (2n+ j)− j is even, τ and τ ′ have the same parity, as desired.

The ability to replace an invariant subtree with subtrees further from the root is important, as it allows

us to remove the assumption that the subtrees remain invariant through the application of α . Instead, we can

replace subtrees that would be disturbed during the application of α with subtrees that will not be affected.

After α has been applied, the process can be reversed. The fact that the original subtrees were invariant

implies that the process can always be reversed. Further, the change in invariant subtrees will not affect

the parity of the permutation produced by α . It follows that the parity can be computed using any set of

invariant subtrees, without knowing α’s representation. ¥

It is worth mentioning a very simple corollary of Theorem 30.

Corollary 32. If α = β are two descriptions of the same operator of the same operator, then both α and β

contain an even number of flips or an odd number of flips.

Proof: This follows from Theorem 30. ¥

5.2.1 Group S Is Not Simple

At this point, we are in a position to close a problem that has shadowed progress in describing S. Can

S be decomposed into smaller subgroups? We showed earlier that in the absence of r0, the answer is

“yes.” Now, we show that S has a normal subgroup and use it to write S as a semidirect product of smaller

subgroups.

Theorem 33. Let the group of operations in S that can be expressed with an even number of flips be U.

Then, U is a normal subgroup of S.
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Proof: We claim that U and f0U are disjoint. This follows from a previous corollary, because α ∈ U

has an even number of flips and β ∈ f0U has an odd number of flips. We also claim that these two sets

contain all elements of S. If α ∈ S contains an even number of flips, then α ∈U by definition. Otherwise,

α = f0 f0α = f0( f0α), and f0α has an even number of flips. Then, α ∈ f0U .

Next, we show that U is a normal subgroup of S. Let α ∈U and β ∈ S, where α has 2n flips and β has

m flips. The operator βαβ−1 can be expressed with 2n+2m flips, and βαβ−1 ∈U . ¥

From this follows an important conclusion.

Corollary 34. The group S is not simple.

Proof: The group S contains the proper normal subgroup U . ¥

Proposition 35. The group S can be written as a semidirect product. More specifically,

S = Uo 〈 f0〉 .

Proof: We express α ∈ S as the product βγ , where β ∈U and γ ∈ {e, f0}. Identify this element α with the

ordered pair (β ,γ). Similarly, express α ′ with the ordered pair (β ′,γ ′). Consider the product αα ′:

(β ,γ)(β ′,γ ′) = (βγ)(β ′γ ′)

= βγβ ′(γ−1γ)γ ′

= β (γβ ′γ−1)γγ ′

= (βγβ ′γ−1,γγ ′),

because γγ ′ ∈ {e, f0} and βγβ ′γ−1 ∈U . This leads to:

S = Uo 〈 f0〉 . (5.18)

¥
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It is worth a note that f0 is not special; any flip would have sufficed. In particular, it is true for any fixed

n that:

S = Uo 〈 fn〉 . (5.19)

5.2.2 Conjugate Closures and Normal Subgroups in S

To get a better understanding of what the normal subgroups of S are, it helps to look at conjugate

closures. A conjugate closure C ⊂ S is a subgroup such that x ∈ C,s ∈ S =⇒ xsx−1 ∈ C. Conjugate

closures correspond exactly to normal subgroups. Closures under conjugation ensures that it is a normal

subgroup. Conversely, the definition of normal is that it is closed under conjugation. Let 〈C〉S denote the

conjugate closure of C ⊂ S with respect to the group S.

Proposition 36. The conjugate closures generated by r0 and r1 are the same, so that 〈r0〉S = 〈r1〉S.

Proof: We shall prove by demonstrating containment in each direction:

r0 ∈ 〈r0〉S =⇒ r−1
2 r0r2 ∈ 〈r0〉S

=⇒ r−1
2 r0r2r−1

0 = r1r−1
0 r2 ∈ 〈r0〉S

=⇒ (r−1
0 r1r−2

0 r2)r1r−1
0 r2(r−1

0 r1r−2
0 r2)−1 = r−1

2 ∈ 〈r0〉S

=⇒ r2 ∈ 〈r0〉S

=⇒ f0r2 f0 = r1 ∈ 〈r0〉S

=⇒ 〈r1〉S ⊆ 〈r0〉S .

The other direction is similar:
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r1 ∈ 〈r1〉S =⇒ ( f0r0)−1r1( f0r0) ∈ 〈r1〉S

=⇒ ( f0r0)−1r1( f0r0)r1 = r0 ∈ 〈r1〉S

=⇒ 〈r0〉S ⊆ 〈r1〉S .

¥

From this we are able to make a simple but important generalization.

Proposition 37. The conjugate closures generated by r0 and ri are the same, for i≥ 0, so that 〈r0〉S = 〈ri〉S.

Proof: By choosing an element ν to move a subtree Ti to T1, for i > 0, we have ri = ν−1r1ν ∈ 〈r1〉S.

Combined with r0 itself, we have ri ∈ 〈r1〉S, for all i ≥ 0. Because r1 = νriν−1 ∈ 〈ri〉S, it follows that

〈ri〉S = 〈r1〉S = 〈r0〉S. ¥

Proposition 38. The operator fi f j ∈ 〈r0〉S, for i, j ≥ 0.

Proof: We begin by showing that f1 f2 ∈ 〈r0〉S:

e ∈ 〈r0〉S =⇒ e = ( f1 f0r0)2 ∈ 〈r0〉S

=⇒ f1 f0r0 f1 f0r0 ∈ 〈r0〉S

=⇒ f1 f0r0 f1 f0 ∈ 〈r0〉S

( f1 f0)−1r−1
0 ( f1 f0) ∈ 〈r0〉S =⇒ f0 f1r−1

0 f1 f0 ∈ 〈r0〉S

=⇒ ( f1 f0r0 f1 f0)( f0 f1r−1
0 f1 f0) ∈ 〈r0〉S

=⇒ f1 f0 f1 f0 = f1 f2 ∈ 〈r0〉S .

Using this result, a similar argument shows that f3 f6 ∈ 〈r0〉S:
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e ∈ 〈r0〉S =⇒ e = ( f3 f1 f0r2
0)

2 ∈ 〈r0〉S

=⇒ f3 f1 f0r2
0 f3 f1 f0r2

0 ∈ 〈r0〉S

=⇒ e = ( f3 f1 f0r2
0)

2 ∈ 〈r0〉S (5.20)

=⇒ f3 f1 f0r2
0 f3 f1 f0r2

0 ∈ 〈r0〉S (5.21)

=⇒ f3 f1 f0r2
0 f3 f1 f0 ∈ 〈r0〉S

r−2
0 ∈ 〈r0〉S =⇒ ( f3 f1 f0)−1r−2

0 ( f3 f1 f0) ∈ 〈r0〉S

=⇒ ( f3 f1 f0r2
0 f3 f1 f0)( f3 f1 f0)−1r−2

0 ( f3 f1 f0) ∈ 〈r0〉S

=⇒ f3 f1 f0 f3 f1 f0 = f3 f6 f1 f2 ∈ 〈r0〉S

=⇒ ( f3 f6 f1 f2)( f1 f2) = f3 f6 ∈ 〈r0〉S . (5.22)

Using rotations and flips, it is possible to move any subtree Ti ⊂ T1, i 6= 1 to T3 using an operation

ν ∈ S1. The construction is similar to other constructions in this thesis and the details are omitted. This

leads to the conclusion that:

fi f6 ∈ 〈r0〉S , (5.23)

where i ∈ T1−{n1}. The same is possible with f6, leading to:

f3 f j ∈ 〈r0〉S , (5.24)

where j ∈ T2−{n2}. Combining (5.22), (5.23), and (5.24), we get fi f j ∈ 〈r0〉S, where i, j ≥ 3. Next, we

show that f1 f0 ∈ 〈r0〉S:
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r1r−1
0 , f2 f1 ∈ 〈r0〉S =⇒ f2 f1r1r−1

0 ∈ 〈r0〉S

=⇒ (r1r−1
0 f2 f0 f2) f2 f1r1r−1

0 (r1r−1
0 f2 f0 f2)−1 = f2r1r−1

0 f2r0 ∈ 〈r0〉S

=⇒ ( f1 f2)( f2r1r−1
0 f2r0) ∈ 〈r0〉S

=⇒ f1r1r−1
0 f2r0 ∈ 〈r0〉S

=⇒ (r−1
0 f0r1r−1

0 f2r−1
0 f0 f1) f1r1r−1

0 f2r0(r−1
0 f0r1r−1

0 f2r−1
0 f0 f1)−1 = f1 f0 ∈ 〈r0〉S .

The last important element we need is f3 f0 ∈ 〈r0〉S:

f0r−1
0 f0 ∈ 〈r0〉S =⇒ ( f1 f0)( f0r−1

0 f0)r−1
0 = f1r−1

0 f0r−1
0 ∈ 〈r0〉S

=⇒ f0( f1r−1
0 f0r−1

0 ) f0 = f3 f0 ∈ 〈r0〉S .

Combining these we have fi f j ∈ 〈r0〉S, where i, j ≥ 0. ¥

This is all of the machinery that we need to completely describe 〈r0〉S.

Theorem 39. The element r0 generates the group U, and 〈r0〉S = U.

Proof: We prove this by induction on the size of the description of an α ∈U . In particular, assume that if

β is shorter than α and has an even number of flips, then β ∈U . If α = riβ , then β has the same number

of flips and is shorter by one generator, so that β ∈U and α = riβ ∈U . The same argument applies for the

cases α = r−1
i β , α = β ri, and α = β r−1

i .

Assume α has the form α = fiβ f j. Then, β has an even number of flips and is shorter than α by

two generators so that β ∈U , f jβ f j ∈U , and ( fi f j)( f jβ f j) = fiβ f j = α ∈U . The base case and only

unhandled case is the identity element, which is trivially in U . ¥

The next theorem requires three more simple propositions. The theorem will make the equivalent state-

ment about 〈 f0〉S.

Proposition 40. For any n≥ 1, 〈rn
i 〉S = 〈r0〉S.

Proof: The direction 〈rn
i 〉S ⊆ 〈ri〉S is trivial. For the other direction:
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rLirn
i r−1

Li ∈ 〈rn
i 〉S =⇒ r−n

i rLirn
i r−1

Li ∈ 〈rn
i 〉S

=⇒ (ri fLirn
Li)r

−n
i rLirn

i r−1
Li (ri fLirn

Li)
−1 = r−1

Li ∈ 〈rn
i 〉S

=⇒ 〈rLi〉S ⊆ 〈rn
i 〉S

=⇒ ri ∈ 〈rn
i 〉S .

The proof is completed with Proposition 37. ¥

We now shift our attention to the subgroup 〈 f0〉S to make state the other proposition.

Proposition 41. For any n≥ 0, ri ∈ 〈 f0〉S.

Proof: This is because:

f1 f0 f1 = f2 f1 f0 ∈ 〈 f0〉S =⇒ ( f2 f1 f0) f0 = f2 f1 ∈ 〈 f0〉S

=⇒ r0 f2 f1r−1
0 ∈ 〈 f0〉S

=⇒ f0r0 f2 f1r−1
0 ∈ 〈 f0〉S

=⇒ f0( f1 f0)( f0r0 f2 f1r−1
0 )( f1 f0)−1 = f2 f0r0 f2 f0r0 ∈ 〈 f0〉S

=⇒ ( f1r0 f1)( f2 f0r0 f2 f0r0)( f1r0 f1)−1 = f0r−1
0 f0r−1

0 ∈ 〈 f0〉S

=⇒ r−1
0 f0r−1

0 ∈ 〈 f0〉S

=⇒ r0(r−1
0 f0r−1

0 )r−1
0 = f0r−2

0 ∈ 〈 f0〉S

=⇒ r−2
0 ∈ 〈 f0〉S

=⇒ ri ∈ 〈 f0〉S .

¥

The third proposition is now easily within reach. While the proposition actually holds for all flips, the

much weaker proposition puts the full characterization of 〈 f0〉S easily within reach, and the stronger form

of the proposition follows immediate from that.
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Proposition 42. The operator f1 ∈ 〈 f0〉S.

Proof: We can construct this operator:

r0 f0r0r1 ∈ 〈 f0〉S =⇒ ( f0r0 f1)r0 f0r0r1( f0r0 f1)−1 = r1 f1r1 ∈ 〈 f0〉S

=⇒ f1 ∈ 〈 f0〉S .

¥

Finally, we have what is necessary to quickly dispose of the theorem.

Theorem 43. The conjugate closure of f0 contains everything, so that 〈 f0〉S = S.

Proof: Because f0, f1,r0,r1 ∈ 〈 f0〉S, it follows that S = 〈 f0〉S. ¥

This theorem is quickly extended to cover any flip. It is important to establish the that f0 generates

everything, but it is not especially important to extend this to additional classes of operators, since these

will follow immediately from the complete listing of normal subgroups of S. Nevertheless, the extension

of the theorem to cover all flips is relatively straightforward and contains some elegant steps. It also shows

the general approach of using the propositions to find more and more operators until eventually a generator

is constructed, and it contains many of the same logical steps used in the listing of the normal subgroups.

Using the argument of moving Ti to T1 using an operator ν and noting that fi = ν−1 f1ν , we have

〈 f1〉S = 〈 fi〉S where i≥ 1. Repeating the proof that r0 ∈ 〈 f0〉S for the subtree T1 we have r1 ∈ 〈 f1〉S so that

ri ∈
〈

f j
〉S, where i, j ≥ 1. Locating f0 ∈ 〈 f1〉S can literally be accomplished by reversing the proof that

f1 ∈ 〈 f0〉S:

r1 f1r1 ∈ 〈 f1〉S =⇒ ( f0r0 f1)−1r1 f1r1( f0r0 f1) = r0 f0r0r1 ∈ 〈 f1〉S

=⇒ f0 ∈ 〈 f1〉S .

It follows that 〈 fi〉S = 〈 f0〉S = S, where i≥ 0.

At this point, we begin building up machinery for the listing of normal subgroups.
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Proposition 44. If f3 f6 ∈ K, where K is any conjugacy closure, then fi f j ∈ K, for all i, j ≥ 1.

Using arguments above, we have already determined that fi f j ∈ K, where i, j ≥ 3. We also have f7 f2 =

r−1
0 f3 f6r0 ∈ K, f1 f14 = r0 f3 f6r−1

0 ∈ K, and finally for i, j ≥ 3:

( f1 f14)( f14 fi) = f1 fi ∈ K =⇒ ( f1 fi)−1 = fi f1 ∈ K

( fi f7)( f7 f2) = fi f2 ∈ K =⇒ ( fi f2)−1 = f2 fi ∈ K

( f1 f3)( f3 f2) ∈ K =⇒ f1 f2 = f2 f1 ∈ K.

¥

Next, we show that f3 f6 is effectively a generator of U .

Proposition 45. If f3 f6 ∈ K, then U = 〈r0〉S ⊆ K.

Proof: This is sufficient to show that rotations are contained in K. In the following, let i≥ 0:

r1( f4 f3)r−1
1 ∈ K

=⇒ ( f1 f3)(r1 f4 f3r−1
1 )( f3 f1) = f4 f1r1 f4 f1r1 ∈ 〈 f1〉S

=⇒ ( f1 f4) f4 f1r1 f4 f1r1 ∈ 〈 f1〉S

=⇒ r−1
1 (r1 f4 f1r1)r1 ∈ 〈 f1〉S

=⇒ f4 f1r2
1 ∈ 〈 f1〉S

=⇒ ( f1 f4) f4 f1r2
1 ∈ 〈 f1〉S

=⇒ r2
1 ∈ 〈 f1〉S

=⇒ r2
i ∈ 〈 f1〉S

In particular, U = 〈r0〉S ⊆ K. ¥

The next observation is the crucial observation that almost by itself lists off the normal subgroups.

Theorem 46. If an element α ∈ S moves an invariant subtree Ti to αTi 6= Ti, then U ⊆ 〈α〉S.
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Proof: Consider such an element α ∈ S that moves an invariant subtree Ti to αTi 6= Ti. If it is not the case

that Ti ∩αTi = /0, choose a nk ∈ Ti−αTi and use Tk instead. If no such nk exists, find a nk ∈ αTi−Ti and

use Tj, where n j = α−1nk. We may now assume Ti∩αTi = /0 and let Tj = αTi. If it is the case that i < 3 or

j < 3, choose TLLi and αTLLi = TLL j. We may now assume i, j ≥ 3.

Consider the operation fiα fiα−1 ∈ 〈α〉S. By the above argument:

α fiα−1Tj = α fiTi

= f jTj

Because fi leaves the portions outside the tree Tj unmodified, it follows that α fiα−1 = f j and fiα fiα−1 =

fi f j ∈ 〈α〉S. The disjointness of Ti and Tj allows me to move them to T3 and T6 using conjugation, from

which follows that f3 f6 ∈ 〈α〉S and then by Proposition 45, U ⊆ 〈α〉S. ¥

This theorem makes it possible to classify all conjugate closures with this property.

Proposition 47. Let α ∈ S be an element that moves an invariant subtree Ti to αTi 6= Ti. If α contains an

even number of flips, then 〈α〉S = U, and 〈α〉S = S otherwise.

Proof: If α contains an even number of flips, then α ∈U , 〈α〉S ⊆U , and 〈α〉S = U . Otherwise, α 6∈U and

thus contains an odd number of flips. Then, f0α ∈U ⊆ 〈α〉S, since f0α contained an even number of flips.

Finally, f0αα−1 = f0 ∈ 〈α〉S so that 〈α〉S = S. ¥

This leaves the case where α does not move any invariant subtrees. In this case, only a finite number

of nodes are moved around, and α is a finite permutation. First, we show that the distinction between even

and odd permutations is the same as the distinction between an even and odd number of flips.

Proposition 48. A permutation on n nodes contains an even number of flips if and only if the permutation

is an even permutation.

Proof: Looking back at the development of flips on the outer ribbon, we find that s = f0r0, ω = s3, ω01 = ω ,

ωi,i+1 = r−i
0 ωri

0, and ωi j = ωi, j−1ω j−1, jωi, j−1 all contain an odd number of flips, provided i 6= j. Thus, any

two-cycle on the outer ribbon has an odd number of flips. Consider the swap γkp of two arbitrary but distinct

nodes nk and np in S. Let τ be the permutation that swaps mi with nk and m j with np. Then, γkp = τ−1ωi jτ ,
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so that γkp has an odd number of flips. If α corresponds to an even permutation, then it can be written as a

product of an even number of two-cycles, each of which has an odd number of flips. In this case, α has an

even number of flips. On the other hand, if α corresponds to an odd permutation, then it can be written as

product of an odd number of two-cycles, each of which has an odd number of flips. In this case, α has an

odd number of flips. ¥

The next proposition is the permutation equivalent of Theorem 46. Because it is more straightforward

and less powerful, we consider it only as a proposition.

Proposition 49. Let α ∈ S, α 6= e be an element that does not move any invariant subtrees, and let σU ∈ S

be the set of even permutation elements. Then, σU ⊆ 〈α〉S.

Proof: Assume α contains an even number of flips and is not the identity, and let β be another finite

permutation with an even number of flips. Set up a one-to-one correspondence φ between the nodes that

α or β acts on and a symmetric group Sk. If k < 5, we include a few nodes that neither α nor β acts on

so that k ≥ 5. Note that conjugation in Sk corresponds to multiplication by a permutation on one side and

its inverse on the other, which in turn corresponds to multiplication on one side by a permutation operation

and on the other side by its inverse, which is just conjugation in S. Note also that φ(α),φ(β ) ∈ Ak, where

Ak is the alternating group, since both are even permutations. Because Ak for k ≥ 5 is a simple group (see,

for instance, [7]), it follows that the operation β , as well as any other element of Ak, can be obtained from α

through multiplication, inverses, and conjugation. Mapping this construction back into S using φ−1 yields

a construction of β ∈ 〈α〉S.

Assume instead that α contains an odd number of flips. Then, the operation r0αr−1
0 ∈ 〈α〉S is also

a permutation with an odd number of flips, but it involves at least one element not involved in α . Thus,

r0αr−1
0 α−1 ∈ 〈α〉S is a finite permutation that contains an even number of flips and is not the identity

element. This element can then be used to construct β ∈ 〈α〉S using the same argument. ¥

Next, we show that permutations do not pull in other operations when closed under conjugate closure.

This also firmly establishes a second proper normal subgroup for S.

Proposition 50. Finite permutations σS form a conjugate closure of S.

Proof: If α is a finite permutation, then ναν−1 is a finite permutation, for any ν ∈ S. To see why this is

the case, examine its behavior on each node. Begin with a node ni that is modified by α . Then, ναν−1
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modifies the node νni, since (ναν−1)(νni) = ν(αni) 6= νni. On the other hand, if ni is not modified by α

then (ναν−1)(νni) = ν(αni) = νni. Because ναν−1 and α change the same number of elements, and α

changes a finite number of elements, it follows that ναν−1 changes only a finite number of elements and is

a permutation. Finite permutations are closed under composition and inverses, so that the conjugate closure

of a finite permutation must be a finite permutation. ¥

The following the an analog of Proposition 47 for permutations.

Proposition 51. Let α ∈ σS, α 6= e be a finite permutation. If α contains an even number of flips, then

〈α〉S = σU , and 〈α〉S = σS otherwise.

Proof: If α ∈ σU is not the identity, then σU = 〈α〉S. σU ⊆ 〈α〉S follows from the construction of each

element of σU in 〈α〉S. σU ⊇ 〈α〉S follows from the fact that every element in 〈α〉S must be a finite

permutation with an even number of flips. If α ∈ σS − σU , then σS = 〈α〉S. σS ⊇ 〈α〉S follows from

the closure of finite permutations under conjugate closure. To get the other direction, let β be any odd

permutation. Then, αβ is an even permutation, and αβ ∈ 〈α〉S. It follows that α−1αβ = β ∈ 〈α〉S and

σS ⊆ 〈α〉S. ¥

Theorem 52. The following is an exhaustive list of the normal subgroups of S:

• {e}, the trivial subgroup,

• S, the entire group,

• U, the subgroup whose elements have an even number of flips,

• σS, the subgroup whose elements are finite permutations,

• σU = U ∩σS, the subgroup whose elements are finite permutations and have an even number of flips.

Proof: Any element α ∈ S fits into exactly one of these cases: α satisfies the conditions of Theorem 46,

α satisfies the conditions of Proposition 49, or α = e. The first case is completely characterized by Propo-

sition 47. The second case is completely characterized by Proposition 51. Finally, the identity element is

trivially closed under conjugate closure, so that it, too, is a normal subgroup. In particular, this shows that

〈α〉S is a normal subgroup in the list, for any α ∈ S.



89

Next, consider A = 〈α1, . . . ,αn〉S generated by multiple group elements, but not necessarily finitely

many. We show that A is also in the list. If n = 0 or αi for all i, then A = {e}. Otherwise, A is completely

determined by the answer to two questions. Does αi contain an even number of flips for any i? Does α j

move an invariant subtree? If the answer to both questions is “yes” and i = j then 〈αi〉S = S and A = S. If

the answer to both questions is “yes” and i 6= j then
〈
αiα j

〉S = S. This is because αiα j has an odd number

of flips, because αi has an even number of flips and α j has an odd number of flips. Further, αiα j modifies

an invariant subtree because αi does and α j does not. Again this leads to A = S. Otherwise, the answer to

both questions is not “yes.”

If the answer to the first question is “no” and the answer to the second question is “yes,” then 〈αi〉S = U

and αk ∈U for all k. Thus, A = U . If the answer to the first question is “yes” and the answer to the second

question is “no,” then 〈αi〉S = σS and αk ∈ σS for all k. Thus, A = σS. The only remaining possibility is that

both questions are answered “no,” in which case 〈αi〉S = σU or 〈αi〉S = {e}. The case where all elements

generate the identity was already considered, so we may assume 〈αi〉S = σU . αk ∈ σU for all k. Thus,

A = σU . ¥

Proposition 53. These quotient isomorphisms hold: S/σS ∼= U/σU and S/U ∼= σS/σU ∼= Z2.

Proof: The second set is straightforward, as S/U ∼= {e, f0} ∼= Z2 and σS/σU ∼= {e,γ01} ∼= Z2. This leaves

only S/σS ∼= U/σU to be shown.

Let ι : U → S be the inclusion map. We claim that φ : U/σU → S/σS defined by φ(ασU ) = ι(α)σS is

a group isomorphism, from which the claim is immediate.

φ((ασU )(βσU )) = φ((αβ )σU )

= ι(αβ )σS

= (ι(α)ι(β ))σS

= (ι(α)σS)(ι(β )σS)

= φ(ασU )φ(βσU )

At this point, we define a function κ : S →U . If α ∈U then κ(α) = α . Otherwise, αγ01 ∈U , since γ01 is
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an odd permutation operation. In this case, let κ(α) = αγ01. Note that κ is not a homomorphism. However,

it is true that κ(ι(α)) = κ(α) = α , so that κ ◦ ι = idU .

Let ψ : S/σS →U/σU be defined by ψ(ασS) = κ(α)σU . Then, we have:

ψ(φ(ασU )) = ψ(ι(α)σS)

= κ(ι(α))σU

= ασU

φ(ψ(ασS)) = φ(κ(α)σU )

= ι(κ(α))σS

If α ∈U , then ι(κ(α))σS = ι(α)σS = ασS. Otherwise, ι(κ(α))σS = ι(αγ01)σS = αγ01σS = ασS. It

follows that φ−1 = ψ , and φ is a group isomorphism as desired. ¥

5.3 Tree Operations As Groups: Rotations

In this section, we will consider the group of rotations, R = 〈ri〉. This is what we will call the rotation

group; it is the group formed by the closure of tree rotations. Remember that we must add inverses when

forming the closure. Unlike G, F , and S, left rotations are not generated by multiplying other elements.

Theorem 54. The group R is finitely generated as R = 〈r0,r1,r2,r4〉.

Proof: We will consider the problem of finite generation by moving a subtree closer to the root without

disturbing the subtree, performing the rotation, and then moving it back. We have done a construction like

this before. This time we need to work a level down, so there will be more cases. In each case, we need an

operation νi that will bring the subtree Ti closer to the root without disturbing it.

• ni ∈ T7: νi = r0.

• ni ∈ T8: νi = r0.

• ni ∈ T9: νi = r0r−1
1 .
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• ni ∈ T10: νi = r−1
1 .

• ni ∈ T11: νi = r2.

• ni ∈ T12: νi = r−1
0 r2.

• ni ∈ T13: νi = r−1
0 .

• ni ∈ T13: νi = r−1
0 .

Then, we can define k by nk = νini and construct ri by:

ri = ν−1
i rkνi. (5.25)

It follows that:

R = 〈r0,r1,r2,r3,r4,r5,r6〉 . (5.26)

Noting the the first two and last two cases can be combined at a higher level we can do a little better:

• ni ∈ T3: νi = r0

• ni ∈ T9: νi = r0r−1
1

• ni ∈ T10: νi = r−1
1

• ni ∈ T11: νi = r2

• ni ∈ T12: νi = r−1
0 r2

• ni ∈ T6: νi = r−1
0 .

This removes two generators:
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R = 〈r0,r1,r2,r4,r5〉 . (5.27)

We also have this relation: r5 = r0r4r−1
0 . This eliminates another generator:

R = 〈r0,r1,r2,r4〉 . (5.28)

¥

Finite presentation seems unlikely. Using the above construction, we can generate relations like this:

r−n
0 r−p

1 rn
0r−m

1 r−n+m
0 rp

1 rn−m
0 rm

1 = e. (5.29)

This is valid for integers n > m ≥ 0 and an arbitrary integer p, and is constructed by reducing rLn1 in

terms of the generators in two ways.

These are not all interesting generators, e.g., if p = 0 or m = 0, then the terms cancel out trivially. In

fact, this can be generated for all p algebraically from the expression for p = 1:

r−n
0 r−1

1 rn
0r−m

1 r−n+m
0 r1rn−m

0 rm
1 = e. (5.30)

Here, n > m > 0. (m = 0 is trivial.) The simplest of these is:

r−2
0 r−1

1 r2
0r−1

1 r−1
0 r1r0r1 = e. (5.31)
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5.3.1 Subgroups of the Rotation Group

Recall that the rotation group is R = 〈r0,r1,r2,r4〉. Then, there are 15 subgroups of R formed by using

fewer generators. Many of these are trivial and very easily described. One is the trivial group (remove all

generators). 〈r0〉 ∼= 〈r1〉 ∼= 〈r2〉 ∼= 〈r4〉 ∼= Z. Because r1 and r2 affect disjoint subtrees, they will commute.

Similarly, r2 and r4 commute. Thus, 〈r1,r2〉 ∼= 〈r2,r4〉 ∼= Z⊕Z.

It is an important question to us whether 〈r0〉 is a normal subgroup of R. In particular, it must be true

that r−1
1 r0r1 ∈ 〈r0〉, so that, r−1

1 r0r1 = rk
0. Then, r−1

1 rh
0r1 = rhk

0 and r− j
1 rh

0r j
1 = rhk j

0 . Using an identity we

have seen:

e = r−2
0 r−1

1 r2
0r−1

1 r−1
0 r1r0r1

= r−2
0 r−1

1 r2
0(r

−1
1 r−1

0 r1)r0r1

= r−2
0 r−1

1 r2
0r−k

0 r0r1

= r−2
0 r−1

1 r3−k
0 r1

= r−2
0 (r−1

1 r3−k
0 r1)

= r−2
0 r(3−k)k

0

= r(3−k)k−2
0

= r(3−k)k−2
0 .

Because r0 has characteristic zero, it must be that (3− k)k− 2 = 0, i.e., k = 1 or k = 2. If k = 1, then

r−1
1 r0r1 = r0 and r0r1 = r1r0. This is a contradiction, since these rotations do not commute. Thus, it must

be that k = 2. This leads to a contradiction, since:
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e = r−n
0 r−1

1 rn
0r−m

1 r−n+m
0 r1rn−m

0 rm
1

= r−n
0 r−1

1 rn
0r−m+1

1 (r−1
1 r−n+m

0 r1)rn−m
0 rm

1

= r−n
0 r−1

1 rn
0r−m+1

1 rk(−n+m)
0 rn−m

0 rm
1

= r−n
0 r−1

1 rn
0r−m+1

1 r(1−k)(n−m)
0 rm

1

= r−n
0 r−1

1 rn
0r1r(1−k)(n−m)km

0

= r−n
0 rnk

0 r(1−k)(n−m)km

0

= r(1−k)(n−m)km+nk−n
0

Again, the power must be zero:

0 = (1− k)(n−m)km +nk−n

0 = (1− k)((n−m)km−n)

0 = ((n−m)2m−n).

This is not true for all n > m > 0. Thus, no such k may exist. It follows that 〈r0〉 is not a normal

subgroup of R. Note that 〈r0〉 is the subgroup of free operations if flips are ignored.

Proposition 55. The subgroup 〈r0〉 of R is not a normal subgroup.

5.3.2 Eliminating a generator

We claim that r2 ∈ 〈r0,r1〉. In fact, r2 = r2
0r−1

1 r−1
0 . Thus, we can rewrite R:

R = 〈r0,r1,r4〉 . (5.32)

In fact, we can get a rather interesting and elegant expression for rn
2:
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rn
2 = r2

0(r
−1
1 r0)nr−2

0 . (5.33)

Noting that r2 and r1 commute, we have rn
2rm

1 = rm
1 rn

2, i.e.,

r2
0(r

−1
1 r0)−nr−2

0 r−m
1 r2

0(r
−1
1 r0)nr−2

0 rm
1 = e. (5.34)

We get a similar relationship by noting that r2 commutes with r4:

r2
0(r

−1
1 r0)−nr−2

0 r−m
4 r2

0(r
−1
1 r0)nr−2

0 rm
4 = e. (5.35)

In particular, we can use the commutativity of disjoint operations to create more identities. E.g., we can

construct r5 = r0r4r−1
0 and require that it commute with r4:

r0r−m
4 r−1

0 r−n
4 r0rm

4 r−1
0 rn

4 = e. (5.36)

It also commutes with r1:

r0r−m
4 r−1

0 r−n
1 r0rm

4 r−1
0 rn

1. (5.37)

5.3.3 Characterizing R

In much the same way as it was possible to describe S in a very simple way, it is also very easy to

describe R. Namely, R is the set of all operations that requires changing only a finite number of child

pointers, preserves the infinite complete binary tree structure, and does not change the relative ordering of

elements in the tree.
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The observation that elements of R satisfy those properties is straightforward. Finiteness follows from

the finiteness of S. The retention of relative ordering follows from the well-known fact that tree rotations

do not affect the relative ordering of nodes. Thus, these restrictions are necessary. What isn’t immediately

obvious is that these restrictions precisely describe R’s contents. As with the characterization of S, create a

set U of subtrees that are not changed by the operation α being considered. The relative ordering of these

subtrees is not changed.

Consider that k of the n subtrees in U are on the left side of the root. We wish to move one of these

subtrees to the right side of the root, leaving k−1 on the left side. Because the relative ordering of the trees

is fixed, there is only one subtree t that can be moved over. Before we can move it over, we need to draw

it as close to the root as possible. We can do this using the operation l1. Because the nodes n1 and n4 are

ancestors of t (it is obtained by following left children from n1), it follows that T1 and T4 are not in U , so

that none of the subtrees in U are disturbed by the operation. It is also easy to see that as long as t is further

from the root than n4, it will be drawn one level closer to the root. This process is halted when t = T4. Then,

r0 moves it to T5, leaving k−1 subtrees on the left side. Thus, r0lh(t)−2
1 is the operation that moves t from

the left side of the root to T5, which is to the right of the root. Further, no other elements of U are moved

over. This can be seen by noting that l1 cannot move elements across the root, and r0 moves only T4 across

the root, leaving T3 sill on the left side of the root. All subtrees in U on the left side of the root must be

inside T3, since T1 cannot be in U (because T4 is inside T1).

The reverse operation is derived and justified using the same techniques. This operator is described by

l0rh(t)−2
2 . We can now define two operations:

σkt = rklh(t)−h(nk)−2
Lk , (5.38)

τkt = lklh(t)−h(nk)−2
Rk . (5.39)

These operations are analogous to the ones at the root, except that they apply to nk instead. Note that k

is a node index and t is a node.

The construction for generating α is recursive and simple. Let unprimed nodes and subtrees indicate

the current tree and primed nodes and subtrees indicate the tree obtained by applying α to the original tree.
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For a node k, count how many subtrees in U occur in TLk and T ′Lk. If there are more in TlK , let t be the

rightmost such subtree and apply σkt . If there are more in T ′Lk, let t be the leftmost subtree from U in TRk,

and apply τkt . This is repeated until the number of subtrees on each side of nk is right. Recurse on Lk and

Rk.

The construction starts with k = 0 and ends each time Tk ∈U . To see that the construction will terminate

in a finite number of steps, it is important to make a few simple observations. First, each path from the root

will eventually reach a node nk where Tk ∈U . This follows from the fact that the number of nodes not in a

subtree in U is finite. The next thing to note is that either Tk ∈U or there is at least one subtree in U in TRk

and TLk. Thus, the maximum depth is limited by the number of subtrees in U , which is finite.

To see that the construction actually works, consider the number of subtrees in U that are in TLk and T ′Lk.

These are always equal. If k is not in any subtree of U , these will be positive and equal. Consider the parent

of the root of a subtree of U , nk. Assume without loss of generality that the root of the subtree was nLk. The

number of subtrees from U in TLk is precisely one, since it is the subtree, and the subtrees in U are disjoint.

But then the number of subtrees in T ′Lk is one. If this subtree weren’t rooted at T ′Lk, then it would be to one

side of the node nLk. There are an infinite number of nodes on the other side of the node that are not in any

subtree U , which is a contradiction. It follows that T ′Lk ∈U . Thus, subtrees are located at the right places in

the tree. Because the ordering is fixed, it follows that these subtrees are actually in the correct places.

Now that the subtrees are in the right places, the rest of the nodes in the tree are uniquely determined

by the preserved ordering. It follows that this construction has produced α .

Theorem 56. The group R is the set of all operations that requires changing only a finite number of child

pointers, preserves the infinite complete binary tree structure, and does not change the relative ordering of

elements in the tree.

5.4 Metric-Preserving Operations

There are to metric-preserving operations being considered; the first is the rotation at the root, and the

second is a flip at an arbitrary node in the tree.

Originally, β is the root of the tree; after the (right) rotation, α is the root of the tree. Let the original

weights be dαm, dαn, dαβ , and dβ p. Let the desired weights after the rotation be d′αm, d′αβ , d′βn, and
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Figure 5.3: Right rotation about the root, β .

d′β p. Note that the subscripts indicate endpoints for the edge, and the primed distances correspond to edge

weights after rotation. Let Ta represent the subtree rooted at node a. We can assign these primed distances

as follows:

d′αm = d′αβ =
1
2

dαm,

d′βn = dαn,

d′β p = dαβ +dβ p.

We claim that the metric represented by the tree (or rather the leaves of the tree) is invariant under this

rotation with the new weights chosen in this way.

Consider a distance di j, where i ∈ Ta and j ∈ Tb are leaves of the subtrees. If a = b, then the path does

not involve the portion of the tree being changed, so the distance is unchanged. Otherwise, a 6= b. Then,

di j = dia + dab + db j, where dia is the distance from leaf i to node a. Note that dia and db j do not contain

edges involved in the rotation, so they are unchanged by the rotation. It follows that di j is unchanged if and

only if dab is unchanged. It in turn follows that the metric described by the tree is unchanged if dmn, dmp,

and dnp are all unchanged by the rotation. This follows from the following three chains of equalities:
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dmn = dαm +dαn =
1
2

dαm +
1
2

dαm +dαn = d′αm +d′αβ +d′βn = d′mn,

dmp = dαm +dαβ +dβ p = d′αm +d′αβ +d′β p = d′mp,

dnp = dαn +dαβ +dβ p = d′βn +d′β p = d′np.

Thus, distances are preserved under right rotation about the root. Since left rotation about the root is

just the inverse of this operation, it must also preserve distances.

In the case of child flips, the edge weights are not changed. All paths contain the same edges, and these

edges’ weights are not changed. It follows that the path lengths and the metric distances are also unchanged.

The metric is invariant under child flips.
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6. Conclusions

6.1 Summary

Metric trees have found important uses in computer vision and other active areas. Metric trees present

efficient algorithms or efficient approximation algorithms for problems that are intractible on general met-

rics. This has made metric trees particularly attractive. At this time, only one efficient approximation

algorithm is known for embedding arbitrary metrics into trees, and this algorithms produces trees that are

typically far from balanced. While unbalanced trees are quite suitable for many domains, it can lead to

suboptimal performance in others. This thesis introduces efficient algorithms for computing weights on a

metric tree under L2 and L∞ norms. Both algorithms are optimal. Similarly, we present local versions of

both algorithms that compute edge weights locally with the same optimality guarantees.

From this point, the thesis shifts its focus by extending the tree and considering its operations as a

group. The group that results has, to the best of our knowledge, never been studied before. This thesis

therefore initiates the study of this group. It explores the underlying structure of the group and constructs

important operations within the group, such as flips and permutations. It gives a simple characterization

of the group and proves its finite generation. It also considers two smaller groups, including one that is a

group consisting of operations that do not affect the distortion of metric trees.

Normal subgroups are especially important both for practical applications and the general theory of the

group itself. Normal subgroups make it possible to take quotients. While it is not true that the group of free

operations or any useful subset of that group forms a normal subgroup, the group does in fact have normal

subgroups. The thesis finds and proves a complete list of the normal subgroups. Finally, the thesis switches

to the group consisting only of rotations and proves some of the same results for that group, such as finite

generation and a complete characterization.

6.2 Future Work

There are a number of important questions that this thesis raises but does not solve. These are left for

future work.
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• Does an efficient algorithm exist to balance a metric tree with distortion at most a constant factor

from optimal under L2 or L∞?

• Is the group S isomorphic to any other known group?

• Is the group U simple?

• The application for which S was originally studied failed because the group of free operations did not

form a normal subgroup. Can the group properties of S be applied in other ways to the problem of

balancing metric trees?

• Which properties of S can be restricted to finite subsets of S so that results of the study of S can be

applied to finite trees? What is a good methodology for performing this restriction? Does S yield

useful applications under this restriction? Does calling invariant subtrees “leaves” provide a suitable

restriction?

• The group of only tree rotations should be studied in greater depth.

• Does the group generated by root rotations and flips contain all operations that do not cause distortion

on metric trees?

• What is the quotient group S/σS? Does it lie in S, so that S may be expressed as a semidirect product

using it?
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