
ProfileDroid: Multi-layer Profiling of Android Applications

Xuetao Wei Lorenzo Gomez Iulian Neamtiu Michalis Faloutsos
Department of Computer Science and Engineering

University of California, Riverside
{xwei, gomezl, neamtiu, michalis}@cs.ucr.edu

ABSTRACT
The Android platform lacks tools for assessing and monitor-
ing apps in a systematic way. This lack of tools is partic-
ularly problematic when combined with the open nature of
Google Play, the main app distribution channel. As our key
contribution, we design and implement ProfileDroid, a
comprehensive, multi-layer system for monitoring and pro-
filing apps. Our approach is arguably the first to profile apps
at four layers: (a) static, or app specification, (b) user inter-
action, (c) operating system, and (d) network. We evaluate
27 free and paid Android apps and make several observa-
tions: (a) we identify discrepancies between the app speci-
fication and app execution, (b) free versions of apps could
end up costing more than their paid counterparts, due to
an order of magnitude increase in traffic, (c) most network
traffic is not encrypted, (d) apps communicate with many
more sources than users might expect—as many as 13, and
(e) we find that 22 out of 27 apps communicate with Google
during execution. ProfileDroid is the first step towards
a systematic approach for (a) generating cost-effective but
comprehensive app profiles, and (b) identifying inconsisten-
cies and surprising behaviors.

Categories and Subject Descriptors
C.2.1 [Computer-communication Networks]: Network
Architecture and Design—Wireless communication; D.2.8
[Software Engineering]: Metrics—Performance measures;
D.4.8 [Operating Systems]: Performance—Measurements;
H.5.2 [Information Interfaces and Presentation]: User
Interfaces—Evaluation/methodology

General Terms
Design, Experimentation, Measurement, Performance

Keywords
Android apps, Google Android, Profiling, Monitoring, Sys-
tem

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MobiCom’12, August 22–26, 2012, Istanbul, Turkey.
Copyright 2012 ACM 978-1-4503-1159-5/12/08 ...$10.00.

1. INTRODUCTION
Given an Android app, how can we get an informative

thumbnail of its behavior? This is the problem we set to
address in this paper, in light of the 550,000 apps currently
on Google Play (ex Android Market) [1, 18]. Given this
substantial number of apps, we consider scalability as a key
requirement. In particular, we devise a profiling scheme that
works even with limited resources in terms of time, manual
effort, and cost. We define limited resources to mean: a few
users with a few minutes of experimentation per application.
At the same time, we want the resulting app profiles to be
comprehensive, useful, and intuitive. Therefore, given an
app and one or more short executions, we want a profile
that captures succinctly what the app did, and contrast it
with: (a) what it was expected or allowed to do, and (b)
other executions of the same app. For example, an effective
profile should provide: (a) how apps use resources, expressed
in terms of network data and system calls, (b) the types of
device resources (e.g., camera, telephony) an app accesses,
and whether it is allowed to, and (c) what entities an app
communicates with (e.g., cloud or third-party servers).

Who would be interested in such a capability? We ar-
gue that an inexpensive solution would appeal to everyone
who “comes in contact” with the app, including: (a) the app
developer, (b) the owner of an Android app market, (c) a
system administrator, and (d) the end user. Effective pro-
filing can help us: (a) enhance user control, (b) improve
user experience, (c) assess performance and security impli-
cations, and (d) facilitate troubleshooting. We envision our
quick and cost-effective thumbnails (profiles) to be the first
step of app profiling, which can then have more involved
and resource-intense steps, potentially based on what the
thumbnail has revealed.

Despite the flurry of research activity in this area, there
is no approach yet that focuses on profiling the behavior of
an Android app itself in all its complexity. Several efforts
have focused on analyzing the mobile phone traffic and show
the protocol related properties, but they do not study the
apps themselves [14,16]. Others have studied security issues
that reveal the abuse of personal device information [22,31].
However, all these works: (a) do not focus on individual
apps, but report general trends, or (b) focus on a single layer,
studying, e.g., the network behavior or the app specification
in isolation. For example, some apps have negligible user
inputs, such as Pandora, or negligible network traffic, such as
Advanced Task Killer, and thus, by focusing only on one
layer, the most significant aspect of an application could be

missed. In Section 5, we discuss and compare with previous
work in detail.

We design and implement ProfileDroid, a systematic
and comprehensive system for profiling Android apps. A
key novelty is that our profiling spans four layers: (a) static,
i.e., app specification, (b) user interaction, (c) operating sys-
tem, and (d) network. To the best of our knowledge, this
is the first work1 that considers all these layers in profil-
ing individual Android apps. Our contributions are twofold.
First, designing the system requires the careful selection of
informative and intuitive metrics, which capture the essence
of each layer. Second, implementing the system is a non-
trivial task, and we have to overcome numerous practical
challenges.2

We demonstrate the capabilities of our system through
experiments. We deployed our system on Motorola Droid
Bionic phones, with Android version 2.3.4 and Linux kernel
version 2.6.35. We profile 19 free apps; for 8 of these, we
also profile their paid counterparts, for a total of 27 apps.
For each app, we gather profiling data from 30 runs for sev-
eral users at different times of day. Though we use limited
testing resources, our results show that our approach can
effectively profile apps, and detect surprising behaviors and
inconsistencies. Finally, we show that cross-layer app analy-
sis can provide insights and detect issues that are not visible
when examining single layers in isolation.

We group our most interesting observations in three groups,
although it is clear that some observations span several cat-
egories.

A. Privacy and Security Issues.
1. Lack of transparency. We identify discrepancies

between the app specification and app execution. For ex-
ample, Instant Heart Rate and Dictionary use resources
without declaring them up-front (Section 3.1).

2. Most network traffic is unencrypted. We find
that most of the network traffic is not encrypted. For ex-
ample, most of the web-based traffic is over HTTP and not
HTTPS: only 8 out of the 27 apps use HTTPS and for Face-
book, 22.74% of the traffic is not encrypted (Section 4.5).

B. Operational Issues.
3. Free apps have a cost. Free versions of apps could

end up costing more than their paid versions especially on
limited data plans, due to increased advertising/analytics
traffic. For example, the free version of Angry Birds has 13
times more traffic than the paid version (Section 4.3).

4. Apps talk to “strangers”. Apps interact with many
more traffic sources than one would expect. For example,
the free version of Shazam talks to 13 different traffic sources
in a 5-minute interval, while its paid counterpart talks with
4 (Section 4.6).

5. Google “touches” almost everything. Out of 27
apps, 22 apps exchange data traffic with Google, including
apps that one would not have expected, e.g., Google ac-

1An earlier work [12] uses the term “cross-layer,” but the
layers it refers to are quite different from the layers we use.
2Examples include fine-tuning data collection tools to work
on Android, distinguishing between presses and swipes, and
disambiguating app traffic from third-party traffic.

counts for 85.97% of the traffic for the free version of the
health app Instant Heart Rate, and 90% for the paid ver-
sion (Section 4.7).

C. Performance Issues.
6. Security comes at a price. The Android OS uses

virtual machine (VM)-based isolation for security and re-
liability, but as a consequence, the VM overhead is high:
more than 63% of the system calls are introduced by the
VM for context-switching between threads, supporting IPC,
and idling (Section 4.4).

2. OVERVIEW OF APPROACH
We present an overview of the design and implementation

of ProfileDroid. We measure and profile apps at four dif-
ferent layers: (a) static, or app specification (b) user interac-
tion, (c) operating system, and (d) network. For each layer,
our system consists of two parts: a monitoring and a profil-
ing component. For each layer, the monitoring component
runs on the Android device where the app is running. The
captured information is subsequently fed into the profiling
part, which runs on the connected computer. In Figure 1,
on the right, we show a high level overview of our system
and its design. On the left, we have an actual picture of the
actual system the Android device that runs the app and the
profiling computer (such as a desktop or a laptop).

In the future, we foresee a light-weight version of the whole
profiling system to run exclusively on the Android device.
The challenge is that the computation, the data storage,
and the battery consumption must be minimized. How to
implement the profiling in an incremental and online fashion
is beyond the scope of the current work. Note that our
system is focused on profiling of an individual app, and not
intended to monitor user behavior on mobile devices.

From an architectural point of view, we design Profile-
Droid to be flexible and modular with level-defined in-
terfaces between the monitoring and profiling components.
Thus, it is easy to modify or improve functionality within
each layer. Furthermore, we could easily extend the cur-
rent functionality to add more metrics, and even potentially
more layers, such as a physical layer (temperature, battery
level, etc.).

2.1 Implementation and Challenges
We describe the implementation of monitoring at each

layer, and briefly touch on challenges we had to surmount
when constructing ProfileDroid.

To profile an application, we start the monitoring infras-
tructure (described at length below) and then the target app
is launched. The monitoring system logs all the relevant ac-
tivities, e.g., user touchscreen input events, system calls, and
all network traffic in both directions.

2.1.1 Static Layer
At the static layer, we analyze the APK (Android ap-

plication package) file, which is how Android apps are dis-
tributed. We use apktool to unpack the APK file to extract
relevant data. From there, we mainly focus on the Mani-

fest.xml file and the bytecode files contained in the /smali

folder. The manifest is specified by the developer and identi-
fies hardware usage and permissions requested by each app.
The smali files contain the app bytecode which we parse
and analyze statically, as explained later in Section 3.1.

Static

Network

User

OS

Static

Network

User

OS

Monitoring Profiling

ProfileDroid

APK
App
Profile

Behavioral
Patterns

Inconsistencies

Figure 1: Overview and actual usage (left) and architecture (right) of ProfileDroid.

2.1.2 User Layer
At the user layer, we focus on user-generated events, i.e.,

events that result from interaction between the user and the
Android device while running the app. To gather the data
of the user layer, we use a combination of the logcat and
getevent tools of adb. From the logcat we capture the
system debug output and log messages from the app. In
particular, we focus on events-related messages. To collect
the user input events, we use the getevent tool, which reads
the /dev /input/event* to capture user events from input
devices, e.g., touchscreen, accelerometer, proximity sensor.
Due to the raw nature of the events logged, it was chal-
lenging to disambiguate between swipes and presses on the
touchscreen. We provide details in Section 3.2.

2.1.3 Operating System Layer
At the operating system-layer, we measure the operating

system activity by monitoring system calls. We collect sys-
tem calls invoked by the app using an Android-specific ver-
sion of strace. Next, we classify system calls into four cat-
egories: filesystem, network, VM/IPC, and miscellaneous.
As described in Section 3.3, this classification is challenging,
due to the virtual file system and the additional VM layer
that decouples apps from the OS.

2.1.4 Network Layer
At the network layer, we analyze network traffic by log-

ging the data packets. We use an Android-specific version of
tcpdump that collects all network traffic on the device. We
parse, domain-resolve, and classify traffic. As described in
Section 3.4, classifying network traffic is a significant chal-
lenge in itself; we used information from domain resolvers,
and improve its precision with manually-gathered data on
specific websites that act as traffic sources.

Having collected the measured data as described above,
we analyze it using the methods and the metrics of Section 3.

2.2 Experimental Setup

2.2.1 Android Devices
The Android devices monitored and profiled in this paper

were a pair of identical Motorola Droid Bionic phones, which
have dual-core ARM Cortex-A9 processors running at 1GHz.
The phones were released on released September 8, 2011 and
run Android version 2.3.4 with Linux kernel version 2.6.35.

2.2.2 App Selection
As of March 2012, Google Play lists more than 550,000

apps [2], so to ensure representative results, we strictly fol-
low the following criteria in selecting our test apps. First, we
selected a variety of apps that cover most app categories as
defined in Google Play, such as Entertainment, Productivity
tools, etc. Second, all selected apps had to be popular, so
that we could examine real-world, production-quality soft-
ware with a broad user base. In particular, the selected apps
must have at least 1,000,000 installs, as reported by Google
Play, and be within the Top-130 free apps, as ranked by the
Google Play website. In the end, we selected 27 apps as the
basis for our study: 19 free apps and 8 paid apps; the 8 paid
apps have free counterparts, which are included in the list
of 19 free apps. The list of the selected apps, as well as their
categories, is shown in Table 1.

2.2.3 Conducting the experiment
In order to isolate app behavior and improve precision

when profiling an app, we do not allow other manufacturer-
installed apps to run concurrently on the Android device, as
they could interfere with our measurements. Also, to min-
imize the impact of poor wireless link quality on apps, we
used WiFi in strong signal conditions. Further, to ensure
statistics were collected of only the app in question, we in-
stalled one app on the phone at a time and uninstalled it
before the next app was tested. Note however, that system
daemons and required device apps were still able to run as
they normally would, e.g., the service and battery managers.

Finally, in order to add stability to the experiment, the
multi-layer traces for each individual app were collected from
tests conducted by multiple users to obtain a comprehensive
exploration of different usage scenarios of the target applica-
tion. To cover a larger variety of running conditions without
burdening the user, we use capture-and-replay, as explained
below. Each user ran each app one time for 5 minutes; we
capture the user interaction using event logging. Then, us-
ing a replay tool we created, each recorded run was replayed
back 5 times in the morning and 5 times at night, for a total
of 10 runs each per user per app. The runs of each app were
conducted at different times of the day to avoid time-of-day
bias, which could lead to uncharacteristic interaction with
the app; by using the capture-and-replay tool, we are able
to achieve this while avoiding repetitive manual runs from
the same user. For those apps that had both free and paid

App name Category
Dictionary.com, Reference

Dictionary.com-$$
Tiny Flashlight Tools

Zedge Personalization
Weather Bug, Weather

Weather Bug-$$
Advanced Task Killer, Productivity

Advanced Task Killer-$$
Flixster Entertainment
Picsay, Photography

Picsay-$$
ESPN Sports

Gasbuddy Travel
Pandora Music & Audio
Shazam, Music & Audio

Shazam-$$
Youtube Media & Video
Amazon Shopping
Facebook Social
Dolphin, Communication (Browsers)

Dolphin-$$
Angry Birds, Games

Angry Birds-$$
Craigslist Business

CNN News & Magazines
Instant Heart Rate, Health & Fitness

Instant Heart Rate-$$

Table 1: The test apps; app-$$ represents the paid
version of an app.

versions, users carried out the same task, so we can pinpoint
differences between paid and free versions. To summarize,
our profiling is based on 30 runs (3 users × 10 replay runs)
for each app.

3. ANALYZING EACH LAYER
In this section, we first provide detailed descriptions of

our profiling methodology, and we highlight challenges and
interesting observations.

3.1 Static Layer
The first layer in our framework aims at understanding

the app’s functionality and permissions. In particular, we
analyze the APK file on two dimensions to identify app func-
tionality and usage of device resources: first, we extract the
permissions that the app asks for, and then we parse the app
bytecode to identify intents, i.e., indirect resource access via
deputy apps. Note that, in this layer only, we analyze the
app without running it—hence the name static layer.

Functionality usage. Android devices offer several major
functionalities, labeled as follows: Internet, GPS, Camera,
Microphone, Bluetooth and Telephony. We present the re-
sults in Table 2. A ‘X’ means the app requires permission to
use the device, while ‘I’ means the device is used indirectly
via intents and deputy apps. We observe that Internet is
the most-used functionality, as the Internet is the gateway
to interact with remote servers via 3G or WiFi—all of our ex-
amined apps use the Internet for various tasks. For instance,
Pandora and YouTube use the Internet to fetch multimedia
files, while Craigslist and Facebook use it to get content
updates when necessary.

App In
te

r
n
e
t

G
P

S

C
a
m

e
r
a

M
ic

r
o
p

h
n

e

B
lu

e
to

o
th

T
e
le

p
h
o
n
y

Dictionary.com X I I
Dictionary.com-$$ X I I
Tiny Flashlight X X

Zedge X
Weather Bug X X

Weather Bug-$$ X X
Advanced Task Killer X

Advanced Task Killer-$$ X
Flixster X X
Picsay X

Picsay-$$ X
ESPN X

Gasbuddy X X
Pandora X X
Shazam X X X

Shazam-$$ X X X
YouTube X
Amazon X X
Facebook X X I X
Dolphin X X

Dolphin-$$ X X
Angry Birds X

Angry Birds-$$ X
Craigslist X

CNN X X
Instant Heart Rate X X I I

Instant Heart Rate-$$ X X I I

Table 2: Profiling results of static layer; ‘X’ repre-
sents use via permissions, while ‘I’ via intents.

GPS, the second most popular resource (9 apps) is used for
navigation and location-aware services. For example, Gas-
buddy returns gas stations near the user’s location, while
Facebook uses the GPS service to allow users to check-in,
i.e., publish their presence at entertainment spots or places
of interests. Camera, the third-most popular functionality
(5 apps) is used for example, to record and post real-time
news information (CNN), or for for barcode scanning Amazon.
Microphone, Bluetooth and Telephony are three additional
communication channels besides the Internet, which could
be used for voice communication, file sharing, and text mes-
sages. This increased usage of various communication chan-
nels is a double-edged sword. On the one hand, various
communication channels improve user experience. On the
other hand, it increases the risk of privacy leaks and secu-
rity attacks on the device.

Intent usage. Android intents allow apps to access resources
indirectly by using deputy apps that have access to the re-
quested resource. For example, Facebook does not have
the camera permission, but can send an intent to a deputy
camera app to take and retrieve a picture.3 We decom-
piled each app using apktool and identified instances of
the android.content.Intent class in the Dalvik bytecode.
Next, we analyzed the parameters of each intent call to find

3This was the case for the version of the Facebook app we
analyzed in March 2012, the time we performed the study.
However, we found that, as of June 2012, the Facebook app
requests the Camera permission explicitly.

the intent’s type, i.e., the device’s resource to be accessed
via deputy apps.

We believe that presenting users with the list of resources
used via intents (e.g., that the Facebook app does not have
direct access to the camera, but nevertheless it can use
the camera app to take pictures) helps them make better-
informed decisions about installing and using an app. Though
legitimate within the Android security model, this lack of
user forewarning can be considered deceiving; with the more
comprehensive picture provided by ProfileDroid, users
have a better understanding of resource usage, direct or in-
direct [3].

3.2 User Layer
At the user layer, we analyze the input events that result

from user interaction. In particular, we focus on touches—
generated when the user touches the screen—as touchscreens
are the main Android input devices. Touch events include
presses, e.g., pressing the app buttons of the apps, and
swipes—finger motion without losing contact with the screen.
The intensity of events (events per unit of time), as well as
the ratio between swipes and presses are powerful metrics
for GUI behavioral fingerprinting (Section 4.2); we present
the results in Figure 2 and now proceed to discussing these
metrics.

Technical challenge. Disambiguating between swipes
and presses was a challenge, because of the nature of re-
ported events by the getevent tool. Swipes and presses are
reported by the touchscreen input device, but the reported
events are not labeled as swipes or presses. A single press
usually accounts for 30 touchscreen events, while a swipe
usually accounts for around 100 touchscreen events. In order
to distinguish between swipes and presses, we developed a
method to cluster and label events. For example, two events
separated by less than 80 milliseconds are likely to be part
of a sequence of events, and if that sequence of events grows
above 30, then it is likely that the action is a swipe instead
of a press. Evaluating and fine-tuning our method was an
intricate process.

Touch events intensity. We measured touch intensity as
the number of touch events per second—this reveals how
interactive an app is. For example, the music app Pandora

requires only minimal input (music control) once a station
is selected. In contrast, in the game Angry Birds, the user
has to interact with the interface of the game using swipes
and screen taps, which results in a high intensity for touch
events.

Swipe/Press ratio. We use the ratio of swipes to presses to
better capture the nature of the interaction, and distinguish
between apps that have similar touch intensity. Note that
swipes are used for navigation and zooming, while touches
are used for selection. Figure 2 shows that apps that in-
volve browsing, news-page flipping, gaming, e.g., CNN, Angry
Birds, have a high ratio of swipes to presses; even for apps
with the same touch intensity, the swipe/press ratio can help
profile and distinguish apps, as seen in the following table:

Phone event intensity. The bottom chart in Figure 2 shows
the intensity of events generated by the phone itself dur-

App Touch intensity Swipe/Press ratio
Picsay medium low
CNN medium high

ing the test. These events contain a wealth of contextual
data that, if leaked, could pose serious privacy risks. The
most frequent events we observed were generated by the ac-
celerometer, the light proximity sensor, and for some location-
aware apps, the compass. For brevity, we omit details, but
we note that phone-event intensity, and changes in inten-
sity, can reveal the user’s proximity to the phone, the user’s
motion patterns, and user orientation and changes thereof.

App Syscall FS NET VM& MISC
intensity IPC

(calls/sec.) (%) (%) (%) (%)
Dictionary.com 1025.64 3.54 1.88 67.52 27.06

Dictionary.com-$$ 492.90 7.81 4.91 69.48 17.80
Tiny Flashlight 435.61 1.23 0.32 77.30 21.15

Zedge 668.46 4.17 2.25 75.54 18.04
Weather Bug 1728.13 2.19 0.98 67.94 28.89

Weather Bug-$$ 492.17 1.07 1.78 75.58 21.57
AdvTaskKiller 75.06 3.30 0.01 65.95 30.74

AdvTaskKiller-$$ 30.46 7.19 0.00 63.77 29.04
Flixster 325.34 2.66 3.20 71.37 22.77
Picsay 319.45 2.06 0.01 75.12 22.81

Picsay-$$ 346.93 2.43 0.16 74.37 23.04
ESPN 1030.16 2.49 2.07 87.09 8.35

Gasbuddy 1216.74 1.12 0.32 74.48 24.08
Pandora 286.67 2.92 2.25 70.31 24.52
Shazam 769.54 6.44 2.64 72.16 18.76

Shazam-$$ 525.47 6.28 1.40 74.31 18.01
YouTube 246.78 0.80 0.58 77.90 20.72
Amazon 692.83 0.42 6.33 76.80 16.45
Facebook 1030.74 3.99 2.98 72.02 21.01
Dolphin 850.94 5.20 1.70 71.91 21.19

Dolphin-$$ 605.63 9.05 3.44 68.45 19.07
Angry Birds 1047.19 0.74 0.36 82.21 16.69

Angry Birds-$$ 741.28 0.14 0.04 85.60 14.22
Craigslist 827.86 5.00 2.47 73.81 18.72

CNN 418.26 7.68 5.55 71.47 15.30
InstHeartRate 944.27 7.70 1.73 75.48 15.09

InstHeartRate-$$ 919.18 12.25 0.14 72.52 15.09

Table 3: Profiling results: operating system layer.

3.3 Operating System Layer
We first present a brief overview of the Android OS, and

then discuss metrics and results at the operating system
layer.

Android OS is a Linux-based operating system, customized
for mobile devices. Android apps are written in Java and
compiled to Dalvik executable (Dex) bytecode. The byte-
code is bundled with the app manifest (specification, per-
missions) to create an APK file. When an app is installed,
the user must grant the app the permissions specified in the
manifest. The Dex bytecode runs on top of the Dalvik Vir-
tual Machine (VM)—an Android-specific Java virtual ma-
chine. Each app runs as a separate Linux process with a
unique user ID in a separate copy of the VM. The separation
among apps offers a certain level of protection and running
on top of a VM avoids granting apps direct access to hard-
ware resources. While increasing reliability and reducing the
potential for security breaches, this vertical (app–hardware)
and horizontal (app–app) separation means that apps do not

0

2.5

5.0

7.5

10.0

0

0.5

1.0

1.5

0

5

10

15

20

25

Di
cti
on
ar
y.c
om

($$
)D
ict
ion
ar
y.c
om

Ti
ny
 Fl
ash
lig
ht

Ze
dg
e

W
ea
the
r B
ug

($$
)W
ea
the
r B
ug

Ad
vT
ask
Ki
lle
r

($$
)A
dv
Ta
sk
Ki
lle
r

Fli
xst
er

Pic
say

($$
)P
ics
ay
ES
PN

Ga
sb
ud
dy

Pa
nd
or
a

Sh
az
am

($$
)Sh
az
am

Yo
utu
be

Am
az
on

Fa
ceb
oo
k

Do
lph
in

($$
)D
olp
hin

An
gr
y B
ird
s

($$
)A
ng
ry
 B
ird
s

Cr
aig
sli
st
CN
N

In
stH
ea
rtR
ate

($$
)In
stH
ea
rtR
ate

Touch Event Intensity (Events/Sec)

Swipe/Press Ratio

Phone Event Intensity (Events/Sec)

Figure 2: Profiling results of user layer; note that scales are different.

run natively and inter-app communications must take place
primarily via IPC. We profile apps at the operating system
layer with several goals in mind: to understand how apps
use system resources, how the operating-system intensity
compares to the intensity observed at other layers, and to
characterize the potential performance implications of run-
ning apps in separate VM copies. To this end, we analyzed
the system call traces for each app to understand the nature
and frequency of system calls. We present the results in Ta-
ble 3.

System call intensity. The second column of Table 3 shows
the system call intensity in system calls per second. While
the intensity differs across apps, note that in all cases the in-
tensity is relatively high (between 30 and 1,183 system calls
per second) for a mobile platform.

System call characterization. To characterize the nature
of system calls, we group them into four bins: file system
(FS), network (NET), virtual machine (VM&IPC), and mis-
cellaneous (MISC). Categorizing system calls is not trivial.

Technical challenge. The Linux version running on
our phone (2.6.35.7 for Arm) supports about 370 system
calls; we observed 49 different system calls in our traces.
While some system calls are straightforward to categorize,
the operation of virtual filesystem calls such as read and
write, which act on a file descriptor, depends on the file
descriptor and can represent file reading and writing, net-
work send/receive, or reading/altering system configuration
via /proc. Therefore, for all the virtual filesystem calls,
we categorize them based on the file descriptor associated
with them, as explained below. FS system calls are used
to access data stored on the flash drive and SD card of the

mobile device and consist mostly of read and write calls on
a file descriptor associated with a space-occupying file in the
file system, i.e., opened via open. NET system calls consist
mostly of read and write calls on a file descriptor associated
with a network socket, i.e., opened via socket; note that for
NET system calls, reads and writes mean receiving from and
sending to the network. VM&IPC system calls are calls in-
serted by the virtual machine for operations such as schedul-
ing, timing, idling, and IPC. For each such operation, the
VM inserts a specific sequence of system calls. We extracted
these sequences, and compared the number of system calls
that appear as part of the sequence to the total number, to
quantify the VM and IPC-introduced overhead. The most
common VM/IPC system calls we observed (in decreasing
order of frequency) were: clock_gettime, epoll_wait, get-
pid, getuid32, futex, ioctl, and ARM_cacheflush. The
remaining system calls are predominantly read and write

calls to the /proc special filesystem are categorized as MISC.
The results are presented in Table 3: for each category,

we show both intensity, as well as the percentage relative to
all categories. Note that FS and NET percentages are quite
similar, but I/O system calls (FS and NET) constitute a
relatively small percentage of total system calls, with the
VM&IPC dominating. We will come back to this aspect in
Section 4.4.

3.4 Network Layer
The network-layer analysis summarizes the data commu-

nication of the app via WiFi or 3G. Android apps increas-
ingly rely on Internet access for a diverse array of services,
e.g., for traffic, map or weather data and even offloading
computation to the cloud. An increasing number of net-
work traffic sources are becoming visible in app traffic, e.g.,
Content Distribution Networks, Cloud, Analytics and Ad-
vertisement. To this end, we characterize the app’s network

App Traffic Traffic Origin CDN+Cloud Google Third Traffic HTTP/HTTPS
intensity In/Out party sources split

(bytes/sec.) (ratio) (%) (%) (%) (%) (%)
Dictionary.com 1450.07 1.94 – 35.36 64.64 – 8 100/–

Dictionary.com-$$ 488.73 1.97 0.02 1.78 98.20 – 3 100/–
Tiny Flashlight 134.26 2.49 – – 99.79 0.21 4 100/–

Zedge 15424.08 10.68 – 96.84 3.16 – 4 100/–
Weather Bug 3808.08 5.05 – 75.82 16.12 8.06 13 100/–

Weather Bug-$$ 2420.46 8.28 – 82.77 6.13 11.10 5 100/–
AdvTaskKiller 25.74 0.94 – – 100.00 – 1 91.96/8.04

AdvTaskKiller-$$ – – – – – – 0 –/–
Flixster 23507.39 20.60 2.34 96.90 0.54 0.22 10 100/–
Picsay 4.80 0.34 – 48.93 51.07 – 2 100/–

Picsay-$$ 320.48 11.80 – 99.85 0.15 – 2 100/–
ESPN 4120.74 4.65 – 47.96 10.09 41.95 5 100/–

Gasbuddy 5504.78 10.44 6.17 11.23 81.37 1.23 6 100/–
Pandora 24393.31 28.07 97.56 0.91 1.51 0.02 11 99.85/0.15
Shazam 4091.29 3.71 32.77 38.12 15.77 13.34 13 100/–

Shazam-$$ 1506.19 3.09 44.60 55.36 0.04 – 4 100/–
YouTube 109655.23 34.44 96.47 – 3.53 – 2 100/–
Amazon 7757.60 8.17 95.02 4.98 – – 4 99.34/0.66
Facebook 4606.34 1.45 67.55 32.45 – – 3 22.74/77.26
Dolphin 7486.28 5.92 44.55 0.05 8.60 46.80 22 99.86/0.14

Dolphin-$$ 3692.73 6.05 80.30 1.10 5.80 12.80 9 99.89/0.11
Angry Birds 501.57 0.78 – 73.31 10.61 16.08 8 100/–

Angry Birds-$$ 36.07 1.10 – 88.72 5.79 5.49 4 100/–
Craigslist 7657.10 9.64 99.97 – – 0.03 10 100/–

CNN 2992.76 5.66 65.25 34.75 – – 2 100/–
InstHeartRate 573.51 2.29 – 4.18 85.97 9.85 3 86.27/13.73

InstHeartRate-$$ 6.09 0.31 – 8.82 90.00 1.18 2 20.11/79.89

Table 4: Profiling results of network layer; ‘–’ represents no traffic.

behavior using the following metrics and present the results
in Table 4.

Traffic intensity. This metric captures the intensity of the
network traffic of the app. Depending on the app, the net-
work traffic intensity can vary greatly, as shown in Table 4.
For the user, this great variance in traffic intensity could be
an important property to be aware of, especially if the user
has a limited data plan. Not surprisingly, we observe that
the highest traffic intensity is associated with a video app,
YouTube. Similarly, the entertainment app Flixster, music
app Pandora, and personalization app Zedge also have large
traffic intensities as they download audio and video files. We
also observe apps with zero, or negligible, traffic intensity,
such as the productivity app Advanced Task Killer and
free photography app Picsay.

Origin of traffic. The origin of traffic means the percentage
of the network traffic that comes from the servers owned by
the app provider. This metric is particularly interesting for
privacy-sensitive users, since it is an indication of the con-
trol that the app provider has over the app’s data. Interest-
ingly, there is large variance for this metric, as shown in Ta-
ble 4. For example, the apps Amazon, Pandora, YouTube, and
Craigslist deliver most of their network traffic (e.g., more
than 95%) through their own servers and network. However,
there is no origin traffic in the apps Angry Birds and ESPN.
Interestingly, we observe that ony 67% of the Facebook traf-
fic comes from Facebook servers, with the remaining coming
from content providers or the cloud.

Technical challenge. It is a challenge to classify the
network traffic into different categories (e.g., cloud vs. ad

network), let alone identify the originating entity. To re-
solve this, we combine an array of methods, including re-
verse IP address lookup, DNS and whois, and additional
information and knowledge from public databases and the
web. In many cases, we use information from CrunchBase
(crunchbase.com) to identify the type of traffic sources after
we resolve the top-level domains of the network traffic [6].
Then, we classify the remaining traffic sources based on in-
formation gleaned from their website and search results.

In some cases, detecting the origin is even more compli-
cated. For example, consider the Dolphin web browser—
here the origin is not the Dolphin web site, but rather the
website that the user visits with the browser, e.g., if the
user visits CNN, then cnn.com is the origin. Also, YouTube
is owned by Google and YouTube media content is deliv-
ered from domain 1e100.net, which is owned by Google; we
report the media content (96.47%) as Origin, and the re-
maining traffic (3.53%) as Google which can include Google
ads and analytics.

CDN+Cloud traffic. This metric shows the percentage of
the traffic that comes from servers of CDN (e.g., Akamai) or
cloud providers (e.g., Amazon AWS). Content Distribution
Network (CDN) has become a common method to distribute
the app’s data to its users across the world faster, with scal-
ability and cost-effectively. Cloud platforms have extended
this idea by providing services (e.g., computation) and not
just data storage. Given that it is not obvious if someone
using a cloud service is using it as storage, e.g., as a CDN,
or for computation, we group CDN and cloud services into
one category. Interestingly, there is a very strong presence of
this kind of traffic for some apps, as seen in Table 4. For ex-

ample, the personalization app Zedge, and the video-heavy
app Flixster need intensive network services, and they use
CDN and Cloud data sources. The high percentages that
we observe for CDN+Cloud traffic point to how important
CDN and Cloud sources are, and how much apps rely on
them for data distribution.

Google traffic. Given that Android is a product of Google,
it is natural to wonder how involved Google is in Android
traffic. The metric is the percentage of traffic exchanged
with Google servers (e.g., 1e100.net), shown as the second-
to-last column in Table 4. It has been reported that the
percentage of Google traffic has increased significantly over
the past several years [7]. This is due in part to the increas-
ing penetration of Google services (e.g., maps, ads, analyt-
ics, and Google App Engine). Note that 22 of out of the
27 apps exchange traffic with Google, and we discuss this in
more detail in Section 4.7.

Third-party traffic. This metric is of particular interest to
privacy-sensitive users. We define third party traffic as net-
work traffic from various advertising services (e.g., Atdmt)
and analytical services (e.g., Omniture) besides Google, since
advertising and analytical services from Google are included
in the Google traffic metric. From Table 4, we see that dif-
ferent apps have different percentages of third-party traffic.
Most apps only get a small or negligible amount of traffic
from third parties (e.g., YouTube, Amazon and Facebook). At
the same time, nearly half of the total traffic of ESPN and
Dolphin comes from third parties.

The ratio of incoming traffic and outgoing traffic. This
metric captures the role of an app as a consumer or producer
of data. In Table 4, we see that most of the apps are more
likely to receive data than to send data. As expected, we
see that the network traffic from Flixster, Pandora, and
YouTube, which includes audio and video content, is mostly
incoming traffic as the large values of the ratios show. In
contrast, apps such as Picsay and Angry Birds tend to send
out more data than they receive.

Note that this metric could have important implications
for performance optimization of wireless data network providers.
An increase in the outgoing traffic could challenge network
provisioning, in the same way that the emergence of p2p file
sharing stretched cable network operators, who were not ex-
pecting large household upload needs. Another use of this
metric is to detect suspicious variations in the ratio, e.g., un-
usually large uploads, which could indicate a massive theft
of data. Note that the goal of this paper is to provide the
framework and tools for such an investigation, which we plan
to conduct as our future work.

Number of distinct traffic sources. An additional way of
quantifying the interactions of an app is with the number of
distinct traffic sources, i.e., distinct top-level domains. This
metric can be seen as a complementary way to quantify net-
work interactions, a sudden increase in this metric could in-
dicate malicious behavior. In Table 4 we present the results.
First, we observe that all the examined apps interact with
at least two distinct traffic sources, except Advanced Task

Killer. Second, some of the apps interact with a surpris-

App Static User OS Network
(# of (events/ (syscall/ (bytes/
func.) sec.) sec.) sec.)

Dictionary.com L M H M
Dictionary.com-$$ L M M M
Tiny Flashlight M L M L

Zedge L M M H
Weather Bug M M H M

Weather Bug-$$ M M M M
AdvTaskKiller L M L L

AdvTaskKiller-$$ L M L L
Flixster M M L H
Picsay L M L L

Picsay-$$ L M M M
ESPN L M H M

Gasbuddy M M H M
Pandora M L L H
Shazam H L M M

Shazam-$$ H L H M
YouTube L M M H
Amazon M M M H
Facebook H H H M
Dolphin M H M H

Dolphin-$$ M H M M
Angry Birds L H M M

Angry Birds-$$ L H H L
Craigslist L H H H

CNN M M M M
InstHeartRate M L H M

InstHeartRate-$$ M L H L

Table 5: Thumbnails of multi-layer intensity in the
H-M-L model (H:high, M :medium, L:low).

ingly high number of distinct traffic sources, e.g., Weather
bug, Flixster, and Pandora. Note that we count all the
distinct traffic sources that appear in the traces of multiple
executions.

The percentage of HTTP and HTTPS traffic. To get a
sense of the percentage of secure Android app traffic, we
compute the split between HTTP and HTTPS traffic, e.g.,
non-encrypted and encrypted traffic. We present the results
in the last column of Table 4 (‘–’ represents no traffic). The
absence of HTTPS traffic is staggering in the apps we tested,
and even Facebook has roughly 22 % of unencrypted traffic,
as we further elaborate in section 4.4.

4. ProfileDroid: PROFILING APPS
In this section, we ask the question: How can Profile-

Droid help us better understand app behavior? In response,
we show what kind of information ProfileDroid can ex-
tract from each layer in isolation or in combination with
other layers.

4.1 Capturing Multi-layer Intensity
The intensity of activities at each layer is a fundamental

metric that we want to capture, as it can provide a thumb-
nail of the app behavior. The multi-layer intensity is a tuple
consisting of intensity metrics from each layer: static (num-
ber of functionalities), user (touch event intensity), oper-
ating system (system call intensity), and network (traffic
intensity).

Presenting raw intensity numbers is easy, but it has lim-
ited intuitive value. For example, reporting 100 system calls

per second provides minimal information to a user or an
application developer. A more informative approach is to
present the relative intensity of this app compared to other
apps.

We opt to represent the activity intensity of each layer
using labels: H (high), M (medium), and L (low). The
three levels (H,M,L) are defined relative to the intensi-
ties observed at each layer using the five-number summary
from statistical analysis [10]: minimum (Min), lower quar-
tile (Q1), median (Med), upper quartile (Q3), and maximum
(Max). Specifically, we compute the five-number summary
across all 27 apps at each layer, and then define the ranges
for H, M , and L as follows:

Min < L ≤ Q1 Q1 < M ≤ Q3 Q3 < H ≤ Max

The results are in the following table:

Layer Min Q1 Med Q3 Max
Static 1 1 2 2 3
User 0.57 3.27 7.57 13.62 24.42
OS 30.46 336.14 605.63 885.06 1728.13

Network 0 227.37 2992.76 6495.53 109655.23

Note that there are many different ways to define these
thresholds, depending on the goal of the study, whether it
is conserving resources, (e.g., determining static thresholds
to limit intensity), or studying different app categories (e.g.,
general-purpose apps have different thresholds compared to
games). In addition, having more than three levels of in-
tensity provides more accurate profiling, at the expense of
simplicity. To sum up, we chose to use relative intensities
and characterize a wide range of popular apps to mimic test-
ing of typical Google Play apps.

Table 5 shows the results of applying this H-M -L model
to our test apps. We now proceed to showing how users and
developers can benefit from an H-M -L-based app thumb-
nail for characterizing app behavior. Users can make more
informed decisions when choosing apps by matching the
H-M -L thumbnail with individual preference and constraints.
For example, if a user has a small-allotment data plan on the
phone, perhaps he would like to only use apps that are rated
L for the intensity of network traffic; if the battery is low,
perhaps she should refrain from running apps rated H at
the OS or network layers.

Developers can also benefit from the H-M -L model by
being able to profile their apps with ProfileDroid and op-
timize based on the H-M -L outcome. For example, if Pro-
fileDroid indicates an unusually high intensity of filesys-
tem calls in the operating system layer, the developer can
examine their code to ensure those calls are legitimate. Sim-
ilarly, if the developer is contemplating using an advertising
library in their app, she can construct two H-M -L app mod-
els, with and without the ad library and understand the
trade-offs.

In addition, an H-M -L thumbnail can help capture the
nature of an app. Intuitively, we would expect interactive
apps (social apps, news apps, games, Web browsers) to have
intensity H at the user layer; similarly, we would expect
media player apps to have intensity H at the network layer,
but L at the user layer. Table 5 supports these expectations,
and suggests that the the H-M -L thumbnail could be an
initial way to classify apps into coarse behavioral categories.

4.2 Cross-layer Analysis
We introduce a notion of cross-layer analysis to compare

the inferred (or observed) behavior across different layers.
Performing this analysis serves two purposes: to identify
potential discrepancies (e.g., resource usage via intents, as
explained in Section 3.1), and to help characterize app be-
havior in cases where examining just one layer is insufficient.
We now provide some examples.

Network traffic disambiguation. By cross-checking
the user and network layers we were able to distinguish ad-
vertising traffic from expected traffic. For example, when
profiling the Dolphin browser, by looking at both layers, we
were able to separate advertisers traffic from web content
traffic (the website that the user browses to), as follows.
From the user layer trace, we see that the user surfed to, for
example, cnn.com, which, when combined with the network
traffic, can be used to distinguish legitimate traffic coming
from CNN and advertising traffic originating at CNN; note
that the two traffic categories are distinct and labeled Origin
and Third-party, respectively, in Section 3.4. If we were to
only examine the network layer, when observing traffic with
the source cnn.com, we would not be able to tell Origin traf-
fic apart from ads placed by cnn.com.

Application disambiguation. In addition to traffic dis-
ambiguation, we envision cross-layer checking to be useful
for behavioral fingerprinting for apps (outside the scope of
this paper). Suppose that we need to distinguish a file man-
ager app from a database-intensive app. If we only examine
the operating system layer, we would find that both apps
show high FS (filesystem) activity. However, the database
app does this without any user intervention, whereas the
file manager initiates file activity (e.g., move file, copy file)
in response to user input. By cross-checking the operating
system layer and user layer we can distinguish between the
two apps because the file manager will show much higher
user-layer activity. We leave behavioral app fingerprinting
to future work.

4.3 Free Versions of Apps Could End Up Cost-
ing More Than Their Paid Versions

The Android platform provides an open market for app
developers. Free apps (69% of all apps on Google Play [2])
significantly contributed to the adoption of Android plat-
form. However, the free apps are not as free as we would
expect. As we will explain shortly, considerable amounts
of network traffic are dedicated to for-profit services, e.g.,
advertising and analytics.

In fact, we performed a cross-layer study between free
apps and their paid counterparts. As mentioned in Section
2.1, users carried out the same task when running the free
and paid versions of an app. We now proceed to describe
findings at each layer. We found no difference at the static
layer (Table 2). At the user-layer, Figure 2 shows that most
of behaviors are similar between free and paid version of the
apps, which indicates that free and paid versions have sim-
ilar GUI layouts, and performing the same task takes simi-
lar effort in both the free and the paid versions of an app.
The exception was the photography app Picsay. At first
we found this finding counterintuitive; however, the paid
version of Picsay provides more picture-manipulating func-

tions than the free version, which require more navigation
(user input) when manipulating a photo.

Differences are visible at the OS layer as well: as shown in
Table 3, system call intensity is significantly higher (around
50%–100%) in free apps compared the their paid counter-
parts, which implies lower performance and higher energy
consumption. The only exception is Picsay, whose paid ver-
sion has higher system call intensity; this is due to increased
GUI navigation burden as we explained above.

We now move on to the network layer. Intuitively, the
paid apps should not bother users with the profit-making
extra traffic, e.g., ads and analytics, which consumes away
the data plan. However, the results only partially match
our expectations. As shown in Table 4, we find that the ma-
jority of the paid apps indeed exhibit dramatically reduced
network traffic intensity, which help conserve the data plan.
Also, as explained in Section 4.6, paid apps talk to fewer
data sources than their free counterparts. However, we could
still observe traffic from Google and third party in the paid
apps. We further investigate whether the paid apps secure
their network traffic by using HTTPS instead of HTTP. As
shown in Table 4, that is usually not the case, with the ex-
ception of Instant Heart Rate.

To sum up, the “free” in “free apps” comes with a hard-
to-quantify, but noticeable, user cost. Users are unaware
of this because multi-layer behavior is generally opaque to
all but most advanced users; however, this shortcoming is
addressed well by ProfileDroid.

4.4 Heavy VM&IPC Usage Reveals a Security-
Performance Trade-off

As mentioned in Section 3.3, Android apps are isolated
from the hardware via the VM, and isolated from each other
by running on separate VM copies in separate processes with
different UIDs. This isolation has certain reliability and se-
curity advantages, i.e., a corrupted or malicious app can
only inflict limited damage. The flip side, though, is the
high overhead associated with running bytecode on top of
a VM (instead of natively), as well as the high overhead
due to IPC communication that has to cross address spaces.
The VM&IPC column in Table 3 quantifies this overhead:
we were able to attribute around two-thirds of system calls
(63.77% to 87.09%, depending on the app) to VM and IPC.
The precise impact of VM&IPC system calls on performance
and energy usage is beyond the scope of this paper, as it
would require significantly more instrumentation. Never-
theless, the two-thirds figure provides a good intuition of
the additional system call burden due to isolation.

4.5 Most Network Traffic is not Encrypted
As Android devices and apps manipulate and communi-

cate sensitive data (e.g., GPS location, list of contacts, ac-
count information), we have investigated whether the An-
droid apps use HTTPS to secure their data transfer. Last
column of Table 4 shows the split between HTTP and HTTPS
traffic for each app. We see that most apps use HTTP to
transfer the data. Although some apps secure their traf-
fic by using HTTPS, the efforts are quite limited. This is
a potential concern: for example, for Facebook 77.26% of
network traffic is HTTPS, hence the remaining 22.74% can
be intercepted or modified in transit in a malicious way.
A similar concern is notable with Instant Heart Rate, a
health app, whose free version secures only 13.73% of the

App HTTPS traffic sources HTTP
Pandora Pandora, Google yes
Amazon Amazon yes
Facebook Facebook, Akamai yes

Instant Heart Rate Google yes
Instant Heart Rate-$$ Google yes

Table 6: Traffic sources for HTTPS.

traffic with HTTPS; personal health information might leak
in the remaining 86.27% HTTP traffic. We further investi-
gate which traffic sources are using HTTPS and report the
results in Table 6. Note how HTTPS data sources (Ori-
gin, CDN, Google) also deliver services over HTTP. These
results reveal that deployment of HTTPS is lagging in An-
droid apps—an undesirable situation as Android apps are
often used for privacy-sensitive tasks.

4.6 Apps Talk to Many More Traffic Sources
Than One Would Think

When running apps that have Internet permission, the
underlying network activity is a complete mystery: without
access to network monitoring and analysis capabilities, users
and developers do not know where the network traffic comes
from and goes to. To help address this issue, we investigate
the traffic sources; Table 4 shows the number of distinct
traffic sources in each app, while Table 7 shows the num-
ber of distinct traffic sources per traffic category. We make
two observations here. First, Table 4 reveals that most of
the apps interact with at least two traffic sources, and some
apps have traffic with more than 10 sources, e.g., Pandora
and Shazam, because as we explained in Section 3.4, traffic
sources span a wide range of network traffic categories: Ori-
gin, CDN, Cloud, Google and third party. Second, paid apps
have fewer traffic sources than their free counterparts (3 vs.
8 for Dictionary.com, 4 vs. 13 for Shazam, 9 vs. 22 for Dol-
phin), and the number of third-party sources is 0 or 1 for
most paid apps. This information is particularly relevant to
app developers, because not all traffic sources are under the
developer’s control. Knowing this information makes both
users and developers aware of the possible implications (e.g.,
data leaking to third parties) of running an app.

4.7 How Predominant is Google Traffic in the
Overall Network Traffic?

Android apps are relying on many Google services such as
Google maps, YouTube video, AdMob advertising, Google
Analytics, and Google App Engine. Since Google leads
the Android development effort, we set out to investigate
whether Google “rules” the Android app traffic. In Ta-
ble 4, we have presented the percentage of Google traffic
relative to all traffic. While this percentage varies across
apps, most apps have at least some Google traffic. Further-
more, Google traffic dominates the network traffic in the
apps Tiny Flashlight (99.79%), Gasbuddy (81.37%) and
Instant Heart Rate (85.97%), which shows that these apps
crucially rely on Google services. However, some apps, such
as Amazon and Facebook, do not have Google traffic; we
believe this information is relevant to certain categories of
users.

In addition, we further break down the Google traffic and
analyze the ratio of incoming traffic from Google to outgo-
ing traffic to Google. The ratios are presented in Table 7.

App CDN+ Google Third Google
Cloud party In/Out

Dictionary.com 3 1 4 2.42
Dictionary.com-$$ 2 1 0 1.92
Tiny Flashlight 0 1 3 2.13

Zedge 2 1 1 2.06
Weather Bug 5 1 7 4.93

Weather Bug-$$ 3 1 1 13.20
AdvTaskKiller 0 1 0 0.94

AdvTaskKiller-$$ 0 0 0 –
Flixster 4 1 4 0.90
Picsay 1 1 0 0.93

Picsay-$$ 1 1 0 0.94
ESPN 1 1 3 3.84

Gasbuddy 2 1 2 17.25
Pandora 3 1 6 3.63
Shazam 3 1 8 2.61

Shazam-$$ 1 1 1 0.84
YouTube 0 1 0 11.10
Amazon 3 0 0 –
Facebook 2 0 0 –
Dolphin 0 1 17 5.10

Dolphin-$$ 0 1 4 2.99
Angry Birds 1 1 6 2.26

Angry Birds-$$ 2 1 0 1.04
Craigslist 6 0 3 –

CNN 1 0 0 –
InstHeartRate 1 1 1 2.41

InstHeartRate-$$ 1 1 0 1.21

Table 7: Number of distinct traffic sources per traf-
fic category, and the ratio of incoming to outgoing
Google traffic; ‘–’ means no Google traffic.

We find that most apps are Google data receivers (in/out
ratio > 1). However, Advanced Task Killer, Picsay and
Flixster, are sending more data to Google than they are
receiving (in/out ratio < 1); this is expected.

5. RELATED WORK
To our knowledge, none of the prior efforts have focused on

multi-layer monitoring and profiling of individual Android
app.

Smartphone Measurements and Profiling. Falaki
et al. [14] analyzed network logs from 43 smartphones and
found commonly used app ports, properties of TCP transfer
and the impact factors of smartphone performance. Fur-
thermore, they also analyzed the diversity of smartphone
usage, e.g., how the user uses the smartphone and apps [16].
Maier et al. [13] analyzed protocol usage, the size of HTTP
content and the types of hand-held traffic. These efforts
aid network operators, but they do not analyze the Android
apps themselves. Recent work by Xu et al. [26] did a large
scale network traffic measurement study on usage behaviors
of smartphone apps, e.g., locality, diurnal behaviors and mo-
bility patterns. Qian et al. [12] developed a tool named ARO
to locate the performance and energy bottlenecks of smart-
phones by considering the cross-layer information ranging
from radio resource control to application layer. Huang
et al. [19] performed the measurement study using smart-
phones on 3G networks, and presented the app and device
usage of smartphones. Falaki et al. [15] developed a mon-
itoring tool SystemSens to capture the usage context, e.g.,
CPU and memory, of smartphone. Livelab [9] is a measure-

ment tool implemented on iPhones to measure iPhone us-
age and different aspects of wireless network performance.
Powertutor [21] focused on power modeling and measured
the energy usage of smartphone. All these efforts focus on
studying other layers, or device resource usage, which is dif-
ferent from our focus.

Android Security Related Work. Enck et al. [30]
presented a framework that reads the declared permissions
of an application at install time and compared it against a
set of security rules to detect potentially malicious applica-
tions. Ongtang et al. [24] described a fine-grained Android
permission model for protecting applications by expressing
permission statements in more detail. Felt et al. [5] exam-
ined the mapping between Android APIs and permissions
and proposed Stowaway, a static analysis tool to detect over-
privilege in Android apps. Our method profiles the phone
functionalities in static layer not only by explicit permission
request, but also by implicit Intent usage. Comdroid found a
number of exploitable vulnerabilities in inter-app communi-
cation in Android apps [11]. Permission re-delegation attack
were shown to perform privileged tasks with the help of an
app with permissions [4]. Taintdroid performed dynamic
information-flow tracking to identify the privacy leaks to
advertisers or single content provider on Android apps [31].
Furthermore, Enck et al. [29] found pervasive misuse of per-
sonal identifiers and penetration of advertising and analyt-
ics services by conducting static analysis on a large scale
of Android apps. Our work profiles the app from multi-
ple layers, and furthermore, we profile the network layer
with a more fine-grained granularity, e.g., Origin, CDN,
Cloud, Google and so on. AppFence extended the Taint-
droid framework by allowing users to enable privacy control
mechanisms [25]. A behavior-based malware detection sys-
tem Crowdroid was proposed to apply clustering algorithms
on system calls statistics to differentiate between benign and
malicious apps [17]. pBMDS was proposed to correlate user
input features with system call features to detect anoma-
lous behaviors on devices [20]. Grace et al. [23] used Wood-
pecker to examined how the Android permission-based secu-
rity model is enforced in pre-installed apps of stock smart-
phones. Capability leaks were found that could be exploited
by malicious activities. DroidRanger was proposed to detect
malicious apps in official and alternative markets [33]. Zhou
et al. characterized a large set of Android malwares and
a large subset of malwares’ main attack was accumulating
fees on the devices by subscribing to premium services by
abusing SMS-related Android permissions [32]. Colluding
applications could combine their permissions and perform
activities beyond their individual privileges. They can com-
municate directly [8], or exploit covert or overt channels in
Android core system components [27]. An effective frame-
work was developed to defense against privilege-escalation
attacks on devices, e.g., confused deputy attacks and col-
luding attacks [28].

6. CONCLUSIONS
In this paper, we have presented ProfileDroid, a mon-

itoring and profiling system for characterizing Android app
behaviors at multiple layers: static, user, OS and network.
We proposed an ensemble of metrics at each layer to cap-
ture the essential characteristics of app specification, user
activities, OS and network statistics. Through our analysis

of top free and paid apps, we show that characteristics and
behavior of Android apps are well-captured by the metrics
selected in our profiling methodology, thereby justifying the
selection of these metrics. Finally, we illustrate how, by us-
ing ProfileDroid for multi-layer analysis, we were able to
uncover surprising behavioral characteristics.

Acknowledgements
We would like to thank the anonymous reviewers and our
shepherd Srdjan Capkun for their feedback. This work was
supported in part by National Science Foundation awards
CNS-1064646, CNS-1143627, by a Google Research Award,
by ARL CTA W911NF-09-2-0053, and by DARPA SMISC
Program.

7. REFERENCES
[1] Google Play. https://play.google.com/store, May 2012.

[2] Androlib. Number of New Applications in Android
Market by month, March 2012.
http://www.androlib.com/appstats.aspx.

[3] A.P. Felt, E. Ha, S. Egelman, A. Haney, E. Chin, and
D. Wagner. Android Permissions: User Attention,
Comprehension, and Behavior. In SOUPS, 2012.

[4] A.P. Felt, H. Wang, A. Moshchuk, S. Hanna and E.
Chin. Permission Re-Delegation: Attacks and
Defenses. In USENIX Security Symposium, 2011.

[5] A.P.Felt, E. Chin, S. Hanna, D. Song, and D. Wagner.
Android Permissions Demystified. In ACM CCS, 2011.

[6] B. Krishnamurthy and C. E. Willis. Privacy diffusion
on the web: A longitudinal perspective. In WWW,
2009.

[7] C. Labovitz, S. Iekel-Johnson, D. McPherson, J.
Oberheide, and F. Jahanian. Internet inter-domain
traffic. In ACM SIGCOMM, 2010.

[8] C. Marforio, F. Aurelien, and S. Capkun. Application
collusion attack on the permission-based security
model and its implications for modern smartphone
systems. In Technical Report 724, ETH Zurich, 2011.

[9] C. Shepard, A. Rahmati, C. Tossell, L. Zhong, and P.
Kortum. LiveLab: Measuring Wireless Networks and
Smartphone Users in the Field. In HotMetrics, 2010.

[10] D.C. Hoaglin, F. Mosteller and J. W. Tukey.
Understanding robust and exploratory data analysis,
1983. Wiley.

[11] E. Chin, A. P. Felt, K. Greenwood, and D. Wagner.
Analyzing Inter-Application Communication in
Android. In ACM MobiSys, 2011.

[12] F. Qian, Z. Wang, A. Gerber, Z. Morley Mao, S. Sen,
and O. Spatscheck. Profiling Resource Usage for
Mobile apps: a Cross-layer Approach. In ACM
MobiSys, 2011.

[13] G. Maier, F. Schneider, and A. Feldmann. A First
Look at Mobile Hand-held Device Traffic. In PAM,
2010.

[14] H. Falaki, D. Lymberopoulos, R. Mahajan, S.
Kandula, and D. Estrin. A First Look at Traffic on
Smartphones. In ACM IMC, 2010.

[15] H.Falaki, R.Mahajan, and D. Estrin. SystemSens: A
Tool for Monitoring Usage in Smartphone Research
Deployments. In ACM MobiArch, 2011.

[16] H.Falaki, R.Mahajan, S. Kandula, D.Lymberopoulos,
R.Govindan, and D.Estrin . Diversity in Smartphone
Usage. In ACM MobiSys, 2010.

[17] I. Burguera,U. Zurutuza, and S. Nadjm-Tehrani.
Crowdroid: behavior-based malware detection system
for Android. In SPSM, 2011.

[18] IDC. Android- and iOS-Powered Smartphones Expand
Their Share of the Market. http:
//www.idc.com/getdoc.jsp?containerId=prUS23503312,
May 2012.

[19] J. Huang, Q. Xu, B. Tiwana, Z. M. Mao, M. Zhang,
and P. Bahl. Anatomizing app Performance
Differences on Smartphones. In ACM MobiSys, 2010.

[20] L. Xie, X. Zhang, J.-P. Seifert, and S. Zhu. pBMDS: A
Behavior-based Malware Detection System for
Cellphone Devices. In ACM WiSec, 2010.

[21] L. Zhang, B. Tiwana, Z. Qian, Z. Wang, R. Dick, Z.
M. Mao, and L. Yang. Accurate Online Power
Estimation and Automatic Battery Behavior Based
Power Model Generation for Smartphones. In
CODES+ISSS, 2010.

[22] M. Egele, C. Kruegel, E. Kirda, and G. Vigna.
Detecting Privacy Leaks in iOS apps. In NDSS, 2011.

[23] M. Grace, Y. Zhou, Z. Wang, and X. Jiang.
Systematic Detection of Capability Leaks in Stock
Android Smartphones . In NDSS, 2012.

[24] M. Ongtang, S. McLaughlin, W. Enck and P.
McDaniel. Semantically Rich Application-Centric
Security in Android. In ACSAC, 2009.

[25] P. Hornyack, S. Han, J. Jung, S. Schechter, and D.

Wetherall. These arenâĂŹt the Droids youâĂŹre
looking for: Retröıň ↪Atting Android to protect data
from imperious applications. In ACM CCS, 2011.

[26] Q. Xu, J. Erman, A. Gerber, Z. Morley Mao, J. Pang,
and S. Venkataraman. Identify Diverse Usage
Behaviors of Smartphone Apps. In IMC, 2011.

[27] R. Schlegel, K. Zhang, X. Zhou, M. Intwala, A.
Kapadia, and X. Wang. Soundcomber: A Stealthy and
Context-Aware Sound Trojan for Smartphones. In
NDSS, 2011.

[28] S. Bugiel, L. Davi, A. Dmitrienko, T. Fischer, A.
Sadeghi, and B.Shastry. Towards Taming
Privilege-Escalation Attacks on Android . In NDSS,
2012.

[29] W. Enck, D. Octeau, P. McDaniel, and S. Chaudhuri.
A Study of Android Application Security. In USENIX
Security Symposium, 2011.

[30] W. Enck, M. Ongtang and P. McDaniel. On
Lightweight Mobile Phone Application Certification.
In ACM CCS, 2009.

[31] W. Enck, P. Gilbert, B. G. Chun, L. P. Cox, J. Jung,
P. McDaniel, and A. N. Sheth. Taintdroid: An
information-flow tracking system for realtime privacy
monitoring on smartphones. In OSDI, 2010.

[32] Y. Zhou and X. Jiang. Dissecting Android Malware:
Characterization and Evolution. In IEEE S&P, 2012.

[33] Y. Zhou, Z. Wang, Wu Zhou and X. Jiang. Hey, You,
Get off of My Market: Detecting Malicious Apps in
Official and Alternative Android Markets . In NDSS,
2012.

