
Permission Evolution in the Android Ecosystem

Xuetao Wei, Lorenzo Gomez, Iulian Neamtiu, Michalis Faloutsos
Department of Computer Science and Engineering

University of California, Riverside
{xwei, gomezl, neamtiu, michalis}@cs.ucr.edu

ABSTRACT
Android uses a system of permissions to control how apps
access sensitive devices and data stores. Unfortunately, we
have little understanding of the evolution of Android permis-
sions since their inception (2008). Is the permission model
allowing the Android platform and apps to become more se-
cure? In this paper, we present arguably the first long-
term study that is centered around both permission evolu-
tion and usage, of the entire Android ecosystem (platform,
third-party apps, and pre-installed apps). First, we study
the Android platform to see how the set of permissions has
evolved; we find that this set tends to grow, and the growth
is not aimed towards providing finer-grained permissions but
rather towards offering access to new hardware features; a
particular concern is that the set of Dangerous permissions
is increasing. Second, we study Android third-party and
pre-installed apps to examine whether they follow the prin-
ciple of least privilege. We find that this is not the case, as
an increasing percentage of the popular apps we study are
overprivileged. In addition, the apps tend to use more per-
missions over time. Third, we highlight some concerns with
pre-installed apps, e.g., apps that vendors distribute with
the phone; these apps have access to, and use, a larger set of
higher-privileged permissions which pose security and pri-
vacy risks. At the risk of oversimplification, we state that
the Android ecosystem is not becoming more secure from
the user’s point of view. Our study derives four recommen-
dations for improving the Android security and suggests the
need to revisit the practices and policies of the ecosystem.

1. INTRODUCTION
The popularity of the Android platform is driven by feature-

rich devices, as well as the myriad Android apps offered by a
large community of developers. Furthermore, smartphones
have become an integral part of daily lives, with users in-
creasingly relying on smartphones to collect, store, and han-
dle personal data. This data can be highly privacy-sensitive,
hence there are increased concerns about the security of the
Android ecosystem and safety of private user data [11].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACSAC ’12 Dec. 3-7, 2012, Orlando, Florida USA
Copyright 2012 ACM 978-1-4503-1312-4/12/12 ...$15.00.

To ensure security and privacy, Android uses a permission-
based security model to mediate access to sensitive data,
e.g., location, phone call logs, contacts, emails, or photos,
and potentially dangerous device functionalities, e.g., Inter-
net, GPS, and camera. The platform requires each app to
explicitly request permissions up-front for accessing personal
information and phone features. App developers must de-
fine the permissions their app will use in the AndroidMan-

ifest.xml file bundled with the app, and then, users have
the chance to see and explicitly grant these permissions as
a precondition to installing the app. At runtime, the An-
droid OS allows or denies use of specific resources based on
the granted permissions (Section 2). In practice, this secu-
rity model could use several improvements, e.g., informing
users of the security implications of running an app, revok-
ing/granting app permissions without reinstalling the app,
or moving towards finer-grained permissions.

In fact, the Android permission model attracts emerging
malware that challenges the system to exploit vulnerabilities
in order to perform privilege escalation attacks—permission
re-delegation attacks [7], confused deputy attacks, and col-
luding attacks [15]. As a result, users can have sensitive
data leaked or subscription fees charged without their con-
sent (e.g., by sending SMS messages to premium numbers
via the SMS related Android permissions, as the well-known
Android malwares Zsone and Geinimi do [18]). While most
of these attacks are first initiated when a user downloads a
third-party app to the device, to make matters worse, even
stock Android devices with pre-installed apps are prone to
exposing personal privacy information due to their higher
privilege levels (e.g., the notorious HTCLogger app [5]).

Previous research efforts focus either on single-release per-
mission characterization and effectiveness [6,9,13] or on other
permission-related security issues [7,8,15,17]. Unfortunately,
there have been no studies on how the Android permission
system has evolved over the years, which could uncover im-
portant security artifacts beneficial to improving the security
of the ecosystem. We discuss previous work in Section 7.

In this paper, we study the evolution of the Android ecosys-
tem to understand whether the permission model is allowing
the platform and its apps to become more secure. Following
a systematic approach, we use three different types of char-
acterizations (third-party app permissions vs pre-installed
app permissions, and two permission classifications from
Google). We study multiple Android platform releases over
three years, from Cupcake (April 2009) to Ice Cream Sand-
wich (December 2011). We use a stable dataset of 237
evolving third-party apps covering 1,703 versions (spanning

a minimum of three years). Finally, we investigate pre-
installed apps from 69 firmwares, including 346 pre-installed
apps covering 1,714 versions. To the best of our knowledge,
this is the first longitudinal study on Android permissions
and the first study that sheds light on the co-evolution of
the whole Android ecosystem: platform, third-party apps,
and pre-installed apps.

Our overall conclusion is that the security and privacy
of the ecosystem (platform and apps) do not improve, at
least from the user’s point of view. For example, the evo-
lution moves more and more toward violating the principle
of least privilege, a fundamental security tenet. Specifically,
our study of the permission evolution of the Android ecosys-
tem leads to the following observations:
1. The number of permissions defined in Android

platform tends to increase, and the Dangerous-
level set of permissions is the most frequent and
continues to grow. There were 103 Android permis-
sions in the first widely-used release (API level 3); the
number of permissions has grown to 165 in the most cur-
rent release (API level 15). Furthermore, the Danger-

ous-level permissions is always the largest group across
all API levels, e.g., 60 out of 165 permissions in API
level 15, and is still growing.

2. Added platform permissions cater to hardware
manufacturers and their apps, rather than third-
party developers. Nearly half (49.1% in API level
15) of all permissions are not accessible to third-party
developers. Furthermore, of all the added permissions
between API levels 3 to 15, most (49 out of 62) are in
privilege levels that are not available to third-party de-
velopers, e.g., Signature and signatureOrSystem levels.

3. Android platform permissions are not becoming
more fine-grained. After carefully examining the An-
droid permissions from API level 3 to 15, we observed
that most permission changes are not geared towards
fine-grained instances of previous permissions. In other
words, the platform does not seem to be moving towards
more fine-grained permissions, which would in general
be a step towards increased privacy or security. Instead,
the permission changes indicate clearly that the Android
platform is striving to give more flexibility and control
to smartphone vendors, e.g., HTC, Motorola, Samsung,
by providing them with permissions of higher privilege.

4. Permission additions dominate the evolution of
third-party apps, of which Dangerous permissions
tend to account for most of the changes. From the
analysis of third-party apps, we found that the number
of occurrences of adding Android permissions is signif-
icantly higher than the number of deleted permissions.
Surprisingly, permission changes are not due to changes
in the platform. Interestingly, among those additions,
newer versions of apps tend to favor adding Dangerous

permissions most often (66.11% of permission increases
in apps consisted of at least one more Dangerous per-
mission).

5. Macroscopic and microscopic patterns emerge when
studying evolution of permission usage. We found
evidence that Dangerous permission usage sometimes os-
cillate as an application evolves, which might indicate
that developers are unclear about certain permission def-
initions, and their correct usage.

6. An increasing number of apps are violating the
principle of least privilege. The tendency of devel-
opers to request permissions that their apps do not need
causes an app to become overprivileged (as is the case
for 44.8% of apps).

7. The power and privilege of pre-installed apps is
growing. Sixty-six percent of pre-installed apps are
overprivileged. Furthermore, pre-installed apps have more
power to control and customize Android devices through
Android platform-defined and self-defined higher pro-
tection level permissions, e.g., Signature- and Signa-

tureOrSystem-level permissions. Though granting ven-
dors higher privilege is not surprising, end-users (the ac-
tual owners of the device) still have security concerns [5,
11]. We argue that since pre-installed apps have greater
power over the device, the developers of pre-installed
apps must understand and accept their responsibility to
protect the end user.

Implications and Suggestions. Our work leads to the
following recommendations for increasing the security and
privacy of Android users.
1. Securing the ecosystem must start at the An-

droid platform. The trends we reveal in the evolution
of the Android platform conjure up many security and
privacy concerns. The security of the Android ecosystem
could improve dramatically by focusing on improving the
security of the Android platform by: (a) cautiously in-
creasing the set of Dangerous-level permissions, (b) bal-
ancing the security of users and convenience of vendors,
and (c) offering fine-grained permissions to app develop-
ers.

2. App certification should enforce checks against
over-privileged requests. The existence of over-privileged
apps, which are increasing in number, is an indication
of, at best, carelessness, and, at worst, greed or malice
of the app developer. Checks should be incoporated to
discourage permission over-privilege.

3. App permission evolution and fluctuation indi-
cate developer confusion in selecting legitimate
permissions. Indicated by not only the macro- and
micro-evolution patterns of permissions, but also by the
tendency of apps to become overprivileged, the the strug-
gling battle of developers to select a set of legitimate per-
missions for their Android apps is clearly shown in our
work.More emphasis should be put on correct permis-
sion usage to aid developers in selecting the approriate
permissions to use.

4. Pre-installed manufacturer apps need to be sub-
ject to far more scrutiny, as they could be the
weakest link. Pre-installed apps have significant power:
(a) they do not require user approval for installation, as
they come with the device, (b) they can usually not be
removed, even if the user tries to, (c) they get access
to higher-privileged permissions, and (d) they are often
overprivileged. Pre-installed apps, with all their power,
could cause significant damage to the device and user if
compromised, thus pre-installed developers must be held
to a higher security standard than normal developers.

2. THE ANDROID PLATFORM BASICS
We now proceed to present an overview of the Android

platform, Android permission model and a set of definitions
for the concepts we use throughout the paper.

2.1 Android Platform
Android was launched as an open-source mobile platform

in 2008 and is widely used by smartphone manufacturers,
e.g., HTC, Motorola, Samsung. The software stack con-
sists of a custom Linux system, the Dalvik Virtual Machine
(VM), and apps running on top of the VM. Each app runs
in its own copy of the VM with a different user id, hence
apps are protected from each other. A permission model,
explained shortly, protects sensitive resources, e.g., the hard-
ware and stored data. In this model, resources are protected
by permissions, and only apps holding the permission (which
is granted when the app is installed) are given access to the
permission-protected resource.

API Levels. To facilitate app construction, the Android
platform provides a rich framework to app developers. The
framework consists of Android packages and classes, attributes
for declaring and accessing resources, a set of Intents, and a
set of permissions that applications can request. This frame-
work is accessible to apps via the Android application pro-
gramming interface (API). The Android platform has un-
dergone many changes since its inception in 2008, and each
major release forms a new API level. In this paper we stud-
ied all major API levels, from level 3 (April 2009) to level 15
(December 2011); levels 1 and 2 did not see wide adoption.
With each API upgrade, the older replaced parts are depre-
cated instead of being removed, so that existing applications
can still use them [4].

2.2 Android Apps
In addition to the platform, the Android ecosystem con-

tains two main app categories: third-party and pre-installed.

Third-party. apps are available for download from Google
Play (previously known as Android Market [2]) and other
app stores, such as Amazon [11]. These Android apps are
developed by individual third-party developers, which can
include software companies or individuals around the world.
Malicious apps, designed for nefarious purposes, form a spe-
cial class of third-party apps.

Pre-installed. apps come along with the devices from the
vendors. They are developed and loaded in the devices be-
fore the devices ever reach the user in the market. These
apps can be designed and configured exclusively per device
model depending on the needs of particular manufacturers
and phone service carriers by the vendor developers.

We studied permission evolution and usage in all com-
ponents of the ecosystem: platform, third-party apps and
pre-installed apps.

2.3 Android Permissions
The set of all Android permissions is defined in the An-

droidManifest.xml source file of the Android platfrom [10].
To access resources from Android devices, each Android app,
third-party and pre-installed alike, requests permissions for
resources by listing the permissions in the app’s Android-

Manifest.xml file. When the user wants to install an app,
this list of permissions is presented and confirmation is re-
quested; if the user confirms the access, the app will have
the requested permissions at all times (until the app is unin-
stalled). The latest platform release, API Level 15, contains
a list of 165 permissions; examples of permissions are IN-

TERNET which allows the app to use the Internet, ACCESS_
FINE_LOCATION which gives an app access to the GPS loca-

API Android SDK Total Release
level platform codename permissions (mm-dd-yy)

15 4.0.3 Ice Cream 165 12-16-11
Sandwich

MR1
14 4.0.2 Ice Cream 162 11-28-11

4.0.1 Sandwich 10-19-11
10 2.3.4 Gingerbread 137 04-28-11

2.3.3 MR1 02-09-11
9 2.3.2 Gingerbread 137 12-06-10

2.3.1
2.3

8 2.2.x Froyo 134 05-20-10
7 2.1.x Eclair MR1 122 01-12-10
6 2.0.1 Eclair 0 1 122 12-03-09
5 2.0 Eclair 122 10-26-09
4 1.6 Donut 106 09-15-09
3 1.5 Cupcake 103 04-30-09

Table 1: Official releases of the Android platform;
base and tablet versions are excluded.

tion, and NFC which lets the app use near-field communica-
tion. Android defines two categories of Android permissions:
Protection Level and Functionality Group, described next.

Protection Level. The levels refer to the intended use of a
permission, as well as the consequences of using the permis-
sion.

1. Normal permissions present minimal risk to Android
apps and will be granted automatically by the Android
platform without user’s explicit approval.

2. Dangerous permissions provide access to the user’s per-
sonal sensitive data and various device features. Apps
requesting dangerous permissions can only be installed
if the user approves the permission request. These are
the only permissions displayed to the user upon instal-
lation.

3. Signature permissions signify the highest privilege;
they can only be obtained if the requesting app is
signed with the device manufacturer’s certificate.

4. signatureOrSystem permissions are only granted to
apps that are in the Android system image or are
signed with the same certificate in the system image.
Permissions in this category are used for certain spe-
cial situations where multiple vendors have applica-
tions built into a system image and need to share spe-
cific features explicitly because they are being built
together.

Note that the definition of protection level clearly constrains
the privilege for each Android permission: third-party apps
can only use Normal and Dangerous permissions. However,
pre-installed apps can use permissions in all four protection
levels. When third-party apps request Signature or Sig-

natureOrSystem permissions, the request is ignored by the
platform.

Functionality categories. Android also defines a set of
permission categories based on functionality; in total there
are 11 categories, with self-explanatory names: Cost Money,
Message, Personal Info, Location, Network, Accounts, Hard-
ware Controls, Phone Calls, Storage, System Tools and
Development Tools. There is also a Default category that
is used when no category is specified in the definition of an
Android permission [3].

3. DATASET DESCRIPTION
In this section, we describe the process we used to collect

the permission datasets from the Android ecosystem.

3.1 Platform Permissions Dataset
Table 1 presents the evolution of the platform permissions:

for each API level (column 1) we show the platform release
number (column 2), the textual codename of the release (col-
umn 3), the number of permissions defined in that release
(column 4), and the release date (last column). Note that
we exclude API levels 1 and 2, as the platform only gained
wide adoption starting with API level 3. Also, we exclude
releases 3.x (named Honeycomb, API levels 11–13); Honey-
comb can be regarded as a separate evolutionary branch as it
was designed for tablets only, not for smartphones, its source
code was not open-source at release, and it was eventually
merged into platform version 4.0.

To obtain the permission definitions for each API level,
we extracted the file AndroidManifest.xml from each re-
lease [10]. We then analyzed the changes in permissions
between successive releases.

3.2 Apps Permissions Dataset
Third-party apps. We characterize permission usage evolu-
tion in third-party apps based on a stable set of 237 popular
apps with 1,703 versions that span at least three years. We
chose these apps because they are widely-used, have releases
associated in each API level, and have more than one release
per year; hence we could observe how apps evolve and how
changes in the platform might lead to changes in apps.

Selecting this stable dataset was far from trivial, and was
an involved process. First, we seeded the dataset with 1,100
apps (Top-50 free apps from each category) [16]. Then
we crawled historic versions of apps from online reposito-
ries, and then retrieved their latest versions from Google
Play [1,2]; in total, this initial set contained 1,420 apps with
4,857 versions. Next, we selected only those apps that had
at least one version each year between 2009 and 2012. Fi-
nally, after eliminating those apps that did not match our
requirements, we obtained the stable dataset of 237 apps
with 1,703 versions, with each app’s evolution spanning at
least three years.

Pre-installed apps. Pre-installed apps are much more dif-
ficult to obtain because they are not distributed online by
vendors—they come with the phone; moreover, the sets of
pre-installed apps vary widely among phones and manufac-
turers. Therefore, to collect pre-installed apps, we used a
different process compared to third-party apps. First, we
gathered the firmwares of multiple phone vendors—HTC,
Motorola, Samsung, and LG—from various online sources.
Next, we unpacked the firmwares and extracted the pre-
installed apps inside. In total, we collected 69 firmwares
over the years which contained 346 pre-installed apps with
1,714 versions.

Permission collection. To obtain the permission list for
each app, we use the tool aapt on each app version to ex-
tract the AndroidManifest.xml file, which contains the per-
missions requested by that version [10]. After obtaining the
set of manifest files, we parse the manifest files to get the
full list of the permissions used by each app version.

Our analysis is based on these datasets. The datasets con-
tain applications from a large number of developers across a

3 4 5 6 7 8 9 10 14 15
0

10

20

30

40

50

60

API Level

N
u
m

b
e
r

o
f
P

e
rm

is
s
io

n
s

signatureOrSystem

Normal

Signature

Dangerous

Figure 1: Protection Levels, e.g. Normal, Danger-
ous, Signature, signatureOrSystem, evolving over
API levels.

broad range of categories. Thus, we believe that our datasets
reflect Android app permission variation and evolution in a
meaningful way.

4. PLATFORM PERMISSION EVOLUTION
We study the evolution of the Android platform permis-

sions through a fine-grained, qualitative and quantitative
analysis of permission changes between API levels. As we
discussed in Section 2, the Android platform defines the list
of all permissions in the framework’s source code file An-

droidManifest.xml for each API level. Since the API level
directly reflects what permissions Android platform offers,
we use the API level as the defining indicator to compare
the Android permission changes.

4.1 The List of Permissions is Growing
As shown in Table 1, the number of Android permissions

in each API level is significantly increasing. In early 2009,
API level 3 had 103 Android permissions, while there are
now 165 Android permissions in API level 15. The net gain
of 62 permissions was the result of adding 68 new permis-
sions and removing 6 existing ones. We present the permis-
sion evolution by protection level and functionality category.

In Figure 1, we show the permission evolution by protec-
tion levels (the levels were described in Section 2). We ob-
serve that the number of permissions in each protection level
is increasing. In addition, we find that most of the increased
permissions across different API levels belong to the protec-
tion levels Signature and signatureOrSystem, which indi-
cates that most of the introduced Android permissions are
only accessible to vendors, e.g., HTC, Motorola, Samsung,
and LG. This raises significant security concerns for at least
two reasons: (1) users have no control over the pre-installed
apps, as the apps are already present when the phone is
purchased, and (2) a flaw in a pre-installed app will affect
all phones whose firmware contained that app. To illus-
trate the danger associated with pre-installed apps, consider
the notorious HTCLogger pre-installed app, in which users
of certain HTC phones were exposed to a significant secu-
rity flaw. HTCLogger was designed to log device information
for the development community in order to debug device-
specific issues; as such, the app collects account names, call

API Dev Sys Accounts Cost Hardware Location Messages Network Personal Phone Storage Default
level tools tools Money Controls Info calls

3 36 35 1 2 6 4 5 5 6 3

4 -1 +2,-2 +1 +1 +2
5 +3 +4 +2 +7
6
7
8 +7 +6, -1
9 +1 +2 -2 +2
10
14 +2 +1 +2,-1 +1 +1 +5 +1 +1 +12
15 +1 +1 +1

Overall -1 +13 +4 +1 +2 +1 +1 +4 +5 +1 +2 +29

Table 2: Permission changes per API level and permission categories.

Dangerous permission Category
READ HISTORY BOOKMARKS Personal Info

WRITE HISTORY BOOKMARKS Personal Info
READ USER DICTIONARY Personal Info

READ PROFILE Personal Info
WRITE PROFILE Personal Info

READ SOCIAL STREAM Personal Info
WRITE SOCIAL STREAM Personal Info

WRITE EXTERNAL STORAGE Storage
AUTHENTICATE ACCOUNTS Accounts

MANAGE ACCOUNTS Accounts
USE CREDENTIALS Accounts

NFC Network
USE SIP Network

CHANGE WIFI MULTICAST STATE System Tools
CHANGE WIMAX STATE System Tools

Table 3: Added Dangerous permissions and their cat-
egories.

and SMS data, GPS location, etc. Unfortunately, the app
stored the collected information without encrypting it and
made it available to any application that had the Internet
permission [5].

In Table 2, we show the permission evolution by function-
ality categories: each column contains a category, each row
corresponds to an API level, and cell data indicates the num-
ber of permissions added and deleted in that API level; note
that, the first row shows the number of permissions in each
category of API 3. We find that the number of permissions
in nearly all the categories is increasing, with the excep-
tion of the Personal Information category, which yielded
a decrease in the number of permissions from API 8 to 9,
as shown in Table 2. After grouping the Android permis-
sions into the 11 functionality categories, we find that the
Default, System_Tools and Development_Tools categories
contribute to most of the increases. Newly-added permis-
sions in these categories allow developers and applications
to take advantage of the evolving hardware capabilities and
features of the device. We now proceed to providing obser-
vations on permission evolution at a finer-grained level.

4.2 Dangerous Group is Largest and Growing
From Figure 1, we can see that the Dangerous permission

level (the levels were introduced in Section 2.3) vastly out-
numbers all other permission types at all times. Note that
the Dangerous permission set is still growing, even though
it is already the largest. We further investigated the growth
of permissions in the Dangerous protection level.

As shown in Table 3, Dangerous permissions are added
in 5 out of 11 categories. Most of them are from personal
data-related categories, e.g, PERSONAL_INFO, STORAGE and

ACCOUNTS. We believe that this evolutionary trend shows
that the Android platform provides more channels to harvest
personal information from the device, which could increase
the privacy breach risk if these permissions may be abused
by Android apps.

4.3 Why are Permissions Added or Deleted?
To understand the rationale behind permission addition

and deletion, we studied the commit history (log messages
and source code diffs) of the Android developer code repos-
itory [10].

We found that, in most cases, permissions are added and
deleted to offer access to more functionality offered by the
device. Advances in the hardware strongly motivate such
permission evolution. For instance, in API level 9, new
hardware technology for near-field communication led to the
introduction of a permission to access NFC. In API level 15,
a permission to access WiMAX is introduced in order to
access 4G networks.

Permissions can also be deleted to accommodate new smart-
phone features when they are removed and replaced by new
permissions. For example, READ_OWNER_DATA was deleted af-
ter API level 8, but two new, related permissions, READ_

PROFILE and READ_SOCIAL_STREAM were added in level 14.
Interestingly, some permissions were added in the earlier

API levels while deleted later, as the associated functionali-
ties are made available to public without manifest-declared
permissions. For example, BACKUP_DATA was added in API
level 5, but deleted in level 8, because the backup/restore
function was made available to all apps by default.

Furthermore, most of the added permissions are permis-
sions categorized as Default, System_Tools and Develop-

ment_Tools, which are mostly used to access system level
information to function and debug the Android apps. How-
ever, as we discussed before, most of those permissions are
in the Signature and signatureOrSystem protection levels
that are only available to vendor developers in pre-installed
apps. This indicates that the added permissions facilitate
the development of pre-installed apps by vendor developers,
instead of third-party apps by third-party developers. The
extended aid to vendors is somewhat adverse, since third-
party developers are the dominant and active force in the
Android ecosystem.

4.4 No Tendency Toward Finer-grained Per-
missions

Finer-grained permissions in Android, e.g., separating the
advertisement code permissions from host app permissions [14],
have been advocated by security groups from both academia

.

.
API7

API8

API9

API10

API14

API15

READ_OWNER_DATA
(Dangerous)

READ_PROFILE
(Dangerous)

READ_SOCIAL_STREAM
(Dangerous)

SEND_SMS
(Dangerous)

SEND_SMS
(Dangerous)

SEND_SMS_NO_CONFIRMATION
(SignatureOrSystem)

READ_PHONE_STATE
(Dangerous)

READ_PHONE_STATE
(Dangerous)

READ_PRIVILEGED_PHONE_STATE
(SignatureOrSystem)

Figure 2: Functionally-similar permissions added and deleted between API levels.

and industry [9, 12, 16]. The basis for finer-grained permis-
sions is the principle of least privilege, i.e., giving apps the
minimum number of permissions necessary to provide a cer-
tain level of service.

We investigated whether Android permissions are becom-
ing more fine-grained over time. After carefully examining
the Android permissions from API level 3 to 15, we observe
that the permission changes do not tend towards becoming
more fine-grained. We found only one possible example of a
permission splitting in READ_OWNER_DATA. However, there is
no indication that the two new permissions were specifically
designed to replace the previous one, as shown in the first ex-
ample of Figure 2. Overwhelmingly, the permission changes
indicate that the Android platform is giving more flexibility
and control to the phone vendors. For example, as shown
in Figure 2, SEND_SMS and PHONE_STATE permissions exist
in both API level 10 and 14, but the newly added Android
permissions SEND_SMS_NO_CONFIRMATION and READ_PRIVI-

LEGED_PHONE_STATE gives the app a higher privileged access
to the device. Further, those higher privileged permissions
are signatureOrSystem permissions, which can only used
by vendor developers. In summary, we do not observe the
evolution of Android permissions that is trending to provide
more fine-grained permissions.

5. THIRD-PARTY APPS
We now change our focus and investigate the variation and

evolution of permissions from the perspective of the driving
force of the Android ecosystem: the apps. We investigate
two types of apps, third-party apps and pre-installed apps;
we present and discuss the permission usage of Android apps
across different versions and their evolution.

5.1 Permission Additions Dominate
We analyzed the permissions added and deleted in the

1,703 versions of the 237 third-party apps in our stable
dataset. In Figure 3(a) we show the distribution of permis-
sion changes; on the x-axis we show the number of permis-
sion changes: permission additions are marked positive, per-
mission deletions are marked negative. Note that the bulk
of the changes are to the right of the origin (0 changes means
no permission change), we can conclude that most apps add
permissions over time, with some apps adding more than
15 permissions. Only a small number of apps, about 10,
delete permissions, and the deletions are limited to at most
3 permissions.

We present the total numbers of permission addition and
deletion events in the stable dataset in Table 4: column
2 illustrates that the addition of permissions occurs much
more frequently than the deletion of permissions. To disam-
biguate between genuine permission additions and additions
induced by changes in the platform (e.g., as a result of added

Total Induced by
changes platform changes

Add 857 14 (1.63%)
Delete 183 5 (2.73%)

Total 1040 19 (1.82%)

Table 4:App permission changes in the stable dataset.

Android permission In Top 20?
ACCESS NETWORK STATE X

WRITE EXTERNAL STORAGE X
WAKE LOCK X

GET ACCOUNTS ×
VIBRATE X

Table 5: Most frequently added permissions in the
stable dataset.

functionality), we also computed the permission changes in-
duced by changes in the Android platform, which we show
in column 3 of Table 4). Surprisingly, these induced changes
only account for a small number of the permission changes:
less than 3% of either additions or deletions. In sum, we
were able to conclude that permission changes, which consist
mostly of additions, are not due to changes in the platform.

We now set out to answer the question: what is the pri-
mary cause for the permission additions? We show the
Top-5 most frequently added and dropped permission in the
first column of Table 5 and Table 6; column 2 of these ta-
bles will be explained shortly. For the added permissions,
we found that Android apps became more aggressive in ask-
ing for resources, by asking for new permissions. For in-
stance, the Android apps adopt permissions such as WAKE_

LOCK, GET_ACCOUNTS, and VIBRATE. WAKE_LOCK prevents the
processor from sleeping or the screen from dimming, hence
allowing the app to run constantly without bothering the
user for wake-up actions. VIBRATE enables the phone to vi-
brate for notifying the user when the corresponding apps
invokes some functionality. In order to meet the increasing
requirement of storage, WRITE_EXTERNAL_STORAGE is added
to enable writing data into the external storage of the device
such as an SD card. We note that permissions that do not
improve the user experience, e.g., ACCESS_MOCK_LOCATION

and INSTALL_PACKAGES, the apps simply drop them.
As Android Apps are increasingly adding new permis-

sions, users are naturally have security and privacy concerns,
e.g., how can they be sure that apps do not abuse permis-
sions?

For comparison, in Table 7, we list the Top-20 permissions
that Android malwares request (and abuse), as reported by
Zhou and Xiang [18]. We now come back to column 2 in
Tables 5 and 6; the columns show the result of comparing
the added (and respectively, deleted) permissions in our sta-
ble dataset with the Top-20 malware permission list. A ‘X’
means the corresponding Android permission is in the Top-

−10 −5 0 5 10 15 20
0

10

20

30

40

50

60

70

Number of Permission Changes

P
e

rc
e

n
ta

g
e

 o
f

D
a

ta
s
e

t

Permission Changes of Stable Dataset

(a)

−3−2−1 0 1 2 3 4 5 6 7 8 9 10 14
0

10

20

30

40

50

60

70

Number of Permission Changes

P
e

rc
e

n
ta

g
e

 o
f

D
a

ta
s
e

t

Dangerous Permission Changes of Stable Dataset

(b)

Normal Dangerous Sig Sig or Sys
−100

0

100

200

300

400

500

Protection Level

N
u
m

b
e

r
o

f
P

ro
te

c
ti
o

n
 L

e
v
e

l
C

h
a
n

g
e

s

Added and Dropped Permissions

(c)

Figure 3: Permission and protection level changes in the third-party apps.

−10 −5 0 5 10 15 20
0

10

20

30

40

50

60

70

Number of Permission Changes

P
e

rc
e

n
ta

g
e

 o
f

D
a

ta
s
e

t

Permission Changes of Pre−installed Apps

(a)

−6 −3−2−1 0 1 2 3 4 5 6 7 8 9 11
0

10

20

30

40

50

60

70

Number of Permission Changes

P
e

rc
e

n
ta

g
e

 o
f

D
a

ta
s
e

t

Dangerous Permission Changes of Pre−installed Apps

(b)

Normal Dangerous Sig Sig or Sys
−100

0

100

200

300

400

500

Protection Level

N
u

m
b

e
r

o
f

P
ro

te
c
ti
o

n
 L

e
v
e
l
C

h
a

n
g

e
s

Added and Dropped Permissions

(c)

Figure 4: Permission and protection level changes in the pre-installed apps.

Android Permission In Top 20?
ACCESS MOCK LOCATION ×

READ OWNER DATA ×
INSTALL PACKAGES ×

RECEIVE MMS ×
MASTER CLEAR ×

Table 6: Most frequently deleted permissions in the
stable dataset.

20 malware permission list, while a ‘×’ means the permission
is not in the list. We found that most of the added permis-
sions are on the malware list, while none of the dropped
permissions are on the list. Though we certainly can not
claim these third-party apps are malicious, the trend should
concern users: as apps gain more powerful access, the over-
all system becomes less secure. For example, in the confused
deputy attack, a malicious app could compromise and lever-
age a benign app to achieve its malevolent goals [15].

5.2 Apps Want More Dangerous Permissions
We now proceed to investigate the added permissions in

the Dangerous protection level as they introduce more risks.
Figure 3(b) shows that 66.11% of permission increases in

apps required at least one more Dangerous permission. In
more detail, we list the frequently used Dangerous permis-
sions in the first column of Table 8. We found that WRITE_

EXTERNAL_STORAGE is the most requested Dangerous permis-
sion, in which sensitive personal or enterprise files can be
written to external media. This permission is also a hot-
spot for most malicious activities. INTERNET, READ_PHONE_
STATE, and WAKE_LOCK are also requested frequently by the
new versions of the apps. The first two are needed to allow
for embedded advertising libraries (ads), but these third-

Permission % of apps using it
INTERNET 97.8%

READ PHONE STATE 93.6%
ACCESS NETWORK STATE 81.2%

WRITE EXTERNAL STORAGE 67.2%
ACCESS WIFI STATE 63.8%

READ SMS 62.7%
RECEIVE BOOT COMPLETED 54.6%

WRITE SMS 52.2%
SEND SMS 43.9%
VIBRATE 38.3%

ACCESS COARSE LOCATION 38.1%
READ CONTACTS 36.3%

ACCESS FINE LOCATION 34.3%
WAKE LOCK 33.7%
CALL PHONE 33.7%

CHANGE WIFI STATE 31.6%
WRITE CONTACTS 29.7%

WRITE APN SETTINGS 27.7%
RESTART PACKAGES 26.4%

Table 7: Top-20 most frequent permissions re-
quested by malware (from Zhou and Xiang [18]).

party ads are also raising privacy concerns of abusing the
user’s personal information. We then cross-checked this list
with the Top-20 malware permissions [18], as shown in col-
umn 2 of Table 8. We observed that 9 of the 16 frequent
permissions listed are also frequently used by malicious apps.
This significant overlap intensifies our privacy and security
concerns.

5.3 Macro and Micro Evolution Patterns
The characterization of permission changes we provided so

far, in terms of absolute numbers (added/deleted), reveals

Dangerous permission In Top 20?
WRITE EXTERNAL STORAGE X

WAKE LOCK X
READ PHONE STATE X

ACCESS COARSE LOCATION X
CAMERA ×

INTERNET X
ACCESS FINE LOCATION X

READ LOGS ×
READ CONTACTS X
RECORD AUDIO ×

BLUETOOTH ×
CALL PHONE X

CHANGE WIFI STATE X
GET TASKS ×

MODIFY AUDIO SETTINGS ×
MANAGE ACCOUNTS ×

Table 8: Frequently used Dangerous Android permis-
sions of stable dataset.

Macro pattern Frequency
0→1 90.46%
1→0 8.59%

1→0→1 0.84%
1→0→1→0 0.11%

Table 9: Macro evolution patterns of permission us-
age in the stable dataset.

the general trend toward apps requiring more and more per-
missions. In addition, we also performed an in-depth study
where we looked for a finer-grained characterization of per-
missions evolution in terms of “patterns”, e.g., repeated oc-
currences of permission changes.

Macro patterns. To construct the macro patterns, we use
0→1 and 1→0 as the basic modes, where ‘0’ represents the
state that the corresponding app does not use a particular
permission, ‘1’ represents the state that the corresponding
app uses a particular permission, and ‘→’ represents a state
transition. In Table 9, we tabulate the macro-patterns we
observed in the stable dataset, along with their frequencies.
We found that the permission additions dominate the per-
mission changes (0→1 has a 90.46% frequency), as pointed
out earlier in Section 5.1. We also found occurrences of other
interesting patterns, e.g., permissions being deleted and then
added back, though these instances are much less frequent.

Micro patterns. Some Dangerous permissions appear to be
confusing developers. For example, the location permissions
ACCESS_COARSE_LOCATION and ACCESS_FINE_LOCATION, pro-
vide different levels of location accuracy, on GSM/WiFi po-
sition and GPS location, respectively. Location tracking has
been heavily debated because it could possibly be used to
violate the user’s privacy. We found that app developers
handled the adding and deleting of these Dangerous loca-
tion permission in an interesting way; to reveal the under-
lying evolution patterns of used by the Dangerous location
permissions, we have done a case study of micro-patterns on
two widely used location permissions, ACCESS_COARSE_LOCA-
TION and ACCESS_FINE_LOCATION. We found that, although
the most frequent macro evolution pattern of location per-
mission is 0→1, the micro evolution patterns of the location
permissions are quite diverse.

In Table 10, we tabulate the micro-patterns we observed
for the location permission alone. For instance, 0→Both→Fine

Micro pattern Frequency
Both 6.67%

Fine→Both 10.00%
Fine→Coarse 3.33%
Coarse→Both 10.00%

0→Both 20.00%
0→Fine 10.00%

0→Coarse 26.70%
0→Fine→Both 3.33%
0→Both→Fine 3.33%

0→Both→Coarse 3.33%
0→Fine→0→Fine 3.31%

Table 10: Micro evolution patterns for the location
permissions; Fine represents the ACCESS_FINE_LOCA-

TION permission, Coarse represents the ACCESS_COARSE_

LOCATION permission, and Both means both Fine and
Coarse are used.

0 5 10 15
0

5

10

15

Number of Dangerous Permissions

N
u
m

b
er

 o
f

N
o
rm

al
 P

er
m

is
si

o
n
s

NetQin

Facebook

KakaoTalk

Figure 5: Permission trajectories for popular apps.

means both location permissions are used at first, then the
ACCESS_COARSE_LOCATION permission is deleted in a later
version of the app. 0→Fine→0→Fine shows the app added
ACCESS_FINE_LOCATION at first, dropped it in a subsequent
version, and finally, added back again. Though the table in-
dicates several micro-patterns, note that using both location
permissions dominates, with 50% of the total, which shows
that more and more apps tend to include both location per-
missions for location tracking. We are able to make two
observations. First, evolution patterns requesting Danger-

ous permissions clearly show the struggling balance between
app usability and user privacy during the evolution of apps.
Second, the patterns reveal that developers of third-party
apps may be unclear with the correct usages of the Danger-

ous location permissions, which highlights the importance
for the platform to be more clear on how to properly handle
Dangerous permissions.

Permission trajectories. Due to the observed diverse per-
mission evolution patterns, we plot the number of Normal

against Dangerous permissions to visualize trajectories as
apps evolve. We found many interesting trajectories, and
highlight three, e.g., Facebook (red), KakaoTalk (black) and
NetQin (blue), in Figure 5. Facebook added Dangerous per-
missions in great numbers early on, but recently they have
removed many and instead added more slowly. Both NetQin
and KakaoTalk continue to add permissions from either one
permission level or both permission levels with each new ver-
sion that is released. These diverse trajectories of popular
apps again highlight the need for the the platform to provide

Micro pattern Frequency
Legitimate →Over 58.57%
Over→Legitimate 32.14%

Over→Legitimate→Over 7.86%
Over→Legitimate→Over→Legitimate 0.71%

Over→Legitimate→Over→Legitimate→Over 0.71%

Table 11: Evolution patterns of the privilege levels
of the stable dataset, where Legitimate represents le-
gitimate privilege and Over represents overprivilege.

Permission Protection level
GET TASKS Dangerous

MODIFY AUDIO SETTINGS Dangerous
WAKE LOCK Dangerous

NFC Dangerous
GET ACCOUNTS Normal

Table 12: Most added permissions from the
Legitimate→Over (58.57%) subset of apps.

better references of Android permissions to developers.

5.4 Apps Are Becoming Overprivileged
Extra permission usage may lead to overprivilege, a situa-

tion in which an app requests the permission, but never uses
the resource granted. This could increase vulnerabilities in
the app and raise concern of security risks. In this section,
we investigate the privilege patterns to determine whether
Android apps became overprivileged during their evolution.

To detect overprivilege, we ran the Stowaway [8] tool on
the stable dataset (1,703 app versions). As shown in Figure
7, we found that 19.6% of the newer versions of apps be-
came overprivileged as they added permissions, and 25.2%
of apps were initially overprivileged and stayed that way
during their evolution. Although the overall tendency is to-
wards overprivilege, we could not ignore the fact that 11.6%
of apps decreased from overprivileged to legitimate privilege,
a positive effort to balance usability and privacy concerns.

In addition, similar to the evolution patterns of permis-
sion usage, we also study the evolution patterns of over-
privilege status for each app; we present the results in Ta-
ble 11. We found that the patterns Legitimate→Over and
Over→Legitimate dominate at 58.57% and 32.14%, respec-
tively. However, like in the patterns of permission usage,
we also found other diverse patterns during the evolution
of apps, which again shows that there may be confusion for
third-party developers when deciding on what permissions
to use for their app.

In Table 12 and 13, we further refine the observations to
show the kinds of permissions involved in the dominating
patterns: we observe that Dangerous permissions are the
major source that causes an app to be overprivileged, which
again emphasizes that developers should exercise more care
when requesting Dangerous permissions.

6. PRE-INSTALLED APPS
Pre-installed apps have access to a richer set of higher-

privileged permissions, e.g., at the Signature and signa-

tureOrSystem levels, compared to third-party apps, which
gives pre-installed apps access to more personal information
on the device [11]. Thus, we should investigate how An-
droid permissions are used in pre-installed apps. We con-
ducted a permission-change analysis for pre-installed apps

Permission Protection level
READ PHONE STATE Dangerous

ACCESS COARSE LOCATION Dangerous
WRITE EXTERNAL STORAGE Dangerous

ACCESS MOCK LOCATION Dangerous
VIBRATE Normal

Table 13: Most dropped permissions from the
Over→Legitimate (32.14%) subset of apps.

Normal Dangerous Sig Sig or Sys
0

1

2

3

4

5

Protection Level

A
v
e

ra
g

e
 #

 o
f

P
e

rm
is

is
o

n
s
 P

e
r

A
p

p

Stable

Preinstalled

Figure 6: Average number of permissions per app,
for each protection level, from stable and pre-
installed datasets.

in a manner similar to the stable dataset. We present the
results in Figure 4. Figures 4(a) and 4(b) indicate that
permission usage is relatively constant, e.g., 62.61% of pre-
installed apps do not change their permissions at all, which
is significant when compared to our third-party apps with
only 15.68%. Further, from Figure 4(c) and 6, pre-installed
apps request many more Signature and signatureOrSystem

level permissions than third-party apps, while at the same
time requesting nearly just as many Normal and Dangerous

level permissions. This shows that pre-installed apps have
a much higher capability to penetrate the smartphone. In-
terestingly, the vendors also have the ability to define their
own permissions inside the platform when they customize
the Android platform for their devices. For example, HTC
defines its own app update permission, HTC_APP_UPDATE.

The power of pre-installed apps requires great responsibil-
ity by vendors to ensure that this power is not abused. On
one hand, vendors are able to customize pre-installed apps
to take full advantage of all the hardware capabilities of the
device, as well as create a brand-personalized look-and-feel
to enhance user experience. On the other hand, users can-
not opt out of pre-installed apps, and in most cases, cannot
uninstall the pre-installed apps, which raises the question:
why should users be forced to trust pre-installed apps? Hin-
dering that trust is our finding that, despite being developed
by vendors, 66.1% of pre-installed apps were overprivileged.

What if the power of pre-installed apps is used against the
user with malicious intent? For example, the marred pre-
installed app HTCLogger and other reported security compro-
mised apps have already indicated such security risks do ex-
ist and can significantly damage the smartphone and/or the
user data [5, 11]. The vendors’ Signature and signature-

OrSystem level permissions can be exploited by malicious
apps to do an array of damaging actions, such as wiping
out user data, sending out SMS messages to premium num-
bers, recording user conversations, or obtaining the device
location data of the device [11].

As we analyzed the evolution of Android platform permis-

 Unchanged
(Overprivileged)
 25.2%

Overprivileged
 to Legitimate
 11.6%

 Legitimate to
Overprivileged
 19.6%

Unchanged
(Legitimate)
 43.6%

Figure 7: Overprivilege status and evolution in the
stable dataset.

sions, it was interesting to see the evolution trends benefit
vendors, rather than users. With the power vendors have in
pre-installed apps, developers of pre-installed apps should
be more careful in their development as they represent the
trusted computing base (TCB) of the Android ecosystem.
Up until now, there has not been any clear regulations or
boundary definitions that protect the user from pre-installed
apps. We argue that, since pre-installed apps have more
power and privilege over Android devices, vendors need to
realize their responsibility to protect the end-user.

7. RELATED WORK
None of the prior works on Android permissions has fo-

cused on understanding how Android permissions and their
use evolve in the Android ecosystem.

Android permission characterization and effective-
ness. Barrera et al. [9] introduced a self-organizing method
to visualize permissions usage in different app categories. A
comprehensive usability study of Android permissions was
conducted through surveys in order to investigate Android
permissions’ effectiveness at warning users, which showed
that current Android permission warnings do not help most
users make correct security decisions [6]. Chia et al. [13]
focused on the effectiveness of user-consent permission sys-
tems in Facebook, Chrome, and Android apps; they have
shown that app ratings were not a reliable indicator of pri-
vacy risks.

Permission-related Android security. Enck et al. [17]
presented a framework that read the declared permissions
of an application at install time and compared it against a
set of security rules to detect potentially malicious appli-
cations. Ongtang et al. [12] described a fine-grained An-
droid permission model for protecting applications by ex-
pressing permission statements in more detail. Felt et al. [8]
examined the mapping between Android API’s and permis-
sions and proposed Stowaway, a static analysis tool to detect
over-privilege in Android apps. Permission re-delegation at-
tacks were shown to perform privileged tasks with the help
of an app with permissions [7]. Grace et al. [11] used Wood-
pecker to examined how the Android permission-based secu-
rity model is enforced in pre-installed apps and stock smart-
phones. Capability leaks were found that could be exploited
by malicious activities. DroidRanger was proposed to detect
malicious apps in official and alternative markets [19]. Zhou
et al. characterized a large set of Android malwares, e.g.,
accumulating fees on the devices by subscribing to premium
services by abusing SMS related Android permissions [18].
An effective framework was developed to defend against
privilege-escalation attacks on devices [15].

8. CONCLUSION
We have investigated how Android permission and their

use evolve in the Android ecosystem via a rigorous study
on the evolution of the platform, third-party apps, and pre-
installed apps. We found that the ecosystem is becoming
less secure and offer our recommendations on how to remedy
this situation. We believe that our study is beneficial to
researchers, developers, and users, and that our results have
the potential to improve the state of practice in Android
security.

Acknowledgements
This work was supported in part by National Science Foundation

award CNS-1064646, by a Google Research Award, by ARL CTA

W911NF-09-2-0053, and by DARPA SMISC Program W911NF-

12-C-0028.

9. REFERENCES
[1] Freewarelovers, May 2012.

http://www.freewarelovers.com/android.

[2] Google Play. https://play.google.com/store, May 2012.
[3] Android. Android-defined Permission Category.

http://developer.android.com/reference/android/Manifest.
permission group.html, May 2012.

[4] Android Developer. Android API.
http://developer.android.com/guide/appendix/api-levels.html,
May 2012.

[5] Android Police. Massive Security Vulnerability In HTC
Android Devices.
http://www.androidpolice.com/2011/10/01/massive-security-
vulnerability-in-htc-android-devices, October 2011.

[6] A.P. Felt, E. Ha, S. Egelman, A. Haney, E. Chin and D.
Wagner. Android Permissions: User Attention,
Comprehension, and Behavior . In SOUPS, 2012.

[7] A.P. Felt, H. Wang, A. Moshchuk, S. Hanna and E. Chin.
Permission Re-Delegation: Attacks and Defenses. In
USENIX Security Symposium, 2011.

[8] A.P.Felt, E. Chin, S. Hanna, D. Song, and D. Wagner.
Android Permissions Demystified. In ACM CCS, 2011.

[9] D. Barrera, H.G. Kayacik, P.C. van Oorschot and A.
Somayaji. A Methodology for Empirical Analysis of
Permission-based Security Models and its Application to
Android. In ACM CCS, 2010.

[10] Google. Android Open Source Project, May 2012.
http://source.android.com/.

[11] M. Grace, Y. Zhou, Z. Wang, and X. Jiang. Systematic
Detection of Capability Leaks in Stock Android
Smartphones . In NDSS, 2012.

[12] M. Ongtang, S. McLaughlin, W. Enck and P. McDaniel.
Semantically Rich Application-Centric Security in Android.
In ACSAC, 2009.

[13] P. H. Chia, Y. Yamamoto, and N. Asokan. Is this App
Safe? A Large Scale Study on Application Permissions and
Risk Signals . In WWW, 2012.

[14] P. Pearce, A.P. Felt, G. Nunez and D. Wagner. AdDroid:
Privilege Separation for Applications and Advertisers in
Android . In ACM AsiaCCS, 2012.

[15] S. Bugiel, L. Davi, A. Dmitrienko, T. Fischer, A. Sadeghi,
and B.Shastry. Towards Taming Privilege-Escalation
Attacks on Android . In NDSS, 2012.

[16] W. Enck, D. Octeau, P. McDaniel, and S. Chaudhuri. A
Study of Android Application Security. In USENIX
Security Symposium, 2011.

[17] W. Enck, M. Ongtang and P. McDaniel. On Lightweight
Mobile Phone Application Certification. In ACM CCS,
2009.

[18] Y. Zhou and X. Jiang. Dissecting Android Malware:
Characterization and Evolution. In IEEE S &P, 2012.

[19] Y. Zhou, Z. Wang, Wu Zhou and X. Jiang. Hey, You, Get
off of My Market: Detecting Malicious Apps in Official and
Alternative Android Markets . In NDSS, 2012.

