UNIVERSITY OF CALIFORNIA, RIVERSIDE
DEPARTMENT OF COMPUTER SCIENCE

SECOND 2003 DEPTH EXAMINATION IN THEORY OF
OF COMPUTATION AND ALGORITHMS

- This is a closed-notes exam. You may only consult books during the exam.
- Each problem is worth 10 points.
- Answer exactly 7 out of 10 questions. Clearly mark which seven problems you want to have graded.
- Write legibly. What can’t be read won’t be credited.
- Algorithms can be described informally using pseudo-code. Remember to analyze the time complexity of your solution.
- Results should be available later this week.
- Good luck!

Name:
Problem 1. You are given \(m \) closed intervals \(I_i = [s_i, t_i] \), for \(i = 1, \ldots, m \), and \(n \) points \(x_1, \ldots, x_n \). Give an efficient algorithm that will compute the minimum number of intervals whose union contains all the points \(x_1, \ldots, x_n \). (If some point \(x_j \) does not belong to any given interval \(I_i \), then print an error message.)

Problem 2. Assume that you are given an integer \(x \) and two arrays \(A \) and \(B \) (not sorted) that contain a total of \(2n \) integers \((n \text{ each}) \). Write an algorithm to determine whether there exists an element in \(A \) and an element in \(B \) such that the sum of the two elements is equal to \(x \). (A straightforward algorithm takes \(O(n^2) \) time, so to receive any credit, your algorithm must be faster than \(O(n^2) \)).

Problem 3. Given a sequence of numbers \(a_1, \ldots, a_n \), and parameter \(k \), partition the sequence into \(k \) segments \(S_1 = (a_1, \ldots, a_{i_1-1}), S_2 = (a_{i_1}, \ldots, a_{i_2-1}), \ldots, S_k = (a_{i_k-1}, \ldots, a_n) \), such that \(\max_{1 \leq j \leq k} d(S_j) \) is minimized, where \(d(S_j) \) is the difference between the maximum and minimum numbers in segment \(S_j \). Give an efficient (dynamic programming) algorithm for this problem.

Problem 4. Show how to find a minimum vertex cover on a bipartite graph \(G \) in polynomial time. Hint: You may want to reduce the problem to bipartite matching.

Problem 5. Assume that you are given an unsorted list of \(n \) integers \(a_1, a_2, \ldots, a_n \). Let \(d < n \) be an integer and suppose that the list has the property that the location of element \(a_i \) after the list has been sorted is at most \(d \) positions away from the current position \(i \); that is, if \(a_i \) ends up in position \(j \) after the sorting, then \(|i - j| \leq d \). Describe an algorithm to sort the list \(a_1, a_2, \ldots, a_n \) in \(O(n \log d) \) time when the value of \(d \) is given to you as part of the input. For convenience, you may even assume that \(d \) divides \(n \).

Problem 6. Formulate the graph 3-coloring problem (i.e. determine if an undirected graph can be colored with at most 3 colors) as an integer linear program. In other words, for any graph \(G \), you need describe how to set up an integer linear program \(P \) (consisting of some integer variables and linear constraints/inequalities) such that \(P \)'s feasible solutions correspond to (valid) 3-colorings of \(G \).

Problem 7. Which of the following problems are decidable? Either give a reduction showing undecidability or describe an algorithm deciding the problem.

1. Given a Turing machine \(M \), does \(M \) ever print a non-blank symbol when started on a empty tape?

2. Given a Turing machine \(M \), does there exist an input that \(M \) accepts in an odd number of moves?

3. Given a Turing machine \(M \) and input \(x \), does \(M \) halt on \(x \) within \(2|x| \) moves?

Problem 8. Prove or disprove: If \(L \) is context-free then

\[
L' = \{ww^R \mid w \in L\}
\]

is also context-free. \((w^R \text{ is the reversal of string } w)\).
Problem 9. Prove that the Hamiltonian cycle problem on (undirected) bipartite graphs is NP-complete:

BiPHC:
Instance: A bipartite graph $G = (V_1, V_2, E)$.
Query: Does G have a Hamiltonian cycle?

You may assume that the Hamiltonian cycle problem on (undirected) graphs is NP-complete.

Problem 10. In the Reachability problem we are given a directed graph G with two vertices s, t and we want to determine whether there is a (directed) path from s to t in G. Let AReachability be the restriction of Reachability to directed acyclic graphs (DAGs). Prove that Reachability reduces to AReachability in logarithmic space.