The Halting Problem

$E_{TM} = \{\langle M \rangle \mid M \text{ is a TM and } L(M) = \varnothing\}$.

Theorem. E_{TM} is undecidable.

Proof. a TM R deciding $E_{TM} \rightarrow$ a TM S deciding A_{TM}

S's algorithm: On input x,

1. **Check that** $x = \langle M, w \rangle$. If “fail” reject x.
2. Construct a machine M_1 such that for each input y,

 (*) simulates M on w and accepts y if M has accepted.
3. **Simulate R on $\langle M_1 \rangle$.** Accept x if R has accepted and reject x otherwise.

Testing Whether a TM Accepts a Regular Language

$REGULAR_{TM} = \{\langle M \rangle \mid M \text{ is a TM and } L(M) \text{ is regular }\}$.

Theorem. $REGULAR_{TM}$ is undecidable.

Proof. a TM R deciding $REGULAR_{TM} \rightarrow$ a TM S deciding A_{TM}

S's algorithm: on input x,

1. **Check that** $x = \langle M, w \rangle$. If “fail” reject x.
2. Construct a machine M_1: Let a, b be two distinct symbols in the input alphabet Σ of M. On input y,

 (a) **Accept y if $y = a^n b^n$ for some n.**

 (b) Otherwise, simulate M on w, then accept y if and only if M on w has accepted.

The Emptiness Problem

$E_{TM} = \{\langle M \rangle \mid M \text{ is a TM and } L(M) = \varnothing\}$.

Theorem. E_{TM} is undecidable.

Proof. a TM R deciding $E_{TM} \rightarrow$ a TM S deciding A_{TM}

S's algorithm: On input x,

1. **Check that** $x = \langle M, w \rangle$. If “fail” reject x.
2. Construct a machine M_1 such that for each input y,

 (*) simulates M on w and accepts y if M has accepted.
3. **Simulate R on $\langle M_1 \rangle$.** Accept x if R has accepted and reject x otherwise.

The Halting Problem

$HALT_{TM} = \{\langle M, w \rangle \mid M \text{ is a TM and halts on input } w\}$.

Theorem. $HALT_{TM}$ is undecidable.

Proof. We can construct a machine S for A_{TM} from a machine R for $HALT_{TM}$. On input x:

1. **Check that** $x = \langle M, w \rangle$. If “fail” reject x.
2. **Simulate R on w.** Reject x if R has rejected.
3. M is guaranteed to halt on w.

 simulate M on w. Accept x if M has accepted and reject x otherwise.

Testing Whether a TM Accepts a Regular Language

$REGULAR_{TM} = \{\langle M \rangle \mid M \text{ is a TM and } L(M) \text{ is regular }\}$.

Theorem. $REGULAR_{TM}$ is undecidable.

Proof. a TM R deciding $REGULAR_{TM} \rightarrow$ a TM S deciding A_{TM}

S's algorithm: on input x,

1. **Check that** $x = \langle M, w \rangle$. If “fail” reject x.
2. Construct a machine M_1: Let a, b be two distinct symbols in the input alphabet Σ of M. On input y,

 (a) **Accept y if $y = a^n b^n$ for some n.**

 (b) Otherwise, simulate M on w, then accept y if and only if M on w has accepted.
Linear Bounded Automata

A linear bounded automaton is a Turing machine wherein the head is not permitted to move beyond the region in which the input was written. If the head attempts to move beyond the region it is kept at the same position.

Lemma. Let M be an LBA with q states and with a tape alphabet of size s. For every $n \geq 1$, for every input of length n, there are precisely qns^n possible configurations.

The Acceptance Problem for LBA

$A_{LBA} = \{ \langle M, w \rangle \mid M \text{ is a TM and accepts } w \text{ when restricted to be an LBA} \}$.

Theorem. A_{LBA} is decidable.

Proof. Let M be a TM with q states and s symbols in the tape alphabet and w be an input to M of length n. By the previous lemma, there are only qns^n configurations, so if M on w accepts, it should do so within qns^n steps. So we have only to simulate M on w for qns^n steps.

Testing Equivalence Between TMs

$E_{TM} = \{ \langle M_1, M_2 \rangle \mid M_1 \text{ and } M_2 \text{ are TMs and } L(M_1) = L(M_2) \}$.

Theorem. E_{TM} is undecidable.

Proof. A TM R deciding $E_{TM} \rightarrow a$ TM S deciding A_{TM}'s algorithm: on input x,

1. Check that $x = \langle M, w \rangle$. If “fail” reject x.
2. Construct a machine M_1 as in the previous proof. Construct a machine M_2 that accepts Σ^*.
 Then $L(M_1) = L(M_2)$ if and only if M does not accept w.
3. Simulate R on $\langle M_1, M_2 \rangle$. Accept x if R has rejected and reject x otherwise.
The Emptiness Problem About LBA

\[E_{\text{LBA}} = \{\langle M \rangle \mid M \text{ is a TM and accepts no input viewed as an LBA} \}. \]

Theorem. \(E_{\text{LBA}} \) is undecidable.

Proof

For a string \(x = \langle M, w \rangle \) such that \(M \) is a Turing machine and \(w \) is an input to \(M \), let \(L_x \) be the set of all \(#D_1# \cdots #D_m#\) for which there exist \(C_1, \ldots, C_m \) such that:

1. \(C_1, \ldots, C_m \) are configurations of \(M \),
2. \(C_1 \) is the initial configuration of \(M \) on \(w \),
3. \(C_m \) is an accepting configuration of \(M \) on \(w \),
4. for every \(i, 2 \leq i \leq m \), \(C_i \) is the next configuration of \(C_{i-1} \), and
5. for every \(i, 1 \leq i \leq m \), \(D_i = C_i \) if \(i \) is odd and \(D_i = C_i^R \) otherwise.

Then \(L_x \) is empty if and only if \(M \) does not accept \(w \).

So, \(L_x = \Sigma^* \) if and only if \(M \) accepts \(w \).

\(L_x \) is a CFL.

A TM \(R \) deciding \(E_{\text{LBA}} \) \(\rightarrow \) a TM \(S \) deciding \(A_{\text{TM}} \).

Proof (cont’d)

Then \(L_x \) can be decided by an LBA.

\(L_x \neq \emptyset \) if and only \(M \) accepts \(w \).

S’s algorithm: on input \(x \),

1. Check that \(x = \langle M, w \rangle \). If “fail” reject \(x \).
2. Construct a CFG \(G \) for \(L_x \).
3. Simulate \(R \) on \(\langle G \rangle \). Accept \(x \) if \(R \) has accepted \(\langle G \rangle \) and reject \(x \) otherwise.

CS215, Lecture 9 © 1999 Mitsunori Ogihara

The Equivalence Problem About CFG

\[\text{ALL}_{\text{CFG}} = \{\langle G \rangle \mid G \text{ is a CFG and } L(G) = \sigma^*\}. \]

Theorem. \(\text{ALL}_{\text{CFG}} \) is undecidable.

Proof

For a string \(x = \langle M, w \rangle \) such that \(M \) is a Turing machine and \(w \) is an input to \(M \), let \(L_x \) be the set of all strings of the form \(#C_1#C_2# \cdots #C_m#\) such that:

1. \(C_1, \ldots, C_m \) are configurations of \(M \),
2. \(C_1 \) is the initial configuration of \(M \) on \(w \),
3. \(C_m \) is an accepting configuration of \(M \) on \(w \),
4. for every \(i, 2 \leq i \leq m \), \(C_i \) is the next configuration of \(C_{i-1} \), and
5. for every \(i, 1 \leq i \leq m \), \(D_i = C_i \) if \(i \) is odd and \(D_i = C_i^R \) otherwise.

Proof (cont’d)

Then \(L_x \) is empty if and only if \(M \) does not accept \(w \).

So, \(L_x = \Sigma^* \) if and only if \(M \) accepts \(w \).

\(L_x \) is a CFL.

A TM \(R \) deciding \(\text{ALL}_{\text{CFG}} \) \(\rightarrow \) a TM \(S \) deciding \(A_{\text{TM}} \).

Proof (cont’d)

Then \(L_x \) can be decided by an LBA.

\(L_x \neq \emptyset \) if and only \(M \) accepts \(w \).

S’s algorithm: on input \(x \),

1. Check that \(x = \langle M, w \rangle \). If “fail” reject \(x \).
2. Construct a TM \(B \) that accepts \(L_x \) as an LBA.
3. Simulate \(R \) on \(\langle B \rangle \). Reject \(x \) if \(R \) has accepted \(\langle B \rangle \) and accept \(x \) otherwise.

CS215, Lecture 9 © 1999 Mitsunori Ogihara
The Equivalence Problem (cont’d)

Define $E_{\text{CFG}} = \{(G, H) \mid G$ and H are CFGs that generate the same language $\}$.

Corollary. E_{CFG} is undecidable.

Proof. a TM R deciding E_{CFG} → a TM S deciding ALL_{CFG}

S’s algorithm: On input x,

1. Check that $x = \langle G \rangle$. If “fail” reject x.
2. Construct a grammar H for Σ^*.
3. Simulate R on $\langle G, H \rangle$. Accept x if R has accepted and reject x otherwise.

\[\blacksquare\]