Clipping

CS 130

1. Goal of clipping

- Rasterization is rather expensive
- Involves doing work for every pixel that is inside each triangle
- Would be nice to avoid doing this work for pixels that cannot be seen
- Discard triangles that are outside the canonical viewing volume
- Cut up triangles that partially leave the canonical viewing volume

- All triangles being rasterized are now fully in the viewing area
- They might still be behind something.

2. Segment-plane

- Representation
- Segment: $f(s)=\mathbf{p}+s(\mathbf{q}-\mathbf{p}) ; 0 \leq s \leq 1$
- Plane: $g(\mathbf{x})=(\mathbf{x}-\mathbf{r}) \cdot \mathbf{n}=0(g(\mathbf{x})>0$ is outside $)$

- Cases
$-g(\mathbf{p}) \leq 0$ and $g(\mathbf{q}) \leq 0:$ inside
$-g(\mathbf{p})>0$ and $g(\mathbf{q})>0$: outside
- Otherwise, the segment intersects the plane
- Intersection location
- Intersection: z
- On segment: $\mathbf{z}=\mathbf{p}+s(\mathbf{q}-\mathbf{p})$
- On plane: $(\mathbf{z}-\mathbf{r}) \cdot \mathbf{n}=0$

$$
\begin{aligned}
0 & =(\mathbf{z}-\mathbf{r}) \cdot \mathbf{n} \\
& =(\mathbf{p}+s(\mathbf{q}-\mathbf{p})-\mathbf{r}) \cdot \mathbf{n} \\
& =(\mathbf{p}-\mathbf{r}) \cdot \mathbf{n}+s(\mathbf{q}-\mathbf{p}) \cdot \mathbf{n} \\
s & =\frac{(\mathbf{r}-\mathbf{p}) \cdot \mathbf{n}}{(\mathbf{q}-\mathbf{p}) \cdot \mathbf{n}}
\end{aligned}
$$

3. Triangle-plane

- Discard triangle if all vertices outside plane
- Accept triangle if all vertices inside plane
- Otherwise, need to clip triangle
- Compute intersection points (segment-plane intersections)
- Triangulate new region; creates one or two triangles

4. Triangle-box

- Clip against walls one at a time
- May produce many triangles

