Properties of logspace reductions

Theorem. If $A \leq_L B$ and $B \in L$ then $A \in L$.

If $A \leq_L B$ and $B \in \text{NL}$ then $A \in \text{NL}$.

Theorem. If A is NL-complete and $A \in L$ then $L = \text{NL}$.

NL-complete Problem

Theorem. PATH is NL-complete.

Proof $\text{PATH} \in \text{NL}$. Given an instance (G, s, t) of PATH with n nodes, repeat the following $n - 1$ times with $x = s$ at the beginning:

- Nondeterministically select a node y from $1, \ldots, n$,
- If (x, y) is in G, then set $x \rightarrow y$. If not, reject.
- If $y = t$, then accept.

This method correctly decides whether $(G, s, t) \in \text{PATH}$ and requires $O(\log n)$ space.

NL-Completeness

A logspace transducer is a TM with a read-only input tape, a write-only output tape, and a read/write work tape, in which only $O(\log n)$ tape cells of the work tape can be used.

A logspace transducer M computes a function f if for every w, M on w halts with $f(w)$ on the output tape.

A language A is logspace reducible, write $A \leq_L B$, if there is a logspace computable mapping reduction from A to B.

A language L is NL-complete if $A \in \text{NL}$ and every $A \in \text{NL}$ is logspace reducible to L.
Theorem. $\text{PATH} \in \text{NL}$.

Proof. Let (G, s, t) be an instance of PATH with n nodes. For each i, $0 \leq i \leq n$, define A_i to be the set of all nodes reachable from s within i steps and $c_i = |A_i|$. Given c_i, it is possible to nondeterministically enumerate all the nodes in A_i with the following $\text{ENUMERATE}(i, c_i)$:

1. Set counter d to 0;
2. for $j = 0, \ldots, n$ do the following:
 (a) guess an s-to-j path of length at most i;
 (b) if successful increment d and output j;
3. if $d = c_i$ output “SUCCESSFUL”; otherwise, output “FAILURE”.

Given c_i it is possible to nondeterministically enumerate all the nodes in A_i with the following $\text{ENUMERATE}(i, c_i)$:

1. Set counter e to 0;
2. For $j = 0, \ldots, n$ do the following:
 (a) Set a variable r to false.
 (b) Call $\text{ENUMERATE}(i, c_i)$. For each node u output by ENUMERATE, check if $u \Rightarrow j$; if so, set r to true.
 (c) If ENUMERATE has output “FAILURE” at the end output “FAILURE”.
 Otherwise, increment e if and only if $r = \text{true}$.
3. Output e.

Let L be decided by a nondeterministic $c \log n$ space machine N. We may assume that N has the unique accepting configuration for each input. Let x be an input of some length n. Define the graph G as follows:

- The nodes of G are the configurations of M on x. Here each configuration is the concatenation of the state, head positions, and the work tape contents.
- s is the initial configuration
- t is the accepting configuration.
- For every pair of nodes u and v, there is an arc from u to v if and only if v is one of the next possible configurations of u.

Then $(G, s, t) \in \text{PATH}$ if and only if $x \in L$.

Computation of (G, s, t) in logspace

Let ℓ be the encoding length of each configuration.

\begin{verbatim}
for u = 0^\ell, \ldots, 1^\ell do
 for v = 0^\ell, \ldots, 1^\ell do
 if u and v are configurations then
 if u \Rightarrow v then output 1 else output 0
 C \leftarrow 0;
 for u = 0^\ell, \ldots, 1^\ell do
 if u is a configuration then
 C \leftarrow C + 1;
 if u = the initial config. then output “s = C”
 if u = the accepting config. then output “t = C”
\end{verbatim}

The algorithm works in $O(\ell) = O(\log n)$ space.
Testing Unreachability

1. Set i to 0 and c_0 to 1.

2. For $i = 0, \ldots, n - 1$, compute c_{i+1} from c_i.

3. (Check if $t \notin A_n$ by calling ENUMERATE(n, c_n).) Accept if the enumeration is “SUCCESSFUL” and t is not output.

The method uses only $O(\log n)$ space.