Clipping

$\mathrm{CS}~130$

1. Goal of clipping

- Rasterization is rather expensive
- Involves doing work for every pixel that is inside each triangle
- Would be nice to avoid doing this work for pixels that cannot be seen
- Discard triangles that are outside the canonical viewing volume
- Cut up triangles that partially leave the canonical viewing volume

- All triangles being rasterized are now fully in the viewing area
- They might still be behind something.
- 2. Segment-plane
 - Representation
 - Segment: $f(s) = \mathbf{p} + s(\mathbf{q} \mathbf{p}); \ 0 \le s \le 1$
 - Plane: $g(\mathbf{x}) = (\mathbf{x} \mathbf{r}) \cdot \mathbf{n} = 0$ ($g(\mathbf{x}) > 0$ is outside)

- \bullet Cases
 - $-g(\mathbf{p}) \leq 0$ and $g(\mathbf{q}) \leq 0$: inside
 - $-g(\mathbf{p}) > 0$ and $g(\mathbf{q}) > 0$: outside
 - Otherwise, the segment intersects the plane
- Intersection location
 - Intersection: \mathbf{z}
 - On segment: $\mathbf{z} = \mathbf{p} + s(\mathbf{q} \mathbf{p})$
 - On plane: $(\mathbf{z} \mathbf{r}) \cdot \mathbf{n} = 0$

$$0 = (\mathbf{z} - \mathbf{r}) \cdot \mathbf{n}$$

= $(\mathbf{p} + s(\mathbf{q} - \mathbf{p}) - \mathbf{r}) \cdot \mathbf{n}$
= $(\mathbf{p} - \mathbf{r}) \cdot \mathbf{n} + s(\mathbf{q} - \mathbf{p}) \cdot \mathbf{n}$
 $s = \frac{(\mathbf{r} - \mathbf{p}) \cdot \mathbf{n}}{(\mathbf{q} - \mathbf{p}) \cdot \mathbf{n}}$

- 3. Triangle-plane
 - Discard triangle if all vertices outside plane
 - Accept triangle if all vertices inside plane
 - Otherwise, need to clip triangle
 - Compute intersection points (segment-plane intersections)
 - Triangulate new region; creates one or two triangles
- 4. Triangle-box
 - Clip against walls one at a time
 - May produce many triangles