Chapter 24: Minimum Spanning Tree

\(G = (V, E) \): a connected (undirected) graph
\(w \): an integer edge weight function
compute a **minimum-weight spanning tree** of \(G \), where the weight of a tree \(T \), denoted \(w(T) \), is \(\sum_{e \in T} w(e) \)

![Graph with weights](image)

Theorem A \(G = (V, E) \): a connected (undirected) graph
\(w \): an integer edge weight function
\(A \): expandable to an MST
\((S, V - S) \): a cut respecting \(A \)
\(e = (u, v) \): a light edge crossing the cut
Then \(e \) is safe for \(A \).

Proof Let \(T \) be an MST containing \(A \). There is a unique path in \(T \) from \(u \) to \(v \). Pick from the path an edge crossing the cut, say \(d \). Replacing \(d \) by \(e \) generates a spanning tree \(T' \). Here \(w(T') = w(T) \) (because \(e \) is light) so \(T' \) is an MST, and \(A \cup \{e\} \) is expandable to \(T' \). Thus \(e \) is safe for \(A \).

Corollary B Every light edge connecting two distinct components in \(G_A = (V, A) \) is safe for \(A \).

Safe edges and cuts
\(e \in E - A \) is **safe** for \(A \) if \(A \cup \{e\} \) is expandable to an MST or an MST already

a **cut** of \(G \): a partition \((S, V - S)\) of \(V \)
an edge \(e \) **crosses** \((S, V - S)\) if \(e \) connects a node in \(S \) and one in \(V - S \)
\((S, V - S)\) **respects** \(A \subseteq E \) if no edges in \(A \) cross the cut

For any edge property \(Q \), an **light edge** w.r.t. \(Q \) is one with the smallest weight among those with the property \(Q \)

Kruskal’s Algorithm

Maintain a collection of connected components and construct an MST \(A \).

Initially, each node is a connected component and \(A = \emptyset \).

Examine all the edges in the **nondecreasing order of weights**.

- If the current edge connects two different components, add \(e \) to \(A \) to unite the two components.

The added edge is a light edge; otherwise, an edge with smaller weight should have already united the two components.
Implementation with “disjoint-sets”

1. $A \leftarrow \emptyset$
2. for each vertex $v \in V$ do
 3. Make-Set(v)
 4. reorder the edges so there weights are in nondecreasing order
 5. for each edge $(u, v) \in E$ in the order do
 6. if Find-Set(u) \neq Find-Set(v) then
 7. $A \leftarrow A \cup \{(u, v)\}$
 8. Union(u, v)
3. return A

The number of disjoint-set operations that are executed is $2E + 2V - 1 = O(E)$, out of which V are Make-Set operations. So, the total cost for disjoint-set operations is: cost:

$$O(E \lg^* V) = O(E \lg V).$$

Q3. So, the total running time is?

Q1. Assuming that the length of w is a word-length, what is the complexity of sorting?

Q2. What is the complexity of initialization?
Prim's algorithm

Maintain a set of edges \mathcal{A} and a set of nodes \mathcal{B}. Fix any node r as the root and set \mathcal{B} to $\{r\}$. Set \mathcal{A} to \emptyset. Then repeat the following until $\mathcal{A} = \mathcal{V} - 1$.

- Find a light edge e connecting a node in \mathcal{B} to one $\mathcal{V} - \mathcal{B}$. Let $e = (u, v)$ with $u \in \mathcal{B}$ and $v \notin \mathcal{B}$.
- Put e in \mathcal{A} and v in \mathcal{B}.

Implement the algorithm with a priority queue \mathcal{Q} of nodes in $\mathcal{V} - \mathcal{B}$, based on the key $\text{key}[v]$, where $\text{key}[v]$ is the minimum edge weight connecting v to a node in \mathcal{B}.

By convention, $\text{key}[v] = \infty$ if there is no such edge.

Each node v has a field $\pi[v]$ as the “parent,” that is, the node u such that (u, v) was a light edge when v is added.

An implicit definition of \mathcal{A} is

\[\{(v, \pi[v]) \mid v \in \mathcal{V} - \{r\} - \mathcal{Q} \}. \]

1. $Q \leftarrow V$
2. \textbf{for} each $u \in Q$ \textbf{do} $\text{key}[u] \leftarrow \infty$
3. $\text{key}[r] \leftarrow 0$
4. $\pi[r] \leftarrow \text{NIL}$
5. \textbf{while} $Q \neq \emptyset$ \textbf{do}
6. \hspace{1em} $u \leftarrow \text{Extract-Min}(Q)$
7. \hspace{1em} \textbf{for} each $v \in \text{Adj}[u]$ \textbf{do}
8. \hspace{2em} \textbf{if} $v \in Q$ and $w(u, v) < \text{key}[v]$ \textbf{then}
9. \hspace{3em} $\pi[v] \leftarrow u$
10. \hspace{3em} $\text{key}[v] \leftarrow w(u, v)$

Line 3 forces to select r first. Lines 7-10 are for updating the keys.

Implement Q using a heap. The running time is

\[V \cdot \text{the cost of Build-Heap} \]
\[+ (\mathcal{V} - 1) \cdot \text{the cost of Extract-Min} \]
\[+ E \cdot \text{the cost of Decrease-Key}. \]
If a binary heap or a binomial heap is used, the running time is:

\[
V \cdot O(1) \\
+ (V - 1) \cdot O(|\lg V|) \\
+ E \cdot O(\lg V) \\
= O((E + V) \lg V) = O(E \lg E),
\]

which is the same as the running time of Kruskal's algorithm.

If a Fibonacci heap is used, the running time is:

\[
V \cdot O(1) \\
+ (V - 1) \cdot O(\lg V) \\
+ E \cdot O(1) \\
= O(V \lg V + E),
\]

which is better than the running time of Kruskal's algorithm.