Proof (cont’d)

Reduction $3SAT$ to $VERTEX-COVER$.

Let ϕ be an instance of $3SAT$ with n variables and m clauses. Define the graph G as follows:

- **the nodes**: the literals $v_i, \overline{v_i}, 1 \leq i \leq n$, and
 - their occurrences $a_{i1}, a_{i2}, a_{i3} : 1 \leq i \leq m$,
 - a total of $3m + 2n$ nodes
- **the edges**: $(v_i, \overline{v_i}), 1 \leq i \leq n$;
 - $(a_{i1}, a_{i2}), (a_{i2}, a_{i3}), (a_{i3}, a_{i1}), 1 \leq i \leq m$;
 - for each $i, 1 \leq i \leq n$, and $j, 1 \leq j \leq 3$, connect a_{ij} and its corresponding literal.

Proof (cont’d)

We claim that G has an $(n + 2m)$ node vertex cover if and only if ϕ is in $3SAT$.

There are precisely n edges of the type $(v_i, \overline{v_i}), 1 \leq i \leq n$. So an n-node vertex cover has to have at least one out of v_i and $\overline{v_i}$ for every i.

There are precisely m triangles for the clauses. At least two nodes have to be selected from each triangle to cover the triangle edges. So $2m$ nodes are needed.

More NP-Completeness

We know: $3SAT \leq_p CLIQUE$, $CLIQUE \in NP$, and $3SAT$ is NP-complete. So, $CLIQUE$ is NP-complete.

Vertex Cover

A vertex cover of an undirected graph is a subset of nodes such that every edge touches a member of the subset.

$VERTEX-COVER = \{ \langle G, k \rangle \mid G \text{ has a vertex cover of size } k \}$.

Theorem. $VERTEX-COVER$ is NP-complete.

Proof Proving $VERTEX-COVER \in NP$ is easy. Guess a bit for each node to decide whether or not select the node. Check whether precisely k nodes are selected, if so, check whether the set of k nodes is a vertex cover.
Proof (cont’d)

Let ϕ be a formula of n variables and m clauses. Introduce decimal numbers $y_1, \ldots, y_n, z_1, \ldots, z_m, c_1, \ldots, c_m, d_1, \ldots, d_m$, each of at most $n + m$ digits.

y_i: y_i has a 1 at the $(m+i)$th digit and has a 1 at position j if x_i appears in the jth clause; all the other positions have a 0

z_i: z_i has a 1 at the $(m+i)$th digit and has a 1 at position j if $\overline{x_i}$ appears in the jth clause; all the other positions have a 0

c_i, d_i: c_i has a 1 only at the ith position, d_i has a 1 only at the ith position,

S: S is the number that has a 3 at every position between 1 and m and has a 1 at every position between $m + 1$ and $m + n$.

Subset-Sum is NP-complete

$SUBSET\text{-SUM}$ is the problem of, given a multiset of numbers z_1, \ldots, z_m and a number S, whether there is subset y_1, \ldots, y_k of z_i‘s such that $y_1 + \cdots + y_k = S$.

Theorem. $SUBSET\text{-SUM}$ is NP-complete.

Proof Reduce $3SAT$ to $SUBSET\text{-SUM}$. The construction is reminiscent of the reduction from $3SAT$ to $VERTEX\text{-COVER}$, where the reduction generates a graph whose $n + 2m$ node cover has a property that at least one “literal-occurrence” edge of each triangle is touched and the rest of the nodes in each triangle is touched.