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Abstract

Whole-system dynamic taint analysis has many unique appli-
cations such as malware analysis and fuzz testing. Compared
to process-level taint analysis, it offers a wider analysis scope,
a better transparency and tamper resistance. The main barrier
of applying whole-system dynamic taint analysis in practice is
the large slowdown that can be sometimes up to 30 times. Ex-
isting optimization schemes have either considerable baseline
overheads (when there is no tainted data) or specific hardware
dependencies. In this paper, we propose an elastic whole-
system dynamic taint analysis approach, and implement it in
a prototype called DECAF++. Elastic whole-system dynamic
taint analysis strives to perform taint analysis as least frequent
as possible while maintaining the precision and accuracy. Al-
though similar ideas are explored before for process-level taint
analysis, we are the first to successfully achieve true elasticity
for whole-system taint analysis via pure software approaches.
We evaluated our prototype DECAF++ on nbench, apache
bench, and SPEC CPU2006. Under taint analysis loads, DE-
CAF++ achieves 202% speedup on nbench and 66% speedup
on apache bench. Under no taint analysis load, DECAF++
imposes only 4% overhead on SPEC CPU2006.

1 Introduction

Dynamic taint analysis (also known as dynamic information
flow tracking) marks certain values in CPU registers or mem-
ory locations as fainted, and keeps track of the tainted data
propagation during the code execution. It has been applied
to solving many program analysis problems, such as mal-
ware analysis [17,28,29], protocol reverse engineering [5],
vulnerability signature generation [24], fuzz testing [26], etc.

Dynamic taint analysis can be implemented either at the
process level, or at the whole system level. Based on process-
level instrumentation frameworks such as Pin [19], Val-
grind [23], and StarDBT [3], process-level taint analysis tools
like LibDft [16], LIFT [25], Dytan [7] and Minemu [4] keep
track of taint propagation within a process scope. Whole-
system taint analysis tools (e.g., TaintBochs [6], DECAF [12]

and PANDA [10]) are built upon system emulators (e.g.,
Bochs [20] and QEMU [2]), and as a result can keep track of
taint propagation throughout the entire software stack, includ-
ing the OS kernel and all the running processes. Moreover,
whole-system dynamic taint analysis offers a better trans-
parency and temper resistance because code instrumentation
and analysis are completely isolated from the guest system
execution within a virtual machine; in contrast, process-level
taint analysis tools share the same memory space with the
instrumented process execution.

However, these benefits come at a price of a much higher
performance penalty. For instance, the most efficient imple-
mentation of whole-system taint analysis to our knowledge,
DECAF [12], incurs around 6 times overhead over QEMU
[12], which itself has another 5-10 times slowdown over the
bare-metal hardware. This overhead for tainting is paid con-
stantly no matter how much tainted data is actually propagated
in the software stack.

To mitigate such a performance degradation introduced by
dynamic taint analysis, some systems dynamically alternate
between the execution of program instructions and the taint
tracking ones [13,25]. For instance, LIFT [25] is based on the
idea of alternating execution between an original target pro-
gram (fast mode) and an instrumented version of the program
containing the taint analysis logic. Ho et al. proposed the idea
of demand emulation [13], that is, to perform taint analysis
via emulation only when there is an unsafe input.

Despite the above, there are still some unsolved problems
in this research direction. First, LIFT [25] works at the process
level, which means LIFT has the aforementioned shortcom-
ings of process level taint analysis. Moreover, LIFT still has
to pay a considerable overhead for checking registers and
the memory in the fast mode. Second, the demand emulation
approach [13] has a very high overhead in switching between
the virtualization mode and the emulation mode [13]. Third,
some optimization approaches depend on specific hardware
features for acceleration [4, 16, 25].

In this paper, we propose solutions to solve these prob-
lems, and provide a more flexible and generally applicable



dynamic taint analysis approach. We present DECAF++, an
enhancement of DECAF with respect to its taint analysis per-
formance based on these solutions. The essence of DECAF++
is elastic whole-system taint analysis. Elasticity, here, means
that the runtime performance of whole-system taint analysis
degrades gracefully with the increase of tainted data and taint
propagation. Unlike some prior solutions that rely on specific
hardware features for acceleration, we take a pure software
approach to improve the performance of whole-system dy-
namic taint analysis, and thus the proposed improvements are
applicable to any hardware architecture and platform.

More specifically, we propose two independent optimiza-
tions to achieve the elasticity: elastic taint status checking and
elastic taint propagation. DECAF++ elasticity is built upon
the idea that if the system is in a safe state, i.e., there is no data
from taint sources, there is no need for taint analysis as well.
Henceforth, we access the shadow memory to read the taint
statuses only when there is a chance that the data is tainted.
Similarly, we propagate the taint statuses from the source to
the destination operand only when any of the source operands
are tainted.

We implemented a prototype dubbed DECAF++ on top of
DECAEF. Our introduced code is around 2.5 KLOC includ-
ing both insertions and modifications to the DECAF code.
We evaluated DECAF++ on nbench, SPEC CPU2006, and
Apache bench. When there are tainted bytes, we achieve 202%
(18% to 328%) improvement on nbench integer index, and
on average 66% improvement on apache bench in compar-
ison to DECAF. When there are no tainted bytes, on SPEC
CPU2006, our system is only 4% slower than the emulation
without instrumentation.

Contributions In summary, we make the following contri-
butions:

* We systematically analyze the overheads of whole sys-
tem dynamic taint analysis. Our analysis identifies two
main sources of slowdown for DECAF: taint status
checking incurring 2.6 times overhead, and taint propa-
gation incurring 1.8 times overhead.

* We propose an elastic whole-system dynamic taint anal-
ysis approach to reduce taint propagation and taint status
checking overhead that imposes low constant and low
transition overhead via pure software optimization.

* We implement a prototype based on elastic tainting
dubbed DECAF++ and evaluate it with three bench-
marks. Experimental results show that DECAF++ in-
curs nearly zero overhead over QEMU software emula-
tion when no tainted data is involved, and has consid-
erably lower overhead over DECAF when tainted data
is involved. The taint analysis overhead of DECAF++
decreases gracefully with the amount of tainted data,
providing the elasticity.

2 Related Work

2.1 Hardware Acceleration

Related works on taint analysis optimization focus on a single
architecture [4, 16,25]. Henceforth, they utilize the capabili-
ties offered by the architecture and hardware to accelerate the
taint analysis. LIFT uses x86 specific LAHF/SAHF instruc-
tions to accelerate the context switch between the original
binary code and the instrumented code. Minemu uses X86
SSE registers to store the taint status of the general purpose
registers, and fails if the application itself uses these registers.
libdft uses multiple page size feature on x86 architectures to
reduce the Translation Lookaside Buffer (TLB) cache miss
for the shadow memory. In this work, we stay away from these
hardware-specific optimizations, and rely only on software
techniques to make our solution architecture agnostic.

2.2 Shadow Memory Access Optimization

Minimizing the overhead of shadow memory access is crucial
for the taint analysis performance. Most related works reduce
this overhead by creating a direct memory mapping between
the memory addresses and the shadow memory [4, 16,25].
This kind of mapping removes the lookup time to find the
taint status location of a given memory address. The imple-
mentation of the direct mapping requires a fixed size memory
structure. This fixed size structure to store the taint status
is practical only for 32-bit systems; to support every appli-
cation, such an implementation requires 32 TB of memory
space on 64 bits systems [16]. Even on 32-bit systems, the
implementation usually incurs a constant memory overhead
of around 12.5% [16]. Minemu furthers this optimization and
implements a circular memory structure that rearranges the
memory allocation of the analyzed application. The result
is that it quickly crashes for applications that have a large
memory usage [4]. In this work, we aim to follow a dynam-
ically managed shadow memory that can work not only for
applications with large memory usage but also for 64-bit ap-
plications.

In addition to the above, LIFT [25] coalesces the taint
status checks to reduce the frequency of access to the shadow
memory. To this end, LIFT needs to know ahead of time
what memory accesses are nearby or to the same location.
This requires a memory reference analysis before executing
a trace. LIFT scans the instructions in a trace and constructs
a dependency graph to perform this analysis. LIFT reports
that this optimization is application dependent (sometimes
no improvement), and depends on what percentage of time
the taint analysis is required for the application. LIFT is a
process level taint analysis tool, and in case of whole system
analysis, we expect the required taint analysis percentage for
a program to be very low in comparison to the size of the
system. Henceforth, we do not expect this optimization to



be very useful for whole system analysis given the constant
overhead of performing memory reference analysis for the
entire system.

2.3 Decoupling

Several related works reduce the taint analysis overhead by de-
coupling taint analysis from the program execution [14, 15,18,
21,22]. ShadowReplica [14] decouples the taint analysis task
and runs it in a separate thread. TaintPipe [22] parallelizes the
taint analysis by pipelining the workload in multiple threads.
StraightTaint [21] offloads the taint analysis to an offline pro-
cess that reconstructs the execution trace and the control flow.
LDX [18] performs taint analysis by mutating the source data
and watching the change in the sink. If the sink is tainted,
the change in the source would change the sink value. LDX
reduces the overhead by spawning a child process and run-
ning the analysis in the spawned process on a separate CPU
core. RAIN [15] performs on-demand dynamic information
level tracking by replaying an execution trace when there
is an anomaly in the system. RAIN reduces the overhead
by limiting the replay and the analysis to a few processes
in the system (within the information flow graph) based on
a system call reachability analysis. Our work complements
these works as we aim to separate the taint analysis from the
original execution.

2.4 Elastic Tainting

Elastic taint propagation Similar ideas to elastic tainting
have been explored in the previous works [13,25]. Qin et al.
introduced the idea of fast path optimization [25]. Fast path
optimization is based on the notion of alternating execution
between a target program and an instrumented version of
the program including the taint analysis logic. The former
is called check execution mode, and the latter is called track
execution mode. Qin et al. presented this idea for process
level taint analysis. We build upon this idea for whole system
analysis. While the intuition behind both elastic tainting and
fast optimization is the same, our work advances Qin et al.’s
work for the whole system.

Our first novelty is that we reduce the overhead in the check
mode. LIFT [25] checks registers and memory locations of
every basic block regardless of the mode. Note that this over-
head in system level analysis is a major issue because it affects
every process (and the kernel) as we show in §3.3. We reduce
the overhead by releasing DECAF++ from checking registers
in the check mode and instead monitor the taint sources, data
from input devices or memory locations, directly. Combining
this with our low overhead taint checking, we reduce the over-
head in the check mode to nearly zero as we show in §6.4.
Our second novelty is that, unlike LIFT [25], we implement
elastic tainting in an architecture agnostic way. Meeting this
requirement while obtaining a low overhead is technically

challenging. As an example, LIFT uses a simple jump to
switch modes while such a jump in our case would panic the
CPU since a single guest instruction might break into several
host binary instructions that need to be executed atomically.

Finally, the effectiveness of elastic taint propagation for
whole system taint analysis has not been investigated before.
As we show in §6, this optimization for whole-system taint
analysis is application dependent and needs to be accompa-
nied with a taint status checking optimization. Our work is the
first that shows the elastic property through comprehensive
evaluations, and provides a means to compare the elastic taint
propagation with elastic taint status checking.

Elastic taint status checking Ho et al. present the idea of
demand emulation [13] that has elements in common with our
elastic taint status checking. The demand emulation idea is
to perform taint analysis via emulation only when there is an
unsafe input e.g. network input in their case. Otherwise, the
system is virtually executed without extra overhead. Demand
emulation idea looks enticing because the virtualization over-
head is usually lower than emulation. However, as Ho et al.
state, the transition cost between virtualization and emulation
is quite high and possibly offsets the speedup gained through
the virtualization. In contrast, as we show in §6.4, our elastic
tainting incurs almost zero transition overhead. Further, Ho
et al. had to modify the underlying target operating system to
provide efficient support for demand emulation. In contrast, in
this work, we implement elastic tainting using only emulation
without any modifications to the target systems, and show
substantial improvements in real world applications of taint
analysis.

3 Whole-System Dynamic Tainting

In this section, we introduce a basic background knowledge
on DECAF, mainly focusing on its taint analysis function-
ality related to this work. For further details on QEMU, the
underlying emulator, we refer the readers to Appendix A.

3.1 Taint Propagation

DECAF defines how instructions affect the taint status of their
operands. Going to the details of the rules for every instruction
is out of the scope of the current work; an interested reader
can refer to [27]. Just to give an idea, mov instructions in x86
result in a corresponding mov of the taint statuses from the
source to the destination (see Figure 1). What is important
about the DECATF taint propagation is that DECAF inserts a
few instructions before every Tiny Code Generator (TCG) IR
instruction that do the following:

* Read the taint status of the source operand. The taint sta-
tus depending on the operand type can be in the shadow
registers, temporary variables or in the shadow memory.



movi_i32 tmp23,50x0
movi_i32 tmp0,50x7000
mov_i32 taint_esp,tmp23
— | mov_i32 esp,tmp0
movi_i32 tmp24,50x0
movi_i32  tmp4,50xe070
st_i32 tmp4,env,S0x4c

(b) DECAF instrumentation for tainting

movi_i32 tmp0,50x7000
mov_i32  esp,tmp0
movi_i32 tmp4,50xe070
st_i32 tmp4,env,S0x4c

(a) Optimized Qemu generated tcg code

Figure 1: DECAF tcg instrumentation to apply tainting for
the instruction mov $0x7000, . (a) shows the tcg IR after
translating the guest mov instruction, and (b) shows the tcg
IR after applying the taint analysis instrumentation.

* Decide the taint status of the destination operand based
on the instruction tainting rule. To implement the taint-
ing rule, a few TCG IRs are inserted before each IR to
propagate the taint status.

* Write the taint status of the destination operand to its
shadow variable.

3.2 Shadow Memory

DECAF stores the taint statuses of the registers and the mem-
ory addresses respectively in global variables and in the
shadow memory (allocated from heap). DECAF does not
make any assumptions about the memory and can support
any application with any memory requirements. The shadow
memory associates the taint statuses with guest physical ad-
dresses. This is a key design choice because the taint analysis
is done at the system level, and hence, virtual addresses point
to different memory addresses in different processes.

DECAEF stores the taint statuses in a two-level tree data
structure. The first level points to a particular page. The sec-
ond level stores the taint statuses for all the addresses within
a physical page. This design is based on the natural cache
design of the operating systems, and hence makes use of the
temporal and spatial locality of memory accesses.

DECAF instruments QEMU memory operations to main-
tain the shadow memory. Instrumentation is in fact on the
Tiny Code Generator (TCG) Intermediate Representation
(IR). DECAF instruments the IR instruction for memory
load, op_gemu_Ild*, and the IR instruction for memory store,
op_qgemu_st*. For load, DECAF loads the taint status of the
source operand of the current instruction along with the mem-
ory load operation. For store, DECAF stores the taint status
of the destination operand of the current instruction to its
corresponding shadow memory along with the memory store
operation. In both cases, the load (or store) is to (or from) a
global variable named femp_idx.

3.3 Taint Analysis Overhead

We analyzed the current sources of slowdown in DECAF.
There are three sources of slowdown in DECAF:

¢ The QEMU emulation overhead that is not inherent to
the DECAF taint analysis approach but rather an in-
evitable overhead that enables dynamic whole system
analysis. That said, QEMU is faster than other emulators
like Bochs [20] by several orders of magnitude [2].

* The taint propagation overhead as explained in §3.1.

 The taint status checking as explained in §3.2.

After applying DECAF tainting instrumentation, the final
binary code is on average 3 times the original QEMU gener-
ated code according to Table 1. Clearly, the additional inserted
instructions (after the instrumentation) impose an overhead.

Table 1: The statistical summary of the blownup rate after the
instrumentations. The numbers show the ratio of the code size
to a baseline after an instrumentation. QEMU baseline is the
guest binary code, and DECAF baseline is QEMU IR code.
DECAF increases the already inflated QEMU generated code
size around 3 times on average.

System | Component Min | Median | Mean | Max

QEMU | lifting binary | 3.33 6.75 7.13 | 28.00
to tcg

DECAF | taint checking | 1.25 3.12 2.94 5.14
& propagation

We systematically analyzed the overheads of DECAF
framework, i.e., taint propagation and taint status checking.
To measure each overhead, we isolated the codes from DE-
CAF that would cause the overhead by removing other parts.
For taint propagation overhead measurement, we removed the
shadow memory operations by disabling the memory load
and store patching functionality of DECAF that adds the
shadow memory operations. For taint status checking over-
head measurement, we removed the taint propagation func-
tionality from DECAF by deactivating the instrumentation
that implements the taint propagation rules.

We measured the performance of the isolated versions of
DECAF using nbench benchmark on a windows XP guest
image with a given 1024MB of RAM. The experiment was
performed on an Ubuntu 18 1686 host with a Core i7 3.5GH
CPU and 8GB of RAM. Figure 2 illustrates the result of our
analysis. Figure 2 reports the geometric mean of the nbench
reported indexes normalized using a baseline. The baseline
is the DECAF without the taint analysis functionality out-
right, that is, DECAF with only Virtual Machine Introspec-
tion (VMI). The result shows that on nbench, taint analysis
slows down the system 400%. But more important than that,
Figure 2 shows that taint propagation alone slows down the
system about 1.8 times while taint status checking alone adds
a 2.5 times slowdown.
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Figure 3: State transitions between check mode and track
mode

4 Elastic Taint Propagation

4.1 Overview

Elastic taint propagation aims to remove the taint propagation
overhead whenever possible. It is based on the intuition that
taint analysis can be skipped if the taint analysis operation
does not change any taint status value. Taint analysis opera-
tions can possibly result in a change only when either of the
source or the destination operand of an instruction is tainted.

Two modes Based on the above intuition, we define two
modes with and without the taint propagation overhead. We
name the mode with taint propagation operations track mode,
and the mode without taint propagation operations check
mode. At any given time, the execution mode depends on
whether any CPU register is tainted.

Mode transition When the system starts, no tainted data
exists in the system, so the system runs in the check mode.
The execution switches to the track mode when there is an
input from a taint source. The taints propagate in the track
mode until the propagation converges and the shadow regis-
ters are all zero (clear taint status). At this point, the execution
switches back to the check mode. Finally, either based on
an input or a data load from a tainted memory address the
execution switches back to the track mode. Figure 3 shows
when transition occurs between the track and the check mode.

4.2 Execution Modes

An execution mode determines the way a block should be
instrumented. Each mode has its set of translation blocks.
Further, each mode has its own cache tables. The execution in
amode can flow only within the same mode translation blocks.
This means that blocks only from the same mode would be
chained together. We determine the mode using a flag variable.
Based on the mode, the final code would be instrumented with
or without the taint propagation instructions. The generated
code will be reused for execution based on the execution mode
unless invalidated. A cache invalidation request invalidates the
generated codes regardless of the mode. The set of translation
blocks and code caches virtually form an exclusive copy of
the translated code for the execution mode.

Check mode The generated code in the check mode is the
original guest code (program under analysis) plus the instru-
mentation code for memory load and memory store. For mem-
ory load, shadow memory is checked, and if any byte is tainted,
the mode is switched to the track. In §5, we further explain
how we efficiently perform this checking. For memory store,
the destination operand taint status will be cleaned because
any propagation in this mode is safe.

Track mode Code generated in track mode is the same as
the one generated in the original DECAF. Readers can refer
to §3.1 and §3.2 for further details.

4.3 Transition

A key challenge after having two execution modes in place is
to decide when and how the transition between the two modes
should occur. The transition between the two modes should
affect neither the emulation nor the taint analysis correctness.
The execution should immediately stall in the check mode and
resume in the track mode when there is a data load from a taint
source. Further, this mode switch should happen smoothly
without panicking the CPU.

We need to monitor data flow from the taint sources and
the shadow registers for timely transition between the modes.
In the check mode, we only monitor the taint sources. This
is a key design choice for performance because monitoring
registers for timely transition is very costly. Note that to imple-
ment register monitoring in the check mode, we would need
to check the register taint statuses before every instruction.
Thus, in the check mode, to reduce the overhead, we only
monitor the taint sources without loosing the precision. In
the track mode, we can check the registers less often because
longer execution in this mode neither affects the taint analysis
precision nor the emulation correctness.

Input devices monitoring The taint sources are generally
memory addresses of the input devices like keyboards or



network cards. For the input devices, DECAF++ relies on the
monitoring functionality implemented in DECAF. However,
we slightly modify the code to raise an exception whenever
there is an input. This exception tells the system that it is in
an unsafe state because of the user input and the track mode
should be activated if not before.

Memory monitoring In addition to the input devices, we
should also monitor the memory load operations. This is
because after processing the data from an input device, the
data might propagate to other memory locations and pollute
them. We need to track the propagation in the check mode
as soon as a tainted value is loaded from memory for further
processing. Efficient design and implementation of memory
monitoring is a key to our elastic instrumentation solution.
We elaborate on how we do this efficiently in §5.

Registers monitoring Monitoring the registers is a key to
identifying when we can stop the taint propagation. If none of
the registers carry a tainted value, no machine operations ex-
cept the memory load can result in a tainted value. Henceforth,
we can safely stop the execution in the track mode and resume
the execution in the check mode while carefully monitoring
the memory load operations as explained earlier.

We point out that monitoring registers in the track mode
has low overhead. This is because in the track mode, we can
tolerate missing the exact time that the registers are clean
without affecting either the safety or the precision (we would
propagate zero). Therefore, DECAF++ can check the clean-
ness of the registers in the track mode at block (instead of
instruction) granularity.

We check the registers’ taint status either after the execution
of a chain of blocks, or when there is an execution exception
(including the interrupts). Our experiments confirm that this
is a fine granularity given its lower overhead comparing to
an instruction level granularity approach. If all the registers
have a clean taint status, we resume the execution for the next
blocks in the check mode.

Transition from check mode to track mode Unlike the
transition from the track mode to the check mode (always in
the beginning of a block), the transition from the check to
the track can happen anywhere in the block depending on the
position of an I/O read or a load instruction. However, the
execution of a single guest instruction should start from the
beginning to the end, note that a single guest instruction might
be translated to several TCG instructions ; otherwise, the
result of the analysis would be both invalid and unsafe. This
is because the block code copies in each mode are different
and the current instruction might have dependency on the
former instructions that are not executed in the current mode.

! For instance, a single x86 "ADD m16, imm16" instruction will be
translated to three TCG IR instructions; one load, one add and one store

To have a smooth transition, the following steps should be
followed:

(1) Restore CPU state: before we switch the code caches,
we need to restore the CPU state to the last successfully
executed instruction. We need to restore the CPU state
to avoid state inconsistency. Since the corresponding ex-
ecution block in the other mode is different, we can not
resume the execution from the same point; the same point
CPU state is not consistent with the new mode block in-
structions. To restore the CPU state, we re-execute the
instructions from the beginning of the block to the last
successfully executed guest instruction. This will create
a CPU state that can be resumed in the other mode.

(2) Raise exception: after restoring the CPU state, we emulate
a custom exception: mem_tainted. We set the exception
number in the exception_index of the emulated CPU data
structure. After that, we make a long jump to the QEMU
main loop (cpu-exec loop).

(3) Switch mode: in the QEMU main execution loop, we
check the exception_index and change the execution
mode if the exception is mem_tainted. We switch the
mode by changing mode flag value that instructs us how
we should instrument the guest code (track or check).

After switching the modes, QEMU safely resumes the cor-
responding block execution in the new mode because we
restored the CPU state in the step 1.

5 Elastic Taint Status Checking

The main idea behind reducing the taint status checking over-
head is to avoid unnecessary interactions with the shadow
memory. In DECAF, the taint status checking happens for ev-
ery memory operation. However, we can avoid the overhead
per memory address if we perform the check for a larger set of
memory addresses. Thus, if the larger set doesn’t contain any
tainted byte we can safely skip the check per address within
that set. The natural sets within a system are physical memory
pages.

DECAF++ scans physical pages while loading them in
TLB, and decides whether or not to further inspect the indi-
vidual memory addresses. We modified the TLB filling logic
of QEMU according to Figure 4. The modifications are high-
lighted. The figure illustrates that if the page contains any
tainted byte, DECAF++ sets a shadow memory handler for
the page through some of the TLB entry control bits. After-
wards, whenever this page is accessed, DECAF++ redirects
the requests to the shadow memory handler. In the following
paragraphs, we explain how we handle memory load and store
operations separately because of their subtle differences.

Memory load During memory load operations, we should
load the taint status of the source memory address operands as
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Figure 4: Fill TLB routine

well. We load the taint status value from the shadow memory
only when the TLB entry for the page contains the shadow
memory handler. In other cases, we can safely assume that
the taint status is zero. Based on this notion, we modify the
QEMU memory load operation logic as shown in Figure 5a.
In particular, two cases might occur:

« If the TLB entry control bits for the page contain the
shadow memory handler, the address translation process
for the memory load operations results in a TLB miss. In
the TLB miss handler routine, if the control bits indicate
that the shadow memory handler should be invoked we
do so and load the taint status for the referenced address
from the shadow memory. If the execution is not already
in the track mode, and the loaded status is not zero we
quickly switch to the track mode.

* If the address translation process for the load operation
results in a TLB hit, we check whether we are in the
track mode, and if so we load zero as the taint value
status. Otherwise, we don’t need to load the taint status
since it will not be used for taint propagation.

Based on the locality principle, a majority of accesses
should go through the fast path shown in the Figure 5a. Our
elastic taint status checking is designed not to add overhead
to this fast path, and hence a performance boost is expected.

Memory store During memory store operations, we should
store the taint status of the source operand to the shadow mem-
ory address of the destination referenced memory address.
Similar to memory loads, we perform the shadow memory
store operation only when the TLB entry control bits for the
referenced address page indicate so. That said, there is a sub-
tle difference that makes memory stores costlier than memory
loads. Figure 5b shows how we update the shadow memory
alongside the memory store operations. In particular, there
will be three cases:

* If the source operand for the store operation has a zero
taint status, and the page TLB entry does not indicate a
tainted page, we do nothing. This happens both in the
check mode all the time, and in the track mode when the
page to be processed does not contain any tainted byte.

« If the page TLB entry flags us to inspect the shadow
memory, we check the TLB control bits in the TLB miss
handler and update the shadow memory if the shadow
memory handler is set (see Figure 5b).

* If the taint status of the source operand is not zero, even if
the page is not registered with a shadow memory handler,
we still update the shadow memory. This can only hap-
pen in the track mode, because in the check mode there
is no taint propagation, and hence the source operand
taint status is always zero. We update the TLB entry
when this is the first time there is a non-zero taint value
store to the page. Since the page now contains at least a
tainted byte, all the next memory operations involving
this page should go through the shadow memory han-
dler. We update the TLB entry and register the shadow
memory handler for the future operations.

Propagation of non-tainted bytes A special case of the
taint status store is when a tainted memory address is over-
written with non-tainted data. This case happens when the
TLB entry for the page flags shadow memory operation even
when the source operand is not tainted. In such a case, the
memory address taint status would be updated to zero but the
page is still processed as unsafe; the memory operations still
will go through the taint handler. For performance reason, we
do not immediately reclaim the data structure containing the
taint value, but rely on a garbage collection (see Appendix B)
mechanism that would be activated based on an interval. The
page remains unsafe until the garbage collector is called. The
garbage collector walks through the shadow memory data
structure and frees the allocated memory for a page if no byte
within the page is tainted. After this point, Fill TLB routine
will not set the taint handler for the page anymore, and any
processing involving the page will take the fast path.

6 Evaluation

In this section, we evaluate DECAF++, a prototype based
on the elastic whole system dynamic taint analysis idea. DE-
CAF++ is a fork of DECAF project including the introduced
optimizations. Overall, our changes (insertion or deletion of
code) to develop our prototype on top of DECAf does not
exceed 2.5 KLOC. We defined two compilation options that
selectively allows activating elastic taint propagation or elastic
taint status checking. We evaluate DECAF++ to understand:

1. How effective each of our optimization, i.e., elastic taint
propagation and elastic taint status checking and alto-
gether is in terms of performance.
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2. Whether our system achieves the elastic property for
different taint analysis applications, that, is a gradual
degradation of performance based on the increase in the
number of tainted bytes.

3. What the current overheads of DECAF++ are and
whether we can address the shortcomings of the pre-
vious works [13,25], i.e., reducing the overhead in the
check mode and in the transition between the two modes.

6.1 Methodology

We measure the performance metrics using standard bench-
marks under two different taint analysis scenarios in §6.2 and
§6.3. In both scenarios, a virtual machine image is loaded in
DECAF++ and a benchmark measures the performance of
the virtual machine while the taint analysis task is running.

To answer (1), we measure the performance of DECAF++
with different optimizations, i.e., with elastic taint propaga-
tion dubbed as Propagation, with elastic taint status checking
dubbed as Memory and with the both dubbed as Full and
compare them. To answer (2) and evaluate the elastic prop-
erty, we introduce a parameter in our taint analysis plugin that
adjusts the number or the percentage of tainted bytes. Plotting
the performance trend based on this parameter values allows
answering question (2). Finally to answer (3), we measure the
overhead of the frequent or costly tasks in our implementa-
tion. In the the rest of this section, we describe the details and
answer (1) and (2) in §6.2 and §6.3. In §6.4, we answer (3).

6.2 Intra-Process Taint Analysis

In this scenario, we track the flow of information within a
single process. For this experiment, we use nbench bench-
mark [11]. We track the flow of information within the nbench
programs using a taint analysis plugin we developed for DE-
CAF. The goal is to be able to report the performance indexes
measured by nbnech while the taint analysis task is running.
In the next paragraphs, we explain the configurations for the
experiment, and at the end of this section we report the results.

nbench Understanding nbench is important since our taint
analysis plugin instruments it. nbench has 10 different pro-
grams. These programs implement a popular algorithm and
measure the execution time on their host. Although the under-
lying algorithms are different, they all follow the same pattern
regarding loading the initial data. They all create an array of
random values and then run the algorithm on that array. The
arrays are allocated from the heap, and the random generator
is a custom pseudo random generator.

Taint analysis plugin The taint analysis plugin instruments
nbench programs and taints a portion of the initial input data
based on a given parameter. Although this is not trivial, we do
not go into the details. We just mention that we record the ad-
dress of the allocated array from the heap, and taint a portion
of the array right after the random initialization. The portion
size depends on an input parameter that we call taint_size.
For instance, taint_size=100 means that 100 bytes of the array
(from the beginning) used in the running programs of nbench
are tainted using the plugin. After the instrumentation, DE-
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CAF automatically tracks the propagation from the the taint
sources to other memory locations.

Experiments setup We measure the performance of each
solitary optimization feature (and together) of DECAF++ us-
ing nbench” on a loaded windows XP guest image. The image
is given 1024MB of RAM. The experiment was performed
on an Ubuntul8 1686 host with a Core i7 3.5GH CPU and
8GB of RAM. The reported indexes by nbench are the mean
result of many runs (depending on the system performance).
Further, nbench controls the statistical reliability of the re-
sults and reports if otherwise. Finally, note that since all the
measurements are conducted on the VM after it is loaded, the
VM overhead would be a constant that is the same for all the
measurements.

Result Figure 6 shows the performance of different opti-
mization in DECAF++ in comparison to DECAF. The results
in this figure answers question (1) for this scenario. Over-
all, when the entire program inputs are tainted, combining
elastic taint propagation and elastic taint status checking (full
optimization) achieves the best performance. However, the
performance is application dependant and sometimes a sin-
gle optimization can achieve better performance than both
combined, e.g. HUFFMAN and IDEA.

Three programs Fourier, NEURAL NET and LU DECOMPOSITION
from the nbench did not reflect any change in their reported numbers so we
removed them from analysis. Also due to cross compilation, Assignment test
did not work on Windows XP.

Figure 7 shows the performance of the DECAF++ when
both optimization are activated for varied taint_size values.
This figure answers question (2): DECAF++ has the elastic
property, that is, the performance degrades based on the num-
ber of tainted bytes. On average, in comparison to DECAF,
DECAF++ achieves on average 55% improvement (32% to
86%) on the nbench memory index and 202% (18% to 328%)
on the nbench integer index.

Further, we can see from Figure 7 that results for
taint_size={10,100} are similar and differ from the result
for taint_size={1000,5000}. For taint_size={10,100}, since
the tainted bytes are adjacent, the track mode activates for
a sequence of bytes and then quickly switches back to the
check mode. Also since taint_size={10,100} is well below
a page size, the shadow memory access penalty would be
low because often the tainted bytes will be within a single
page. However for taint_size={1000,5000}, almost the en-
tire nbench programs input array is tainted that results in
frequent execution in the track mode and shadow memory
access penalty.

In addition to the above, an interesting observation is the
performance degradation for the sort algorithms. The perfor-
mance degrades abruptly while taint_size changes from zero
to greater values. This is because of the behavior of the sort
algorithm, that is, frequently moving an element in the array.
This behavior results in polluting the entire array quickly and
hence degrading the performance abruptly.



6.3 Network Stack Taint Analysis

In this scenario, the taint analysis tracks the flow of infor-
mation from the network throughout the entire system and
every process that accesses the network data. Performing taint
analysis in this level is only possible using whole-system taint
analysis tools like DECAF. Since the taint analysis affects the
entire system, the need of having an elastic property would
be more necessary.

Honeypots are an instance of the applications that can
greatly benefit from the elastic property. Previous studies
show that the likelihood of the malice of a network traffic can
be predetermined [8]. Therefore, a honeypot can adopt a pol-
icy to achieve taint analysis only for network traffic that are
expected to be malicious. Elastic property helps such systems
to boost their performance based on their policy.

We measure transfer rate and throughput based on a pa-
rameter called taint_perc (instead of taint_size in the previous
experiment) that defines the percentage of network packets
to be tainted. This is because percentage, here, better repre-
sents the real applications. For instance, for honeypots, the
taint_perc can be easily derived based on the taint policy.

Taint analysis plugin Our taint analysis plugin taints the
incoming network traffic based on the taint_perc parameter.
We implemented this plugin using the callback functionality
of the DECAF. Our plugin registers a callback that is invoked
whenever the network receive API is called. Then, based on
the taint_perc parameter, our plugin decides whether to taint
the payload or not.

Experiments setup The experiments were performed on an
Ubuntul6.04 LTS host with a Core i7 6700 3.40GHz x 8 CPU
and 16GB of RAM. The guest image was Ubuntu 11.10 and
it was given 4GB of RAM. For throughput measurement, we
use Apache 2.2.22. We isolate the network interface between
the server (guest image running Apache) and the client (the
host machine) to reduce the network traffic noise that might
perturb the results. That said, there is still a large deviation
in the throughput because of the non-deterministic interrupt
processing behavior of the system. We rely on significantly
different values considering the standard deviation to draw
conclusions.

We use netcat to measure the transfer rate. Our measure-
ment is based on the transfer rate for 200 netcat requests of
size 100KB. We use apache bench [1] to measure the through-
put of an apache web server on the guest image. We execute
Apache bench remotely from the host system with a fixed
10000 request parameter. Apache bench sends 10000 requests
and reports the average number of completed requests per
second. For both transfer rate and the throughput, we repeat
the experiments for each taint_perc parameter value 5 times
and report the average and the relative standard deviation.
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Table 2: Network transfer rate of solitary features of DE-
CAF++ (and together as Full) on Netcat; the throughput is
the mean of 5 measurements for a range of tainted bytes.

Tainted | Implementation | Transfer Rate | Standard
Bytes (MB/S) Deviation
40KB - | Full 3.57 18%
50KB
Memory 3.60 10%
Propagation 343 8%
20KB - | Full 5.70 3%
30KB
Memory 4.25 14%
Propagation 3.70 12%
0KB Full 5.31 5%
Memory 5.24 7%
Propagation 4.12 8%
OKB - | DECAF 3.70 9%
50KB
OKB - | QEMU 6.00 3%
50KB

Transfer rate result Table 2 reports the result of our trans-
fer rate measurement using netcat. The results show the trans-
fer rate for three taint_perc parameter values: when every
packet is tainted (40KB - 50KB tainted bytes), when half of
the number of packets are tainted (20KB - 30KB) and finally
when no packet is tainted. Note that although every request is
100KB, only a portion of the packet is payload, and not the
entire I00KB payload would be live in the system at the same
time; this is why eventually only around 50KB is tainted. The
results show a substantial 54% improvement when only half
of the incoming packets are tainted. This is only 5% less than
the QEMU transfer rate that is the maximum we can achieve.
There is no improvement when every packet is tainted but
this is expected because taint propagation and taint status
checking have to be constantly done.

Throughput result Figure 8 illustrates the result of our
throughput measurement for apache server using apache
bench. The figure shows that the full optimization achieves
the best throughput. Answering (1), full optimization and elas-
tic taint status checking outperform DECAF for all values of
taint_perc, and elastic taint propagation outperforms DECAF
when taint_perc is below 1%. Figure 9 shows the performance
of the full optimization based on the percentage of the tainted
bytes. Although DECAF++ has the elastic property and there
is improvement in all cases (answering (2)), it is more tangible
for taint_perc values less than 1%. We point out two points on
why taint_perc values seem very small. First, the number of
tainted bytes do not linearly decrease with taint_perc. Second,
these even seemingly small taint_perc values represent the
real world scenarios. For instance for security applications,
the attacks are anomaly cases and the percentage of suspicious
packets are well below 1%. Overall, DECAF++ achieves an
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Figure 9: Evaluation of the DECAF++ on Apache bench.
Each candlestick shows 5 measurements of throughput (re-
quest/sec) for a percentage of tainted packets.

average (geometric) 60% throughput improvement in compar-
ison to DECAF. When there are no tainted bytes, our system
is still around 18% slower than QEMU because of the network
callbacks.

6.4 Elastic Instrumentation Overhead

In this section, we evaluate DECAF++ to answer (3) and
understand whether we could address the shortcomings of the
previous works that are high overhead in the check mode of
LIFT [25] or high transition overhead of [13].

Check mode overhead Elastic taint analysis imposes an
overhead even when there are no tainted bytes. In case of
LIFT [25], it’s the registers taint tag check at the beginning
of every basic block and further memory tag checks before
memory instructions. For DECAF++, our evaluation using
SPEC CPU2006 and nbench illustrated in Figure 10 and Fig-
ure 11 shows that DECAF++ imposes around 4% overhead
even when there is no taint analysis task, that is, running only
in the check mode. This overhead is in comparison to when
tainting functionality is completely disabled. DECAF++ in-
troduces a few overheads in comparison to this case. These
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Table 3: The nbench evaluation of DECAF++ by removing
the potential overheads

Procedure Memory | Relative | Integer Relative
index STD Index STD

Baseline 4.04 1% 4.36 1%

Full 3.86 2% 4.17 2%
Mode checking 4.04 2% 4.34 3%
Load operations | 3.87 1% 4.23 1%
patching

Page check in | 3.74 1% 4.14 1%
TLB fill

overheads are:

* Checking the mode before the code translation and in
the memory operations

* Patching the memory load operations in the track mode

* Checking the status of the page throughout the TLB
filling process to register the taint status handler

We measured the effect of each of these overheads on indexes
reported by nbench by removing the code snippets attributed
to these functionalities. The results of these measurements are
listed in Table 3. Removing none of the overheads except the
mode checking has a substantial effect on the performance.
This is because mode checking is frequently done along with
every memory load and store operation. It goes unsaid that
this overhead is inevitable.

Transition Overhead The transition from the check mode
to the track mode imposes an overhead as discussed in section
4.3. This overhead is the major issue with [13]. However, our
measurement shows that this overhead is negligible for DE-
CAF++. We measured the transition overhead by recording
the time it takes to change the mode and execute the same
instruction that was executing before the transition occurred.
Our measurement was performed during nbench execution,
and every input byte was tainted. We repeated the measure-
ment 10 times. The average transition time is 0.031% of the
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overall benchmark execution time with 0.007% relative stan-
dard deviation.

7 Conclusion

In this work, we introduced elastic tainting for whole-system
dynamic taint analysis. Elastic tainting is based on elastic taint
propagation and elastic taint status checking that accordingly
address DECAF taint propagation and taint status checking
overhead by removing unnecessary taint analysis computa-
tions when the system is in a safe state. We successfully
designed and implemented this idea on top of DECAF in a pro-
totype dubbed DECAF++ via pure software optimization. We
showed that elastic tainting helps DECAF++ achieve a sub-
stantial better performance even when all inputs are tainted.
Further, we showed how elastic taint propagation and elastic
taint checking optimization each and together contribute to
the performance improvement for different applications.
Our elastic tainting addresses the shortcomings of the pre-
vious works that are either high overhead when there’s no
tainted bytes or high transition cost when there is some. As a
result, DECAF++ has an elastic property for both information
flow within a process and information flow of a network input
throughout the system. We believe whole-system dynamic
taint analysis applications like intrusion detection systems
and honeypots can greatly benefit from the elastic property.

On one hand, this is because these systems are constantly
online and taint analysis affects the entire system constantly.
On the other hand, these systems can filter benign traffic and
focus on the taint analysis of a small portion of the traffic that
are likely to be malicious.
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A QEMU

DECAF is built on top of QEMU [2]. Therefore, to under-
stand DECAF and DECAF++, Qemu knowledge is required.
QEMU provides binary instrumentation functionality in an
architecture agnostic way via emulation. Qemu emulates the
execution of a target binary e.g. a virtual machine image. This
means CPU, memory and other hardware are emulated for
the target binary. CPU is represented using a vcpu data struc-
ture that contains all the CPU registers. Providing Memory
Management Unit (MMU) is more complicated but the idea
is to emulate memory for the target through a software ap-
proach known as software MMU (softMMU). We elaborate
on softMMU at the end of this section.

Binary translation Qemu first needs to translate the tar-
get binary to understand how to emulate it. QEMU loads a
guest executable, and translates the binary one block at a time.
QEMU translates the binary into an Intermediate Represen-
tation (IR) named Tiny Code Generator (¢cg). The result of
this translation is stored in a data structure called Translation
Block (TB).

Code generation After the translation, Qemu generates an
executable code from the translation block. This generated
code is written to a data structure called code cache. In
essence, code cache is an executable page that allows dynamic
execution of code. After code generation, Qemu executes the
code and updates emulated CPU and memory.

Cache table Qemu stores the result of code translation and
generation in a cache to speedup the emulation. Then, before
future execution of the same program counter, the cache table
would be consulted and the request would be resolved using
cache.

Block chaining In addition to the above, Qemu employs an-
other optimization to speed up the emulation. We mentioned
that the unit of translation and execution for Qemu is basic
blocks. However, after translation of consecutive code blocks,
Qemu chains them together and forms a trace. This process
is known as block chaining and is implemented by placing a
direct jump from the current block to the next one. A trace
can be executed without interruption for translation.

Cache invalidation The generated code blocks may be in-
validated to stop further fast execution using cache table.
There are different reasons for this. Two main reasons that a
code cache would be invalidated are (a) the code cache is full,
and (b) the code has been modified and the previous generated
code is not valid for re-execution.
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Figure 12: QEMU software memory management through
op_gemu_ldIst* operations.
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Software MMU QEMU software memory management
unit (soft MMU) translates Guest Virtual Addresses (GVA)
to the Host Virtual Address (HVA). This process happens at
runtime and within guest memory operations. QEMU gener-
ates load and store IR operations for machine level memory
operations. QEMU tcg IR store operation, i.e., op_qgemu_st,
stores the content of a register to a given virtual guest address.
Qemu tcg load operation, i.e., op_gemu_ld, loads the content
of a memory address to a given register.

QEMU implements a software Translation Look-aside
Buffer (TLB). Hardware TLB maps virtual pages within a
process to their corresponding physical pages in the memory.
In the Qemu software TLB, the mapping is indeed between
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the GVA to the HVA. Through address translation and soft-
ware TLB, QEMU ensures that every guest virtual address
(regardless of the process) is addressable in the host QEMU
process space.

Figure 12 depicts what happens at runtime in the QEMU
memory load and store operations. QEMU needs to make sure
that the software TLB contains a valid entry for the following
page that will be accessed. To this end, it checks whether the
page index portion of the address is valid in the software TLB.
If yes, and the page is not registered as a memory mapped
I/0, it can be safely (without page fault) accessed. This is
the fastest case, and it is expected that based on the locality
principle [9], a majority of memory operations go through
this path. If the page is not present, or the page is registered
as memory mapped I/O then the memory operation is much
slower.

B DECAF Garbage Collection

A memory address may become tainted, and then may be
overwritten through a non-tainted data propagation. In such a
case, the shadow memory can be de-allocated. DECAF does
not reclaim it immediately for performance reasons. Imme-
diate reclaiming requires DECAF to explore all the leaves
(memory addresses) of a parent node (a physical page) for
every memory operation that is very costly.

DECAF relies on a garbage collector to reclaim the unused
shadow memory. DECAF will handle the unused memory
by calling the garbage collector based on an interval. The
garbage collector is called in the QEMU main_loop that runs
in a separate thread. Experimentally, garbage collector is set
to walk the shadow memory pages every 4096 times the main
loop runs.

The garbage collector walks through the shadow memory
and checks every parent and all its leaves. It will return an
unused leaf to a memory pool. This pool will use the leaf for
another taint status storage. Finally, the garbage collector will
return a parent to the memory pool if none of its children is
in use.
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