Perspective Correct Interpolation

CS 130

1. Viewing frustum in camera space. Camera is at the origin.

2. Transform from A, B, C, P to $A^{\prime}, B^{\prime}, C^{\prime}, P^{\prime}$ by homogeneous matrix \mathbf{M}.

$$
\begin{aligned}
& \binom{A^{\prime} w_{a}}{w_{a}}=\mathbf{M}\binom{A}{1} \\
& \binom{B^{\prime} w_{b}}{w_{b}}=\mathbf{M}\binom{B}{1} \\
& \binom{C^{\prime} w_{c}}{w_{c}}=\mathbf{M}\binom{C}{1} \\
& \binom{P^{\prime} w_{p}}{w_{p}}=\mathbf{M}\binom{P}{1}
\end{aligned}
$$

3. The real barycentric weights are α, β, γ. Because of the projection, they appear to be $\alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}$.

$$
\begin{aligned}
P & =\alpha A+\beta B+\gamma C \\
P^{\prime} & =\alpha^{\prime} A^{\prime}+\beta^{\prime} B^{\prime}+\gamma^{\prime} C^{\prime}
\end{aligned}
$$

4. While rasterizing, we can compute $\alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}$ directly, but we will need the real weights α, β, γ to correctly interpolate color.
5. Noting $\alpha+\beta+\gamma=1$,

$$
\begin{aligned}
\binom{P}{1} & =\alpha\binom{A}{1}+\beta\binom{B}{1}+\gamma\binom{C}{1} \\
\mathbf{M}\binom{P}{1} & =\alpha \mathbf{M}\binom{A}{1}+\beta \mathbf{M}\binom{B}{1}+\gamma \mathbf{M}\binom{C}{1} \\
P^{\prime} w_{p} & =\alpha A^{\prime} w_{a}+\beta B^{\prime} w_{b}+\gamma C^{\prime} w_{c} \\
w_{p} & =\alpha w_{a}+\beta w_{b}+\gamma w_{c} \\
P^{\prime} & =\frac{\alpha A^{\prime} w_{a}+\beta B^{\prime} w_{b}+\gamma C^{\prime} w_{c}}{\alpha w_{a}+\beta w_{b}+\gamma w_{c}} \\
P^{\prime} & =\frac{\alpha w_{a}}{\alpha w_{a}+\beta w_{b}+\gamma w_{c}} A^{\prime}+\frac{\beta w_{b}}{\alpha w_{a}+\beta w_{b}+\gamma w_{c}} B^{\prime}+\frac{\gamma w_{c}}{\alpha w_{a}+\beta w_{b}+\gamma w_{c}} C^{\prime} \\
\alpha^{\prime} & =\frac{\alpha w_{a}}{\alpha w_{a}+\beta w_{b}+\gamma w_{c}} \\
\beta^{\prime} & =\frac{\beta w_{b}}{\alpha w_{a}+\beta w_{b}+\gamma w_{c}} \\
\gamma^{\prime} & =\frac{\gamma w_{c}}{\alpha w_{a}+\beta w_{b}+\gamma w_{c}}
\end{aligned}
$$

6. This is the wrong way around. We have α^{\prime} but need α.

$$
\begin{aligned}
k & =\frac{k}{\alpha w_{a}+\beta w_{b}+\gamma w_{c}} \\
\alpha^{\prime} & =\alpha w_{a} k \\
\beta^{\prime} & =\beta w_{b} k \\
\gamma^{\prime} & =\gamma w_{c} k \\
\alpha & =\frac{\alpha^{\prime}}{w_{a} k} \\
\beta & =\frac{\beta^{\prime}}{w_{b} k} \\
\gamma & =\frac{\gamma^{\prime}}{w_{c} k} \\
1 & =\alpha+\beta+\gamma=\frac{\alpha^{\prime}}{w_{a} k}+\frac{\beta^{\prime}}{w_{b} k}+\frac{\gamma^{\prime}}{w_{c} k} \\
k & =\frac{\alpha^{\prime}}{w_{a}}+\frac{\beta^{\prime}}{w_{b}}+\frac{\gamma^{\prime}}{w_{c}} \\
\alpha & =\frac{\frac{\alpha^{\prime}}{w_{a}}}{\frac{\alpha^{\prime}}{w_{a}}+\frac{\beta^{\prime}}{w_{b}}+\frac{\gamma^{\prime}}{w_{c}}} \\
\beta & =\frac{\frac{\beta^{\prime}}{w_{b}}}{\frac{\alpha^{\prime}}{w_{a}}+\frac{\beta^{\prime}}{w_{b}}+\frac{\gamma^{\prime}}{w_{c}}} \\
\gamma & =\frac{\frac{\gamma^{\prime}}{w_{c}}}{\frac{\alpha^{\prime}}{w_{a}}+\frac{\beta^{\prime}}{w_{b}}+\frac{\gamma^{\prime}}{w_{c}}}
\end{aligned}
$$

7. Can now use α, β, γ to interpolate colors.
