
Scaling up Dynamic Time Warping for Datamining
Applications

Eamonn J. Keogh
Department of Information and

Computer Science
University of California

Irvine, California 92697 USA
Phone (949) 824-7210

{eamonn,pazzani}@ics.uci.edu

Michael J. Pazzani

ABSTRACT
There has been much recent interest in adapting data mining
algorithms to time series databases. Most of these algorithms need
to compare time series. Typically some variation of Euclidean
distance is used. However, as we demonstrate in this paper,
Euclidean distance can be an extremely brittle distance measure.
Dynamic time warping (DTW) has been suggested as a technique
to allow more robust distance calculations, however it is
computationally expensive. In this paper we introduce a
modification of DTW which operates on a higher level abstraction
of the data, in particular, a Piecewise Aggregate Approximation
(PAA). Our approach allows us to outperform DTW by one to two
orders of magnitude, with no loss of accuracy.
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1. INTRODUCTION
Time series are a ubiquitous form of data occurring in virtually
every scientific discipline and business application. There has
been much recent work on adapting data mining algorithms to
time series databases. For example, Das et al attempt to show how
association rules can be learned from time series [5]. Debregeas
and Hebrail [6] demonstrate a technique for scaling up time series
clustering algorithms to massive datasets. Keogh and Pazzani
introduced a new, scaleable time series classification algorithm
[12]. Almost all algorithms that operate on time series data need
to compute the similarity between time series. Euclidean distance,
or some extension or modification thereof, is typically used.
However, Euclidean distance can be an extremely brittle distance
measure. Consider the clustering produced by Euclidean distance
in Figure 1. Sequence 3 is judged as most similar to the line in
sequence 4, yet it appears more similar to 1 or 2.

The reason why Euclidean distance may fail to produce an
intuitively correct measure of similarity between two sequences is
because it is very sensitive to small distortions in the time axis.
Consider Figure 2.A. The two sequences have approximately the
same overall shape, but the shapes are not aligned in the time axis.
The nonlinear alignment shown in Fig 2.B would allow a more
sophisticated distance measure to be calculated.

A method for achieving such alignments has long been known in
the speech processing community [20]. The technique, Dynamic
Time Warping (DTW), was introduced to the data mining
community by Berndt and Clifford [3]. Although they
demonstrate the utility of the approach, they acknowledge that the
algorithms time complexity is a problem and that "…performance
on very large databases may be a limitation".

As an example of the utility of DTW compare the clustering
shown in Figure 1 with Figure 3.

In this paper we introduce a technique which speeds up DTW by a
large constant. The value of the constant is data dependent but is
typically one to two orders of magnitude. The algorithm,
Piecewise Dynamic Time Warping (PDTW), takes advantage of
the fact that we can efficiently approximate most time series by a
piecewise aggregate approximation.

The rest of this paper is organized as follows. Section 2 contains a
review of the classic DTW algorithm. Section 3 introduces the
Piecewise Aggregate Approximation and PDTW algorithm. In
Section 4 we experimentally compare DTW, PDTW and
Euclidean distance on several real world datasets. Section 5
contains a discussion of related work.  Section 6 contains our
conclusions.
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Figure 1. An unintuitive clustering produced by the Euclidean
distance measure. Sequences 1 to 3 are astronomical time series
[7]. Sequence 4 is simply a straight line with the same mean and
variance as the other sequences.
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2. DYNAMIC TIME WARPING
Suppose we have two time series Q and C, of length n and m
respectively, where:

Q = q1,q2,…,qi,…,qn  (1)

C = c1,c2,…,cj,…,cm  (2)

To align two sequences using DTW we construct an n-by-m
matrix where the (i th, j th) element of the matrix contains the
distance d(qi,cj) between the two points qi and cj (With Euclidean
distance, d(qi,cj) = (qi - cj)

2 ). Each matrix element (i,j) corresponds
to the alignment between the points qi and cj. This is illustrated in
Figure 4. A warping path W, is a contiguous (in the sense stated
below) set of matrix elements that defines a mapping between Q
and C. The kth element of W is defined as wk = (i,j)k so we have:

W = w1, w2, …,wk,…,wK max(m,n) ≤ K < m+n-1 (3)

The warping path is typically subject to several constraints.

•  Boundary conditions: w1 = (1,1) and wK = (m,n), simply stated,
this requires the warping path to start and finish in diagonally
opposite corner cells of the matrix.

•  Continuity: Given wk = (a,b) then wk-1 = (a’,b’) where a–a' ≤1
and b-b' ≤ 1. This restricts the allowable steps in the warping
path to adjacent cells (including diagonally adjacent cells).

•  Monotonicity: Given wk = (a,b) then wk-1 = (a',b') where a–a' ≥
0 and b-b' ≥ 0. This forces the points in W to be
monotonically spaced in time.

There are exponentially many warping paths that satisfy the
above conditions, however we are interested only in the path
which minimizes the warping cost:
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The K in the denominator is used to compensate for the fact that
warping paths may have different lengths.

This path can be found very efficiently using dynamic
programming to evaluate the following recurrence which defines
the cumulative distance γ(i,j) as the distance d(i,j) found in the
current cell and the minimum of the cumulative distances of the
adjacent elements:   

 γ(i,j)  = d(qi,cj) + min{  γ(i-1,j-1) , γ(i-1,j ) , γ(i,j-1) } (5)

The Euclidean distance between two sequences can be seen as a
special case of DTW where the kth element of W is constrained
such that wk = (i,j)k , i = j = k. Note that it is only defined in the
special case where the two sequences have the same length. The
time complexity of DTW is O(nm).

This review of DTW is necessarily brief; we refer the interested
reader to [16] for a more detailed treatment.

3. A HIGHER LEVEL REPRESENTATION
In this section we introduce the piecewise aggregate
approximation and a DTW algorithm for the representation.

3.1 The piecewise aggregate representation
We denote a time series query as X = x1,…,xn,. Let N be the
dimensionality of the transformed time series we wish to work
with (1 ≤ N ≤ n). For convenience, we assume that N is a factor of
n. This is not a requirement of our approach, however it does
simplify notation.
A time series X of length n is represented in N space by a vector

NxxX ,,1
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following equation:
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Figure 2. Two sequences from an Australian Sign Language dataset. Note that while the sequences have an overall similar  shape, they are
not aligned in the time axis. Euclidean distance, which assumes the ith point on one sequence is aligned with ith point on the other (A), will
produce a pessimistic dissimilar ity measure.  A nonlinear alignment (B) allows a more sophisticated distance measure to be calculated.
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Figure 3. When the dataset used in Figure. 1 is clustered using
DTW the results are much more intuitive.

Figure 4. An example warping path.
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 Simply stated, to reduce the data from n dimensions to N
dimensions, the data is divided into N equi-sized "frames". The
mean value of the data falling within a frame is calculated and a
vector of these values becomes the data reduced representation.
Figure 5 illustrates this notation. The complicated subscripting in
Eq. 6 is just to insure that the original sequence is divided into the
correct number and size of frames.

Figure. 5: An illustration of the data reduction technique
utilized in this paper. A time ser ies consisting of eight (n) points
is projected into two (N) dimensions. The time ser ies is divided
into two (N) frames and the mean of each frame is calculated. A
vector  of these means becomes the data reduced representation.

Two special cases worth noting are when N = n the transformed
representation is identical to the original representation. When N =
1 the transformed representation is simply the mean of the original
sequence. More generally the transformation produces a piecewise
constant approximation of the original sequence, we therefore call
our approach Piecewise Aggregate Approximation (PAA). Figure
6 illustrates a natural time series and its PAA approximation.
We denote the ratio of the length of the original time series to the
length of its PAA representation, the compression rate c.

c =  n/N (7)
In choosing a value for c there is a classic tradeoff between
memory savings and fidelity. In this work we do not address the
problem of choosing the “best”  compression rate. The “best”
compression rate depends on the structure of the data itself and the
task at hand (i.e. clustering/classification/retrieval etc). For most
applications the best approach may be to have an expert interact
with the data and choose this parameter, although automated
approaches to similar problems have been suggested [22,15].

3.2 Warping with the PAA representation
In Section 2 we showed how to perform dynamic time warping on
two sequences Q and C. Here we will show how to perform
dynamic time warping using the reduced dimensionality versions

of Q and C, which we denote iQ  and iC  respectively. For clarity

we call the algorithm defined on the reduced dimensionality
representation Piecewise Dynamic Time Warping (PDTW).

To align two sequences using PDTW we construct an N-by-M
matrix where the (i th, j th) element of the matrix contains the

distance d( iQ , iC ) between the two elements iQ  and iC . The

distance between two elements is defined as the square of the
distance between them:

d( iQ , iC ) = ( iQ - iC )2              (8)

Apart from this modification the matrix-searching algorithm is
essentially unaltered. Equation 5 is modified to reflect the new
distance measure:

 γ(i,j)  = d( iQ , iC ) + min{  γ(i-1,j-1) , γ(i-1,j ) , γ(i,j-1) }    (9)

When reporting the DTW distance between two time series (Eq. 4)
we compensated for different length paths by dividing by K, the
length of the warping path. We need to do something similar for
PDTW but we cannot use K directly, because elements in the
warping matrix now correspond to aggregate segments of data and
we would like PDTW to be measured in the same units as DTW to
facilitate comparison between the two measures. To compensate
for this we can use a distance measure that is similar to Eq. 4 but
where the denominator is the square root of the compression rate.

(10)

Because the length of the warping path is measured in the same
units as DTW we have:

PDTW(Q ,C )  ≅  DTW(Q,C)      (11)

Figure 7 shows strong visual evidence that SDTW finds
alignments that are very similar to those produced by DTW. In the
next section we will provide strong experiment evidence to the
same effect.

The time complexity for a PDTW is O(NM), where M = m/c and N
= n/c. The time complexity for the original DTW algorithm is
O(nm). So the speedup obtained by PDTW should be
O(nm)/O(MN) which is O(c2).
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 X = (-1, -2, -1, 0, 2, 1, 1, 0) n  = | X | = 8
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Figure 6: The sequence X and its Piecewise Aggregate
Approximation X’.

Figure 7: A) Two similar  time ser ies and the alignment between them, as discovered by DTW. B) The same time ser ies in their  PAA
representation, and the alignment discovered by PDTW.  This presents strong visual evidence that PDTW finds approximately the same
warping as DTW.
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4. EXPERIMENT RESULTS
We are interested in two properties of the proposed approach. The
speedup obtained over the classic DTW algorithm and the quality
of the alignment. In general, the quality of the alignment is
subjective, so we designed experiments that indirectly, but
objectively measure it.

4.1 Cluster ing
For our clustering experiments we utilized two datasets, one
natural and one synthetic.

1) The Australian Sign Language (ASL) dataset from the UCI
KDD archive [2]. The dataset consists of various sensors that
measure the X-axis position of a subject’s right hand while
signing one of 95 words in Australian Sign Language.

2) The Cylinder-Bell-Funnel (CBF) synthetic dataset as used in
[11,17,19]. This dataset contains three classes, which are
generated by the following equations.

Figure 8 shows some examples of the Cylinder and Funnel class
(members of the Bell class look like mirror images of the Funnel
class).

For every possible pairing of the ten words in the ASL dataset, we
clustered the 10 corresponding sequences, using group-average
hierarchical clustering. At the lowest level of the corresponding
dendrogram, the clustering is subjective. However, the highest
level of the dendrogram (i.e. the first bifurcation) should divide
the data into the two classes. Any dendrogram that correctly
partitions the data in this fashion we consider correct and any
other partition we consider incorrect.  There are 34,459,425
possible ways to cluster 10 items, of which 11,025 of them
correctly separate the two classes, so the default rate for an
algorithm which guesses randomly is only 0.031%.

We performed the same experiments for the CBF dataset, with
every possible pairing of the three classes. Figure 8 shows the
results of one experiment with the Cylinder and Funnel classes.
Here we had the luxury of unlimited data so we ran each
experiment 100 times and averaged the results.

 We compared four distance measures:

1) DTW: The classic dynamic time warping algorithm as
presented in Section 2.

2) PDTW: The piecewise dynamic time warping algorithm
proposed in this paper.

3) Euclidean: We also tested Euclidean distance measure to
facilitate comparison to the large body of literature that
utilizes this distance measure.

4) PEuclidean: Because it might argued that any increased
accuracy of PDTW was due solely to the smoothing
effects of the piecewise aggregate approximation, we also
tested the Euclidean measure using the PAA
representation.

Table 1 summarizes the results.

Although the Euclidean distance can be quickly calculated, it
performance is only a little better than random. While the
smoothing effect of the PAA representation does help slightly for
the CBL dataset, both of the Euclidean based metrics have great
difficulty differentiating between two classes in both datasets.
Both DTW and PDTW have essentially the same high accuracy,
but PDTW faster by a factor of 47 for the ASL dataset and a factor
of 21.5 for the CBL dataset.

5.  RELATED WORK
Dynamic time warping has enjoyed success in many areas where
its time complexity is not an issue. It has been used in gesture
recognition [9], robotics [21], speech processing [18],
manufacturing [10] and medicine [4].
Conventional DTW, however, is much too slow for searching
large databases. For this problem, Euclidean distance, combined
with an indexing scheme is typically used. Faloutsos et al, extract
the first few Fourier coefficients from the time series and use these
to project the data into multi-dimensional space [8]. The data can
then be indexed with a multi-dimensional indexing structure such
as a R-tree. Keogh and Pazzani address the problem by de-
clustering the data into bins, and optimizing the data within the
bins to reduce search times [12].

6. CONCLUSIONS

The most important contribution of this paper is to show that to
Euclidean distance metric, although popular, is an extremely
brittle distance measure that degrades rapidly in the presence of
time axis distortion. We reintroduced DTW to the KDD
community and demonstrated a modification of DTW that exploits
a higher level representation of time series data to produce one to
two orders of magnitude speed-up with no decrease in accuracy.
We experimentally demonstrated our approach on several real
world datasets and showed a speedup of one to two orders of
magnitude.
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c(t) = (6+η) • X[a,b](t) + ε(t)

b(t) = (6+η) • X[a,b](t) • (t-a)/(b-a) + ε(t)

f(t) = (6+η) • X[a,b](t) • (b-a)/(b-t) + ε(t)

Where  η and  ε(t) are drawn from a standard normal distribution
N(0,1), a is an integer drawn uniformly from the range [16,32] and
(b-a) is an integer drawn uniformly from the range [32, 96].

ASL CBLDistance
Measure Mean

Time
(Seconds)

Correct
Clusterings
(percentage)

Mean
Time

(Seconds)

Correct
Clusterings
(percentage)

DTW 174.4 48.8 519.2 92.1

PDTW 3.7 51.1 24.1 93.3

Euclidean 2.1 4.4 0.49 3.2

PEuclidean 2.3 4.4 0.62 4.8
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Figure 8.  An example of a single cluster ing exper iment on the cylinder -bell-funnel dataset. The time ser ies 1 to 5 are members of the
cylinder  class. The time ser ies A to E are members of the funnel class. The Euclidean distance metr ic has difficulty in differentiating
between the two classes, but both DTW and PDTW cor rectly separate the two with the first bifurcation of the dendrogram
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