
CS 230, Quiz 9

Solutions

You will have 8 minutes to complete this quiz. There are two problems; you only need to do one of them.
No books, notes, or other aids are permitted.

Problem 1
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Show that the even-odd analysis from class does not lead to any restrictions on the time step

size ∆t for this discretization.
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Letting i be even or odd:
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Subtract these:
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Since the denominator is greater than one, the difference is decreasing in magnitude. This is true for any
∆t > 0, so we do not find any restrictions on the time step size using this approach.

Problem 2

Explain the difference between the two time derivatives Du

Dt
and ∂u

∂t
and show how they are

related.

The first time derivative is the change in acceleration experienced by an observer moving with the material
(eg, looking at the speedometer in a car from the passenger seat). The partial derivative is the change in
velocity observed in the material moving past a fixed location (eg, the observation made by a police officer
with a radar gun). The relationship can be worked out by assuming that an observer is moving with a car
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at position xk(t) and velocity vk(t). The relationship is then
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