Proof of Fact

Proof of Fact \Rightarrow Let L be decidable and let M be a Turing machine that decides L. By swapping q_{accept} and q_{reject} of M we get a Turing machine M' that decides L. So both L and \overline{L} are Turing-decidable, and thus, Turing-recognizable.

Proof of Fact (cont'd)

\Leftarrow Let L and \overline{L} be recognized by TMs M_1 and M_2, respectively. Define a two-tape machine M that, on input x, does the following:

1. M copies x onto Tape 2.
2. M repeats the following until either M_1 or M_2 accepts:
 (a) M simulates one step of M_1 on Tape 1 then one step of M_2 on Tape 2.
3. M accepts x if M_1 has accepted and rejects M_2 has accepted.

Then M decides L because for every x, at least one of the two machines halts on input x.

Fact

The Halting Problem

Define $A_{\text{Turing}} = \{(M, w) \mid M \text{ is a Turing machine and accepts } w\}$.

Theorem. A_{Turing} is not decidable.

Then we have:

Corollary. A_{Turing} is not Turing-recognizable, and thus, not decidable.

For this corollary we need the following fact.

Fact. A language L is decidable if and only if both L and \overline{L} are Turing-recognizable.

Proof of Corollary. A_{Turing} is Turing-recognizable and is not decidable. So, A_{Turing} is Turing-recognizable.

Corollary
Diagonalization

A set is **countable** if either it is finite or it has the same size as \mathcal{N}; i.e., there is a one-to-one, onto correspondence between \mathcal{N} (or there is a bijection from the set to \mathcal{N}).

Fact. Let \mathcal{Q} be the set of all positive rational numbers and \mathcal{R} the set of all positive real numbers. Then \mathcal{Q} is countable while \mathcal{R} is not.

Proof For the former, each member of \mathcal{Q} is expressed as a fraction $\frac{m}{n}$ such that $m, n \in \mathcal{N}$ and $\gcd(m, n) = 1$.

So we have only to come up with a bijection from \mathcal{N} to the set $\{\frac{m}{n} \mid m, n \geq 1 \& \gcd(m, n) = 1\}$.

An Immediate Application of Diagonalization

Corollary. There is a language that is not Turing-recognizable.

Proof The set of Turing machines is countable:

1. Fix an encoding scheme of Turing machines on an alphabet Σ.
2. Go through all the strings in Σ, e.g., in lexicographic order, and assign numbers to all legal encodings by counting how many legal encodings have been seen so far.

A language over Σ can be viewed as an infinite binary number $0, b_1 b_2 b_3 \ldots$, called the characteristic sequence, where for each $i \geq 1$, b_i corresponds to the membership of the ith string in the language. So the languages have the same cardinality as the set of binary reals between 0 and 1, which is uncountable.

\mathcal{Q} is countable

For $p = 1, 2, \ldots$, visit the integral points on the line $m + n = p$ in the first quadrant of the xy-plane and count how many pairs (m, n) such that $\gcd(m, n) = 1$ have been seen.
Proof of Theorem (A_{TM} is not decidable)

Assume that A_{TM} is decidable. Let T be a Turing machine that decides A_{TM}. Define D to be a machine that, on input w,

1. Check whether w is a legal encoding of some Turing machine, say M. If not, immediately reject w.
2. Simulate T on $\langle M, \langle M \rangle \rangle$.
3. If T accepts, then reject; otherwise, accept.

Since T decides A_{TM} by assumption, M always halts; so does D. For every Turing machine M,

\[D \text{ accepts } \langle M \rangle \Leftrightarrow M \text{ does not accept } \langle M \rangle \]

With $M = D$, we have

\[D \text{ accepts } \langle D \rangle \Leftrightarrow D \text{ does not accept } \langle D \rangle. \]

This is a contradiction. \blacksquare