Deriving Recurrence Relations

To derive a recurrence relation for the running time of an algorithm:

- Figure out what “n”, the problem size, is.
- See what value of n is used as the base of the recursion. It will usually be a single value (e.g. \(n = 1 \)), but may be multiple values. Suppose it is \(n_0 \).
- Figure out what \(T(n_0) \) is. You can usually use “some constant \(c \)”, but sometimes a specific number will be needed.
- The general \(T(n) \) is usually a sum of various choices of \(T(m) \) (for the recursive calls), plus the sum of the other work done. Usually the recursive calls will be solving a subproblems of the same size \(f(n) \), giving a term “\(a \cdot T(f(n)) \)” in the recurrence relation.

Examples

```plaintext
procedure bugs(n)
    if n = 1 then do something
    else
        bugs(n - 1);
        bugs(n - 2);
        for i := 1 to n do
            something
```

```plaintext
procedure daffy(n)
    if n = 1 or n = 2 then do something
    else
        daffy(n - 1);
        for i := 1 to n do
            do something new
        daffy(n - 1);
```

\[
T(n) = \begin{cases}
 c & \text{if } n = n_0 \\
 a \cdot T(f(n)) + g(n) & \text{otherwise}
\end{cases}
\]
procedure elmer(n)
 if n = 1 then do something
 else if n = 2 then do something else
 else
 for i := 1 to n do
 elmer(n - 1);
 do something different

\[
T(n) = \left\{ \begin{array}{ll}
\end{array} \right.
\]

procedure yosemite(n)
 if n = 1 then do something
 else
 for i := 1 to n - 1 do
 yosemite(i);
 do something completely different

\[
T(n) = \left\{ \begin{array}{ll}
\end{array} \right.
\]

Analysis of Multiplication

function multiply(y, z)
 comment return the product yz
 1. if z = 0 then return(0) else
 2. if z is odd
 3. then return(multiply(2y, [z/2]) + y)
 4. else return(multiply(2y, [z/2]))

Let \(T(n) \) be the running time of \(\text{multiply}(y, z) \),
where \(z \) is an \(n \)-bit natural number.

Then for some \(c, d \in \mathbb{R} \),
\[
T(n) = \left\{ \begin{array}{ll}
c & \text{if } n = 1 \\
T(n - 1) + d & \text{otherwise}
\end{array} \right.
\]
Solving Recurrence Relations

Use repeated substitution.

Given a recurrence relation $T(n)$.
- Substitute a few times until you see a pattern
- Write a formula in terms of n and the number of substitutions i.
- Choose i so that all references to $T()$ become references to the base case.
- Solve the resulting summation

This will not always work, but works most of the time in practice.

The Multiplication Example

We know that for all $n > 1$,

$$T(n) = T(n - 1) + d.$$

Therefore, for large enough n,

$$T(n) = T(n - 1) + d$$
$$T(n - 1) = T(n - 2) + d$$
$$T(n - 2) = T(n - 3) + d$$

$$\vdots$$

$$T(2) = T(1) + d$$
$$T(1) = c$$

Repeated Substitution

$$T(n) = T(n - 1) + d$$
$$= (T(n - 2) + d) + d$$
$$= T(n - 2) + 2d$$
$$= (T(n - 3) + d) + 2d$$
$$= T(n - 3) + 3d$$

There is a pattern developing. It looks like after i substitutions,

$$T(n) = T(n - i) + id.$$

Now choose $i = n - 1$. Then

$$T(n) = T(1) + d(n - 1)$$
$$= dn + c - d.$$
Reality Check

We claim that

\[T(n) = dn + c - d. \]

Proof by induction on \(n \). The hypothesis is true for \(n = 1 \), since \(d + c - d = c \).

Now suppose that the hypothesis is true for \(n \). We are required to prove that

\[T(n + 1) = dn + c. \]

Now,

\[
\begin{align*}
T(n + 1) &= T(n) + d \\
&= (dn + c - d) + d \quad \text{(by ind. hyp.)} \\
&= dn + c.
\end{align*}
\]