The Acceptance Problem for NFA

Define $A_{\text{NFA}} = \{ \langle B, w \rangle \mid B \text{ is an NFA that accepts input string } w \}$.

Theorem. A_{NFA} is decidable.

Proof Given an input x, try to decode x into an NFA B and a string w. If “successful” then:

1. Convert B to a DFA C.
2. Run the machine for A_{DFA} on $\langle C, w \rangle$. If the machine accepts, then accept; otherwise reject.

The Acceptance Problem for Regular Exp.

Define $A_{\text{REG}} = \{ \langle R, w \rangle \mid R \text{ is a regular expression that produces } w \}$.

Theorem. A_{REG} is decidable.

Proof Given an input x, try to decode x into a regular expression R and a string w. If “successful” then:

1. Convert R to a DFA C.
2. Run the machine for A_{DFA} on $\langle C, w \rangle$. If the machine accepts, then accept; otherwise reject.

Decidability Problems About Regular Languages

The Acceptance Problem for DFA

Define $A_{\text{DFA}} = \{ \langle B, w \rangle \mid B \text{ is a DFA that accepts input string } w \}$.

Here we assume a fixed encoding scheme for B and w.

Theorem. A_{DFA} is decidable.

Proof A Turing machine can, given an input x, try to decode x into an NFA B and a string w. If the decoding is successful then it can test whether B accepts w by simulating B on w.

The Acceptance Problem for CFG

Define $A_{CFG} = \{ (G, w) \mid G$ is a CFG that generates $w \}$.

Theorem. A_{CFG} is decidable.

Proof. Given an input x, try to decode x into a CFG G and a string w. If “successful” then:

2. List all derivations with $2n - 1$ steps, where $n = |w|$.
3. If any of the listed derivations generate w, then accept; otherwise, reject.

The Emptiness Problem for DFA

Define $E_{DFA} = \{ (A) \mid A$ is a DFA that accepts no string $\}$.

Theorem. E_{DFA} is decidable.

Proof. Given an input x, try to decode a DFA A out of x. If “successful” then:

1. Mark the start state of A.
2. Repeat until no new states are marked:
 - Mark any unmarked state that has a transition from a marked state
3. Accept if no final state is marked; reject otherwise.

The Equivalence Problem for DFA

Define $EQ_{DFA} = \{ (A, B) \mid A$ and B are DFA that accept the same language $\}$.

Theorem. EQ_{DFA} is decidable.

Proof. Given a string x, try to decode x into a pair of DFAs A and B. If “successful” then construct a DFA C that accepts the symmetric difference of $L(A)$ and $L(B)$,

$$ L(A) \cap \overline{L(B)} \cup \overline{L(A) \cap L(B)}, $$

and test the emptiness of $L(C)$.

The Emptiness Problem for CFG

Define $E_{CFG} = \{ (G) \mid G$ is a CFG such that $L(G) = \emptyset \}$.

Theorem. E_{CFG} is decidable.

Proof. Given x, first try to decode a grammar G out of it. If “pass” then test the ability of generating terminal strings:

1. Mark all the terminals.
2. Repeat the following until no new symbols are marked:
 - Mark any variables A with a production $A \rightarrow w$ such that all symbols in w are marked.
3. Accept if the start symbol is marked; reject otherwise.
Theorem. Every context-free language is decidable.

Simulation of a PDA may not halt.

Proof Use the machine M for A_{CFG}. Let G be a fixed CFG. The machine for $L(G)$, on input w,

1. run (G, w) on M, and
2. accepts if M accepts and rejects otherwise.