Derivation

The process of generating a string. Start with \(u = S \), repeat the following until \(u \) is variable-free:

Find a variable \(A \) in \(u \), find a rule in \(R \) of the form \(A \to w \), replace the \(A \) by \(w \).

Use \(A \Rightarrow u \) to denote that \(u \) is derived from \(A \).

A **parse tree** (or **derivation tree**) is a tree that depicts the process of derivation.

Example: The strings over \(\Sigma = \{a, b\} \) consisting of an equal number of a’s and b’s

\(V = \{S\} \) and the derivation rules are \(S \to \epsilon \ | \ aSbS \ | \ bSaS \).

\(abab \) is derived as follows:

\[
S \Rightarrow aSbS \Rightarrow abSaSbS \Rightarrow abSabaS \Rightarrow ababS \Rightarrow abab.
\]

Context-Free Languages

A **context-free grammar** is a 4-tuple \(G = (V, \Sigma, R, S) \). Here

1. \(V \) is the set of **variables** (or **nonterminals**),
2. \(\Sigma \) is the set of **terminals**,
3. \(R \) is the set of **rules**, each of which is of the form \(A \to w \),
4. \(S \) is the **start symbol**.

where \(A \in V \) and \(w \) is a string over \(V \cup \Sigma \); and
Leftmost Derivation & Ambiguity

A **leftmost derivation** is the derivation in which each production rules are applied to the leftmost variable. The following derivation of $abab$

$$S \Rightarrow aSbS \Rightarrow abSsaSbS \Rightarrow ababaSbS \Rightarrow ababSbS \Rightarrow abab$$

is a leftmost derivation (giving the same parse tree as before) while

$$S \Rightarrow aSbS \Rightarrow aSbaSbS \Rightarrow aSbabS \Rightarrow aSbab \Rightarrow abab$$

is not (and the parse tree is different as well).

A context-free grammar is **unambiguous** if it has a unique leftmost derivation for every word (sentence) it generates.

There is an **inherently ambiguous** context-free language.

Chomsky Normal Form

A context-free grammar $G = (V, \Sigma, R, S)$ is in **Chomsky normal form** if each rule in R is either of the form $A \rightarrow BC$ for some $B, C \in V \setminus \{S\}$ or of the form $A \rightarrow a$ with $a \in \Sigma$, except that $S \rightarrow \epsilon$ is permitted.

Theorem. Each context-free language L is generated by a **Chomsky normal form grammar.**

Proof of the Theorem

Step 1 Add new start symbol S_0 with a unique production rule $S_0 \rightarrow S$. If $S \rightarrow \epsilon \in R$ then add $S_0 \rightarrow \epsilon$.

Step 2 Elimination of ϵ rules

While there is a variable $A \neq S_0$ such that $A \rightarrow \epsilon \in R$

- for each rule r of the form $B \rightarrow y$ with an A in y, replace r with the collection of all rules of the form $B \rightarrow y'$ such that y' is constructed from y by eliminating some (possibly none) of the occurrences of A;
- eliminate $A \rightarrow \epsilon$.

Proof of the Theorem (cont’d)

Step 3 Elimination of Unit Rules

While there is a unit rule $A \rightarrow B$ with $B \in V$,

- eliminate the rule and
- if $B \neq A$, then for each rule $B \rightarrow w$, add $A \rightarrow w$
 (provided that $A \rightarrow w$ wasn’t previously eliminated)
Proof of the Theorem (cont'd)

Step 4 Normalization
For each terminal \(d \)

- add a new nonterminal \(D \),
- add a new rule \(D \to d \), and
- for each rule \(A \to u, |u| > 1 \), in which \(d \) occurs, replace each occurrence of \(d \) with a \(D \).

For each rule \(A \to w_1 \ldots w_m, m \geq 3 \),

- add a new variable \(X \) and
- replace each rule of the form \(A \to w \) with \(A \to w_1 X \) and \(X \to w_2 \ldots w_m \).

Example

\[V = \{ S \}, \Sigma = \{ a, b \}, \text{ and } R \text{ consists of } S \to \varepsilon | aSbS | bSaS \]

Step 1 Add \(S_0 \to S \mid \varepsilon \).

Step 2 Eliminate \(S \to \varepsilon \). The rules are

\[
S_0 \to S \mid \varepsilon, \\
S \to ab | abS | aSbS | aSb | ba | baS | bSaS | bSa.
\]

STEP 3 Eliminate \(S_0 \to S \) and add

\[
S_0 \to ab | abS | aSbS | aSb | ba | baS | bSaS | bSa
\]

Example (concluded)

STEP 4 The rules are

\[
S_0 \to \varepsilon, \ A \to a, \ B \to b, \\
S_0 \to AB | AX_1 | AX_2 | AX_3 | BA | BY_1 | BY_2 | BY_3, \\
S \to AB | AX_1 | AX_2 | AX_3 | BA | BY_1 | BY_2 | BY_3, \\
X_1 \to BS, \ X_2 \to SX_4, \\
X_3 \to SB, \ X_4 \to BS, \\
Y_1 \to AS, \ Y_2 \to SY_4, \\
Y_3 \to SA, \ Y_4 \to AS.
\]

Proof of the Theorem (concluded)

It’s pretty clear the transformation “works”, but strictly, we should show this.

In particular, we can argue that

- the iterations in steps 2, 3 and 4 terminate (which is not completely obvious for step 3...); and
- when we consider any parse tree based on the original grammar, we can still set up a parse tree for the same terminal string using the normal-form grammar; and conversely.