Intermediate Data Structures & Algorithms – CS 141
(Discussion)

Amirali Darvishzadeh
Fall 2015
Consider the following problem:

- **Input**: A set $S = \{(x_i, y_i) | 1 \leq i \leq n\}$ of intervals over the real line.
- **Output**: A maximum cardinality subset S' of S such that no pair of intervals in S' overlap.

Consider the following algorithm:

Repeat until S is empty
1. Select the interval I that overlaps the least number of intervals.
2. Add I to final solution set S'.
3. Remove all intervals from S that overlaps with I.

Prove or disprove that this algorithm solves the problem.
Question 2

Consider the following problem:

The input is a collection $A = \{a_1, ..., a_n\}$ of n points on the real line. The problem is to find a minimum cardinality collection S of unit intervals that cover every point in A. Another way to think about this same problem is the following.

a) Prove or disprove that the following algorithm correctly solves this problem. Let I be the interval that covers the most number of points in A. Add I to the solution set S. Then recursively continue on the points in A not covered by I.

b) Prove or disprove that the following algorithm correctly solves this problem. Let a_j be the smallest (leftmost) point in A. Add the interval $I = a_j, a_j + 1$ to the solution set S. Then recursively continue on the points in A not covered by I.

b) This algorithm is optimal for the problem of covering points with unit intervals. Assume there is a set of points $A = \{a_1, ..., a_n\}$ such that the greedy algorithm is not optimal

$G = \{g_1, ..., g_n\}$ (greedy solution)

$T = \{t_1, ..., t_n\}$ (optimal solution)

Assume the intervals are numbered in increasing order of left endpoint.
Starting at the left most interval in T compare g_i and t_i until you find k for which $g_k \neq t_k$.

$g_k > t_k$ (g_k begins further to the right than t_k)

Create solution T' by replacing interval t_k with g_k. Since for $i = 1, ..., k - 1, g_i = t_i$, Solution T will continue to cover all the points in A. If g_k overlaps any other interval t_j in T, shift t_j to the right until it no longer overlaps g_k. Continue shifting intervals in T' to the right until there are no more overlaps. T' continues to cover all points in A. By repeating above process we can make $T = G$. Contradicting our assumption that G in not optimal solution.
b) This algorithm is optimal for the problem of covering points with unit intervals. Assume there is a set of points \(A = \{a_1, ..., a_n\} \) such that the greedy algorithm is not optimal.

\[
G = \{g_1, ..., g_n\} \text{ (greedy solution)}
\]
\[
T = \{t_1, ..., t_n\} \text{ (optimal solution)}
\]

Assume the intervals are numbered in increasing order of left endpoint. Starting at the left most interval in \(T \) compare \(g_i \) and \(t_i \) until you find \(k \) for which

\[
g_k > t_k \quad (g_k \text{ begins further to the right than } t_k)
\]

Create solution \(T' \) by replacing interval \(t_k \) with \(g_k \). Since for \(i = 1, ..., k - 1, g_i = t_i \), Solution \(T \) will continue to cover all the points in \(A \). If \(g_k \) overlaps any other interval \(t_j \) in \(T \), shift \(t_j \) to the right until it no longer overlaps \(g_k \). Continue shifting intervals in \(T' \) to the right until there are no more overlaps. \(T' \) continues to cover all points in \(A \). By repeating above process we can make \(T = G \). Contradicting our assumption that \(G \) in not optimal solution.
Question 3

How to compress Image using Huffman Coding technique.
• Each pixel is represented by 8 bits (intensity of pixel)
• \(p_i, 1 \leq p_i \leq 255 \)
• Pixel values that appear a lot we want to assign short code
• Size = \(500 \times 500 \times 8 = 250 \text{ KB} \)

<table>
<thead>
<tr>
<th>(p_i)</th>
<th>(P_i(p_i))</th>
<th>Code 1</th>
<th>Size (bits)</th>
<th>Code 2</th>
<th>Size (bits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p_{87} = 87)</td>
<td>0.25</td>
<td>01010111</td>
<td>8</td>
<td>01</td>
<td>2</td>
</tr>
<tr>
<td>(p_{128} = 128)</td>
<td>0.47</td>
<td>10000000</td>
<td>8</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(p_{186} = 186)</td>
<td>0.25</td>
<td>11000100</td>
<td>8</td>
<td>000</td>
<td>3</td>
</tr>
<tr>
<td>(p_{255} = 255)</td>
<td>0.03</td>
<td>11111111</td>
<td>8</td>
<td>001</td>
<td>3</td>
</tr>
<tr>
<td>(p_k = 0)</td>
<td>0</td>
<td>-</td>
<td>8</td>
<td>-</td>
<td>0</td>
</tr>
</tbody>
</table>

K is not 87, 128, 186, 255

Width = 500, Height = 500
Question 3

- At each source reduction iteration, sort probabilities first and then merge two lowest probabilities.
- Keep merging until you end up with only two probabilities at the end.

<table>
<thead>
<tr>
<th>Original source</th>
<th>Source reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symbol</td>
<td>Probability</td>
</tr>
<tr>
<td>a_2</td>
<td>0.4</td>
</tr>
<tr>
<td>a_6</td>
<td>0.3</td>
</tr>
<tr>
<td>a_1</td>
<td>0.1</td>
</tr>
<tr>
<td>a_4</td>
<td>0.1</td>
</tr>
<tr>
<td>a_3</td>
<td>0.06</td>
</tr>
<tr>
<td>a_5</td>
<td>0.04</td>
</tr>
</tbody>
</table>
Question 3

- Go backwards and assign code
- Every time you see a split, we add 0 and 1 to the codes.
Question 3

- Go backwards and assign code
- Every time you see a split, we add 0 and 1 to the codes.
Question 4

A subsequence is *palindromic* if it is the same whether read left to right or right to left. For the sequence

Has many palindromic subsequence, including \(A, C, G, C, A \) and \(A, A, A, A \).

Devise an algorithm that takes a sequence \(x[1 \ldots n] \) and returns the longest palindromic subsequence. Its running time should be \(O(n^2) \).