Problem 1: You are given two sorted lists of size m and n. Give a $O(\log k)$ time algorithm for computing the k-th smallest element in the union of the two lists. **Note:** Observe that the k-th smallest element in the union of the arrays $a[a_1, \cdots, a_m]$ and $b[b_1, \cdots, b_n]$ has to be contained in $a[a_1, \cdots, a_k]$ or $b[b_1, \cdots, b_k]$. For simplicity you can assume $k \leq \min(m, n)$ and all the elements of both sets are distinct, and the elements across the two sets are also distinct.

Problem 2: Karatsuba algorithm that was introduced during the lecture described an algorithm that multiplies two n-bit binary integers x and y in time n^a, where $a = \log_2 3$. Call this procedure `fastmultiply(x, y)`.

(a) We want to convert the decimal integer 10^n (a 1 followed by n zeros) into binary. Here is the algorithm (assume n is power of 2):

```python
function pwr2bin(n)
    if (n == 1): return 1010
    else:
        z = ???
        return fastmultiply(z, z)
```

Fill in the missing details. Then give a recurrence relation for the running time of the algorithm, and solve the recurrence.

(b) Next, we want to convert any decimal integer x with n digits (where n is a power of 2) into binary. The algorithm is the following:

```python
function dec2bin(x)
    if (n == 1): return binary[x]
    else:
        split $x$ into two decimal numbers $x_L, x_R$ with $n/2$ digits each
        return ???
```

Here `binary[·]` is a vector that contains the binary representation for all one-digit integers. That is `binary[0] = 0_2, binary[1] = 1_2, up to binary[9] = 1001_2`. Assume that a lookup in `binary` takes $O(1)$ time.

Fill in the missing details. Once again, give a recurrence for the running time of the algorithm, and solve it.

Problem 3: The Hadamard matrices H_0, H_1, H_2, \cdots are defined as follows:

- H_0 is the 1×1 matrix $[1]$
- For $k > 0$, H_k is the $2^k \times 2^k$ matrix

\[
H_k = \begin{bmatrix}
H_{k-1} & H_{k-1} \\
H_{k-1} & -H_{k-1}
\end{bmatrix}
\]

Design $O(n \log n)$ divide-and-conquer algorithm that given a column vector v of length $n = 2^k$, computes the matrix-vector product $H_k v$. Analyze the time complexity of your algorithm.
Problem 4: There are a lot of customers in SERVEMEFIRST bank, and only one representative, that can
serve them. The time, needed to serve each customer is known in advance. It is \(t_i \) minutes for a customer
\(i \). The total waiting time is

\[
T = \sum_{i=1}^{n} (\text{waiting time of } i\text{th customer})
\]

For example, there are three customers, \(C_1(t_1 = 5 \text{ minutes}), C_2(t_2 = 15 \text{ minutes}), \) and \(C_3(t_3 = 2 \text{ minutes}) \), that are being served in order \(C_1 - C_2 - C_3 \). Then the waiting time of the 1\text{st} customer is 0
minutes, 2\text{nd} customer - 5 minutes, and 3\text{rd} customer - 5 + 15 = 20 (minutes). The total waiting time is
\(T = 0 + 5 + 20 = 25 \) (minutes). If the order of the customers changed, then the total waiting time may
change as well.

The manager of the bank wants to minimize the total waiting time. Give a greedy (efficient) algorithm
for computing the optimal order in which to process the customer. Prove why your algorithm is correct (i.e.
always returns an optimal solution).