Chapter 17: Greedy Algorithms

Greedy is a strategy that works well on problems with the following characteristics:

1. Greedy-choice property:
 A global optimum can be arrived at by selecting a local optimum.

2. Optimal substructure:
 An optimal solution to the problem contains an optimal solution to subproblems.

The second property may make greedy algorithms look like dynamic programming. However, the two techniques are quite different.

"Ex. 1: An activity-selection problem"

$S = \{1, 2, \ldots, n\}$ is a set of activities needing to use a resource. Each activity i has its starting time s_i and finish time f_i with $s_i \leq f_i$, namely, if selected, i takes place during time $[s_i, f_i]$. i and j are compatible if their time periods are disjoint.

The activity-selection problem is the problem of selecting a largest set of mutually compatible activities.

Let R, S, and T be the set of activities selected by the algorithm for the elements up to k, up to $n - 1$, and up to n, respectively.

By induction hypothesis, R and S are optimal for $\{1, \ldots, k\}$ and $\{1, \ldots, n - 1\}$, respectively.

So, an optimal solution for $\{1, \ldots, n\}$ is either S or $R \cup \{n\}$. Note

$S \supset R \Rightarrow S$ is optimal,

$S = R \Rightarrow R \cup \{n\}$ is optimal,

$S \supset R \Rightarrow T = S$, and

$S = R \Rightarrow T = R \cup \{n\}$.

Thus the algorithm correctly computes an optimal solution.
Ex. 2: Knapsack

0-1 knapsack problem: Given items 1, . . . , n with values and weights, and given an integer W, find a selection of items with total weight \(\leq W \) that maximizes the sum of values.

<table>
<thead>
<tr>
<th>item</th>
<th>oz.</th>
<th>val.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Candy</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>Chips</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Juice</td>
<td>13</td>
<td>20</td>
</tr>
<tr>
<td>Cookie</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>Yo-Yo</td>
<td>2</td>
<td>15</td>
</tr>
<tr>
<td>Frisbee</td>
<td>10</td>
<td>30</td>
</tr>
</tbody>
</table>

Q2. What do you put in your knapsack if its capacity is 30 ounce?

Ex. 3: Huffman codes

Storage space for files can be saved by compressing them—by replacing each symbol with a unique binary string.

Here no codeword can be a prefix of any other code prefix-free. Otherwise, decoding is impossible.

The character coding problem: Given an alphabet \(C = \{a_1, \ldots, a_n\} \) and its frequencies \(f_1, \ldots, f_n \), find a set of prefix-free binary codes \(w_1, \ldots, w_n \) that minimizes the average code length

\[
\sum_{i=1}^{n} f_i \cdot w_i.
\]

* There is an \(O(nW) \) step algorithm based on dynamic programming

A greedy approach might be:

- scan items 1 . . . n and add whatever items that can squeeze in.

This strategy does not work, mostly because it does not care how much value will be gained.

<table>
<thead>
<tr>
<th>#</th>
<th>weight</th>
<th>val.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>60</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td>100</td>
</tr>
<tr>
<td>3</td>
<td>30</td>
<td>120</td>
</tr>
</tbody>
</table>

W = 50

Q3. What is the output of the above greedy method?

Q4. What is the optimal solution?

Depict a prefix-free binary code using a binary tree, where left-branches (right-branches) are labeled by 0 (1) and leaves are uniquely labeled by the symbols in \(C \).

The code of \(a \in C \) is the label of the path from the root to \(a \).

Each node \(v \) is labeled by the frequency sum of the symbols in \(\text{subtree}(v) \).
The Huffman coding is a greedy method for obtaining an optimal prefix-free binary code.

Idea: Starting with \(D = C \), repeat the following until \(||D|| = 1 \).
- Pick up from \(D \) two elements \(x \) and \(y \) with the lowest frequencies.
- Generate a node \(z \) whose left child is \(x \) and right child is \(y \).
- Set \(f[z] \) to \(f[x] + f[y] \).
- Replace \(x \) and \(y \) by \(z \).
- The replacement will force the codeword of \(x \) (or \(y \)) to be that of \(z \) followed by a 0 (or a 1).

An example: \(a:1, b:3, c:2, d:4, e:5 \)

1. \(a \& c \rightarrow x: \)

\[
\begin{array}{c}
\text{ } \\
\text{ } \\
0 & \text{1} \\
\text{a} & \text{c}
\end{array}
\]

2. \(x \& b \rightarrow y: \)

\[
\begin{array}{c}
\text{ } \\
\text{ } \\
0 & \text{1} \\
\text{x} & \text{b}
\end{array}
\]

The resulting tree

3. \(d \& e \rightarrow z: \)

\[
\begin{array}{c}
\text{ } \\
\text{ } \\
0 & \text{1} \\
\text{d} & \text{e}
\end{array}
\]

4. \(y \& z \rightarrow w: \)

\[
\begin{array}{c}
\text{ } \\
\text{ } \\
0 & \text{1} \\
\text{y} & \text{z}
\end{array}
\]

The idea can be implemented using a priority queue that is keyed on \(f \).

The correctness of the greedy method

Lemma B If \(x \) and \(y \) have the lowest frequencies in an alphabet \(C \), then \(C \) has an optimal prefix code in which \(x \) and \(y \) are sibling leaves.

Proof There are at least two nodes with the lowest depth. Take two of them and exchange them with \(x \) and \(y \) if they are not at the lowest depth. This will not increase the average code length.

Lemma C Create an alphabet \(D \) from \(C \) by replacing \(x \) and \(y \) by a single letter \(z \) such that \(f[z] = f[x] + f[y] \). Then there is a one-to-one correspondence between
- the set of code trees for \(D \) in which \(z \) is a leaf; and
- the set of code trees for \(C \) in which \(x \) and \(y \) are siblings.

Proof Omitted

Now suppose \(x \) and \(y \) are letters with the lowest frequencies in \(C \). Obtain an optimal code \(T \) for \(D \) and replace \(z \) by a depth-one binary tree with \(x \) and \(y \) as the leaves. Then we obtain an optimal code for \(C \).
Summary

Greedy algorithm

- arrives at an global optimum by selecting local optima
- applies to problems with the optimal substructure property

Examples: Activity Selection, Fractional Knapsack, and Huffman Code

Suggested section exercises

- 17.2-1 and 17.3-2