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Abstract The last decade has seen a flurry of research on all-pairs-similarity-search
(or similarity joins) for text, DNA and a handful of other datatypes, and these systems
have been applied to many diverse data mining problems. However, there has been
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surprisingly little progress made on similarity joins for time series subsequences. The
lack of progress probably stems from the daunting nature of the problem. For even
modest sized datasets the obvious nested-loop algorithm can take months, and the
typical speed-up techniques in this domain (i.e., indexing, lower-bounding, triangular-
inequality pruning and early abandoning) at best produce only one or two orders of
magnitude speedup. In this work we introduce a novel scalable algorithm for time
series subsequence all-pairs-similarity-search. For exceptionally large datasets, the
algorithm can be trivially cast as an anytime algorithm and produce high-quality
approximate solutions in reasonable time and/or be accelerated by a trivial porting
to a GPU framework. The exact similarity join algorithm computes the answer to the
time series motif and time series discord problem as a side-effect, and our algorithm
incidentally provides the fastest known algorithm for both these extensively-studied
problems. We demonstrate the utility of our ideas for many time series data mining
problems, including motif discovery, novelty discovery, shapelet discovery, semantic
segmentation, density estimation, and contrast set mining. Moreover, we demonstrate
the utility of our ideas on domains as diverse as seismology,music processing, bioinfor-
matics, human activitymonitoring, electrical power-demandmonitoring andmedicine.

Keywords Time series · Joins · Motif discovery · Anomaly detection

1 Introduction

The basic problem statement for all-pairs-similarity-search (also known as similarity
join) problem is this: Given a collection of data objects, retrieve the nearest neighbor
for every object. In the text domain, the dozens of algorithms which have been devel-
oped to solve the similarity join problem (and its variants) have been applied to an
increasingly diverse set of tasks, such as community discovery, duplicate detection,
collaborative filtering, clustering, and query refinement (Agrawr et al. 1993). How-
ever, while virtually all text processing algorithms have analogues in time series data
mining (Mueen et al. 2009), there has been surprisingly little progress on Time Series
subsequences All-Pairs-Similarity-Search (TSAPSS).

It is clear that a scalable TSAPSS algorithm would be a versatile building block
for developing algorithms for many time series data mining tasks (e.g., motif discov-
ery, shapelet discovery, semantic segmentation and clustering). As such, the lack of
progress on TSAPSS stems not from a lack of interest, but from the daunting nature
of the problem. Consider the following example that reflects the needs of an industrial
collaborator: A boiler at a chemical refinery reports pressure once a minute. After
a year, we have a time series of length 525,600. A plant manager may wish to do
a similarity self-join on this data with week-long subsequences (10,080) to discover
operating regimes (summer vs. winter or light-distillate vs. heavy-distillate etc.) The
obvious nested loop algorithm requires 132,880,692,960 Euclidean distance compu-
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tations. If we assume each one takes 0.0001s, then the join will take 153.8 days. The
core contribution of this work is to show that we can reduce this time to 1.2 hours, using
an off-the-shelf desktop computer. Moreover, we show that this join can be computed
and/or updated incrementally. Thus,we couldmaintain this join essentially forever on a
standard desktop, even if the data arrival frequencywasmuch faster than once aminute.

Our algorithm uses an ultra-fast similarity search algorithm under z-normalized
Euclidean distance as a subroutine, exploiting the redundancies between overlapping
subsequences to achieve its dramatic speedup and low space overhead.

Our method has the following advantages/features:

• It is exact: Our method provides no false positives or false dismissals. This is an
important feature in many domains. For example, a recent paper has addressed the
TSAPSS problem in the special case of earthquake telemetry (Yoon et al. 2015).
The method does achieve speedup over brute force, but allows false dismissals. A
single high-quality seismometer can cost $10,000 to $20,000 (Alibaba.com 2017),
and the installation of a seismological network can cost many millions. Given that
cost and effort, users may not be willing to miss a single nugget of exploitable
information, especially in a domain with implications for human life.

• It is simple and parameter-free: In contrast, the more general metric space APSS
algorithms typically require building and tuning spatial accessmethods and/or hash
functions (Luo et al. 2012; Ma et al. 2016; Yoon et al. 2015).

• It is space efficient: Our algorithm requires an inconsequential space overhead,
just O(n) with a small constant factor. In particular, we avoid the need to actually
extract the individual subsequences (Luo et al. 2012; Ma et al. 2016) something
that would increase the space complexity by two or three orders of magnitude, and
as such, force us to use a disk-based algorithm, further reducing time performance.

• It is an anytime algorithm: While our exact algorithm is extremely scalable, for
extremely large datasets we can compute the results in an anytime fashion (Ueno
et al. 2006; Assent et al. 2012), allowing ultra-fast approximate solutions.

• It is incrementally maintainable: Having computed the similarity join for a
dataset, we can incrementally update it very efficiently. In many domains this
means we can effectively maintain exact joins on streaming data forever.

• It does not require the user to set a similarity/distance threshold: Our method
provides full joins, eliminating the need to specify a similarity threshold, which
as we will show, is a near impossible task in this domain.

• It can leverage hardware: Our algorithm is embarrassingly parallelizable, both
on multicore processors and in distributed systems.

• It has time complexity that is constant in subsequence length: This is a very
unusual and desirable property; virtually all time series algorithms scale poorly as
the subsequence length grows (Ding et al. 2008; Mueen et al. 2009).

• It takes deterministic time: This is also unusual and desirable property for an
algorithm in this domain. For example, even for a fixed time series length, and
a fixed subsequence length, all other algorithms we are aware of can radically
different times to finish on two (even slightly) different datasets. In contrast, given
only the length of the time series, we can predict precisely how long it will take
our finish in advance.
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Given all these features, our algorithm may have implications for many time series
data mining tasks (Chandola et al. 2009; Hao et al. 2012; Mueen et al. 2009; Yoon
et al. 2015).

In series of recentworks,wehave introduced severalTSAPSSalgorithms and shown
applications in various domains (Yeh et al. 2016a, b; Zhu et al. 2016). However, this
work we provided (1) holistic analysis that summarizes and significantly expands on
those efforts and (2) a description on incremental variant of STOMP algorithm (Zhu
et al. 2016) (i.e., STOMPI ).

The rest of the paper is organized as follows. Sections 2 and 3 review related work
and introduces the necessary background materials and definitions. In Sect. 4 we
introduce our algorithm and its anytime and incremental variants. Additionally, we
further show that if we need to address truly massive datasets, and we are willing to
forgo the anytime algorithm property, we can further speed up our algorithm, and in
fact create the provably optimally fast algorithm. Section 5 sees a detailed empirical
evaluation of our algorithm and shows its implications for many data mining tasks.
Finally, in Sect. 6 we offer conclusions and directions for future work.

2 General related work and background

The particular variant of similarity join problemwewish to solve is: Given a collection
of data objects, retrieve the nearest neighbor for every object. We believe this is the
most basic version of the problem, and any solution for this problem can be easily
extended to other variants of similarity join problem.

Other common variants include retrieving the top-K nearest neighbors or the nearest
neighbor for each object if that neighbor is within a user-supplied threshold, τ . (Such
variations are trivial generalizations of our proposed algorithm, so we omit them from
further discussion). The latter variant results in a much easier problem, provided that
the threshold is reasonably small. For example, Agrawal et al. notes that virtually all
research efforts “exploit a similarity threshold more aggressively in order to limit the
set of candidate pairs that are considered.. [or] ...to reduce the amount of information
indexed in the first place.” (1993).

This critical dependence on τ is a major issue for text joins, as it is known that “join
size can change dramatically depending on the input similarity threshold” (Lee et al.
2011). However, this issue is even more critical for time series for two reasons. First,
unlike similarity (which is bounded between zero and one), the Euclidean distance
is effectively unbounded, and generally not intuitive. For example, if two heartbeats
have a Euclidean distance of 17.1, are they similar? Even if you are a domain expert
and know the sampling rate and the noise level of the data, this is not obvious. Second,
a single threshold can produce radically different output sizes, even for datasets that
are very similar to the human eye. Consider Fig. 1 which shows the output size versus
threshold setting for the first and second halves of a ten-day period monitoring data
center chillers (Patnaik et al. 2009). For the first five days a threshold of 0.6 would
return zero items, but for the second five days the same setting would return 108 items.
This shows the difficulty in selecting an appropriate threshold. Our solution is to have
no threshold and do a full join. After the join is computed, the user may then use

123



Time series joins, motifs, discords and shapelets

0

400

800

1,200

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

First 5 Days

Second 5 Days

Data Center Chillers

Fig. 1 Output size versus threshold for data center chillers (Patnaik et al. 2009). Values beyond 2.0 are
truncated for clarity (but archived at Supporting Page 2017). For a large range of thresholds (from 0 to 0.65)
the difference in the selectivity is enormous, from zero to one-hundred and eight

any ad-hoc filtering rule to give the result set she desires. For example, the top-fifty
matches, or all matches in the top-two-percent. Moreover, as we show in Sects. 5.4.3,
5.5.2 and 5.5.3, we may be interested in the bottom-fifty matches, or all matches in the
bottom-two-percent. To the best of our knowledge, no research effort in time series
joins can support such primitives, as all techniques explicitly exploit pruning strategies
based on “nearness” (Luo et al. 2012; Ma et al. 2016).

A handful of efforts have considered joins on time series, achieving speedup by
(in addition to the use of MapReduce) converting the data to lower-dimensional rep-
resentations such as PAA (Luo et al. 2012) or SAX (Ma et al. 2016) and exploiting
lower bounds and/or Locality Sensitive Hashing (LSH) to prune some calculations.
However, the methods are very complex, with many (10-plus) parameters to adjust.
As Luo acknowledges with admirable candor, “Reasoning about the optimal settings
is not trivial” (2012). In contrast, our proposed algorithm has zero parameters to
set.

A very recent research effort (Yoon et al. 2015) has tackled the scalability issue
by converting the real-valued time series into discrete “fingerprints” before using a
LSH approach, much like the text retrieval community (Agrawr et al. 1993). They
produced impressive speedup, but they also experienced false negatives. Moreover,
the approach has several parameters that need to be set; for example, they set the
threshold to a very precise 0.818. In passing, we note that one experiment they per-
formed offers confirmation of the pessimistic “153.8 days” example we gave in the
introduction. A brute-force experiment they conducted with slightly longer time series
but much shorter subsequences took 229 hours, suggesting a value of about 0.0002s
per comparison, just twice our estimate (see Supporting Page 2017 for analysis). We
will revisit this work in Sect. 5.3.

As we shall show, our algorithm allows both anytime and incremental (i.e. stream-
ing) versions. While a streaming join algorithm for text was recently introduced
(Morales and Gionis 2016) we are not aware of any such algorithms for time series
data or general metric spaces. More generally, there is a huge volume of literature
on joins for text and DNA processing (Agrawr et al. 1993). Such work is interesting,
but of little direct utility given our constraints, data type and problem setting. We are
working with real-valued data, not discrete data. We require full joins, not thresh-
old joins, and we are unwilling to allow the possibility, no matter how rare, of false
negatives.
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2.1 Definitions and notation

We begin by defining the data type of interest, time series:

Definition 1 A time series T is a sequence of real-valued numbers ti : T = t1,
t2, . . . , tn where n is the length of T .

We are not interested in the global properties of time series, but in the similarity
between local regions, known as subsequences:

Definition 2 A subsequence Ti,m of a T is a continuous subset of the values from T
of length m starting from position i . Formally, Ti,m = ti , ti+1, . . ., ti+m−1, where 1
≤ i ≤ n − m + 1.

We can take any subsequence from a time series and compute its distance to all
sequences. We call an ordered vector of such distances a distance profile:

Definition 3 A distance profile D is a vector of the Euclidean distances between a
given query and each subsequence in an all-subsequences set (see Definition 4).

Note thatwe are assuming that the distance ismeasured using theEuclidean distance
between the z-normalized subsequences, that is to say, the subsequences have a mean
of zero, and a standard deviation of one (Agrawr et al. 1993). The distance profile
can be considered a meta time series that annotates the time series T that was used to
generate it. The first three definitions are illustrated in Fig. 2.

Note that by definition, if the query and all-subsequences set belong to the same
time series, the distance profile must be zero at the location of the query, and close to
zero just before and just after. Such matches are called trivial matches in the literature
(Mueel et al. 2009), and are avoided by ignoring an exclusion zone (shown as a gray
region) of m/2 before and after the location of the query.

We are interested in similarity join of all subsequences of a given time series.
We define an all-subsequences set of a given time series as a set that contains all
possible subsequences from the time series. The notion of all-subsequences set is
purely for notational purposes. In our implementation, we do not actually extract the
subsequences in this form as it would require significant time overhead, and explode
the memory requirements.

T, a snippet of an energy 
consumption

2,0000 m/2m/2

Q, query of length m

Note that |D| = |T|-|Q|+1D, a distance profile

Fig. 2 A subsequence Q extracted from a time series T is used as a query to every subsequence in T . The
vector of all distances is a distance profile
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Definition 4 An all-subsequences set A of a time series T is an ordered set of all
possible subsequences of T obtained by sliding a window of length m across T : A =
{T1,m,, T2,m, . . ., Tn−m+1,m}, where m is a user-defined subsequence length. We use
A[i] to denote Ti,m .

We are interested in the nearest neighbor (i.e., 1NN) relation between subsequences;
therefore, we define a 1NN-join functionwhich indicates the nearest neighbor relation
between the two input subsequences.

Definition 5 1NN-join function: given two all-subsequence sets A andB and two sub-
sequences A[i] and B[ j], a 1NN-join function θ1nn (A[i],B[ j]) is a Boolean function
which returns “true” only if B[ j] is the nearest neighbor of A[i] in the set B.

With the defined join function, a similarity join set can be generated by applying
the similarity join operator on two input all-subsequence sets.

Definition 6 Similarity join set: given all-subsequence sets A and B, a similarity join
set JAB of A and B is a set containing pairs of each subsequence in A with its nearest
neighbor in B : JAB = {〈A[i],B[ j]〉| θ1nn(A[i],B[ j])}. We denote this formally as
JAB = A ��θ 1nn B.

We measure the Euclidean distance between each pair within a similarity join set
and store the resultants into an ordered vector. We call the result vector matrix profile.

Definition 7 Amatrix profile (or justprofile) PAB is a vector of theEuclideandistances
between each pair in JAB where PAB[i] contains the distance between A[i] and its
nearest neighbor in B.

We call this vector the matrix profile because one (inefficient) way to compute it
would be to compute the full distance matrix of all the subsequences in one time series
with all the subsequence in another time series and extract the smallest value in each
row (the smallest non-diagonal value for the self-join case). In Fig. 3 we show the
matrix profile of our running example.

Like the distance profile, the matrix profile can be considered a meta time series
annotating the time series T if the matrix profile is generated by joining T with itself.
The profile has a host of interesting and exploitable properties. For example, the highest
point on the profile corresponds to the time series discord (Chandola et al. 2009), the
(tying) lowest points correspond to the locations of the best time series motif pair
(Mueen et al. 2009), and the variance can be seen as a measure of the T ’s complexity.

2,0000

P, a matrix profile

T, a snippet of an energy 
consumption

Note that |P| = |T|-|Q|+1

Fig. 3 A time series T , and its self-join matrix profile P
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Moreover, the histogram of the values in the matrix profile is the exact answer to the
one version of the time series density estimation problem (Bouezmarni and Rombouts
2010).

We name this special case of the similarity join set ( Definition 6) as self-similarity
join set, and the corresponding profile as self-similarity join profile.

Definition 8 A self-similarity join set JAA is a result of similarity join of the setAwith
itself . We denote this formally as JAA = A ��θ 1nn A. We denote the corresponding
matrix profile or self-similarity join profile as PAA.

Note that we exclude trivial matches when self-similarity join is performed, i.e.,
if A[i] and A[ j] are subsequences from the same all-subsequences set A, θ1nn(A[i],
B[ j]) is “false” when A[i] and A[ j] are trivially matched pair.

The i th element in the matrix profile tells us the Euclidean distance to the nearest
neighbor of the subsequence of T , starting at i . However, it does not tell us where that
neighbor is located. This information is recorded in the matrix profile index.

Definition 9 A matrix profile index IAB of a similarity join set JAB is a vector of
integers where IAB[i] = j if {A[i],B[ j]} ∈ JAB.

By storing the neighboring information this way, we can efficiently retrieve the
nearest neighbor of A[i] by accessing the i th element in the matrix profile index.

Note that the function which computes the similarity join set of two input time
series is not symmetric; therefore, JAB �= JBA, PAB �= PBA, and IAB �= IBA.

For clarity of presentation, we have confined this work to the single dimensional
case; however, nothing about our work intrinsically precludes generalizations to mul-
tidimensional data. In the multidimensional data, we would still have a single matrix
profile, and a single matrix profile index; the only change needed is to replace the
1D Euclidean Distance with the b D Euclidean Distance, where b is the number of
dimensions the user wants to consider. The only issue here is that it may be unwise to
us all the dimensions in a high dimensional problem. This issue is explained in detail
(in a slightly different context) in Hu et al. (2013).
Summary of the Previous Section

The previous section was rather dense, so before moving on we summarize the
main takeaway points. We can create two meta time series, the matrix profile and the
matrix profile index, to annotate a time series TA with the distance and location of all
its subsequences nearest neighbors in itself or another time series TB . These two data
objects explicitly or implicitly contain the answers to many time series data mining
tasks. However, they appear to be too expensive to compute to be practical. In the next
section we will show an algorithm that can compute these efficiently.

3 Related work in similarity search

We reviewed general related work in a previous section. Here we consider just related
work in similarity search. In essence, our solution to the task-at-hand is almost exclu-
sively comprised of similarity searches, thus having highly optimized searches is
critical for scalability. There is a huge body of work on time series similarity search;
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see Ding et al. (2008) and the references therein. Most of the work is focused on
efficiency in accessing disk resident data (Agrawr et al. 1993; Ding et al. 2008; Rak-
thanmanon et al. 2012, 2013a)

Unlike most other kinds of data, time series is unusual in that the atomic objects
“overlap” with each other. It is possible to ignore this by explicitly extracting all sub-
sequences. However, this makes the memory requirements explode. Recent work by
Mueen and colleagues has focused on processing the subsequences in situ. In Rakthan-
manon et al. (2012) overlap invariant z-normalization is achieved while calculating
the distances in the old-fashioned single loop sum-of-squared-error manner. Efficient
overlap invariance has been achieved in distance computation for Shapelet discovery in
Mueen et al. (2011) by caching computation in the quadratic search space. TheMASS
algorithm exploits overlap in calculating z-normalized distances by using convolu-
tion and provides the worst-case time complexity of O(nlogn). This is optimally fast,
assuming only (as is universally believed) that the Fast Fourier transform is optimal. In
recent years MASS has emerged as significant development in subsequence similarity
search for many similarity based pattern mining algorithms (Yeh et al. 2016a, b; Zhu
et al. 2016).

Up to this point, the use of DFT (Discrete Fourier Transform) has mostly been
to produce a lower dimensional representations of time series to index time series
(Agrawr et al. 1993), to identify periodicities (Vlachos et al. 2004) to accelerate
pair-wise distance computation (Mueen et al. 2010) and to achieve rotation/phase
invariance (Vlachos et al. 2005). In contrast, we use DFT to perform convolution
which operates at full resolution (as opposed to reduced dimensionality). Convolution
is a century’s-old technique [The earliest use of convolution in English appears in
Wintner (1934)]. MASS allows convolution for time series similarity search under
z-normalized Euclidean distance for the first time.

We discuss more explicit rival algorithms to STAMP/STOMP in the relevant sec-
tions below.

4 Algorithms

We are finally in a position to explain our algorithms. We begin by stating the fun-
damental intuition, which stems from the relationship between distance profiles and
the matrix profile. As Figs. 2 and 3 visually suggest, all distance profiles (excluding
the trivial match region) are upper bound approximations to the matrix profile. More
critically, if we compute all the distance profiles, and take the minimum value at each
location, the result is the matrix profile.

This tells us that if we have a fast way to compute the distance profiles, then we also
have a fast way to compute the matrix profile. As we shall show in the next section,
we do have such an ultra-fast way to compute the distance profiles.

4.1 Ultra-fast similarity search

We begin by introducing a novel ultra-fast Euclidean distance similarity search algo-
rithm calledMASS (Mueen’sAlgorithm forSimilaritySearch) for time series data. The
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Table 1 Calculation of sliding dot products

algorithm does not just find the nearest neighbor to a query and return its distance;
it returns the distance to every subsequence. In particular, it computes the distance
profile, as shown in Fig. 2. The algorithm requires just O(nlogn) time by exploiting
the fast Fourier transform (FFT) to calculate the dot products between the query and
all subsequences of the time series.

We need to carefully qualify the claim of “ultra-fast”. There are dozens of algo-
rithms for time series similarity search that utilize index structures to efficiently locate
neighbors (Ding et al. 2008) While such algorithms can be faster in the best case,
all of these algorithms degenerate to brute force search in the worst case1 (actually,
much worse than brute force search due to the overhead of the index). Likewise, there
are index-free methods that achieve speed-up using various early abandoning tricks
(Rakthanmanon et al. 2012) but they too degrade to brute force search in the worst
case. In contrast, the performance of the algorithms outlined in Tables 1 and reft2 is
completely independent of the data.

Line 1 determines the length of both the time series T and the query Q. In line 2, we
use that information to append T with an equal number of zeros. In line 3, we obtain the
mirror image (i.e. Reverse) of the original query. Reverse of a sequence x1,x2, x3, . . .xn
is xn, xn−1, xn−2, . . . x1. Reversing a sequence takes only linear time. Typically, the
query time series is small, and the cost of reversing is so small it is difficult to reliably
measure. This reversing ensures that a convolution (i.e. “crisscrossed” multiplication)
essentially produces in-order alignment. Because we require both vectors to be the
same length, in line 4 we append enough zeros to the (now reversed) query so that,
like Ta , it is also of length 2n. In line 5, the algorithm calculates Fourier transforms of
the appended-reversed query (Qra) and the appended time series Ta . Note that we use
FFT algorithm which is an O(nlogn) algorithm. The Qraf and the Taf produced in line
5 are vectors of complex numbers representing frequency components of the two time
series. The algorithm calculates the element-wise multiplication of the two complex
vectors and performs inverse FFT on the product. Lines 5–6 are the classic convolution
operation on two vectors (Convolution 2016). Figure 4 shows a toy example of the

1 There aremany such worse case scenarios, including high levels of noise blurring the distinction between
closest and furthest neighbors and thus rendering triangular-inequality pruning and early abandoningworth-
less.
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Q2T1 0 00 00 00 00 0Q1T4Q2T2+Q1T1 Q2T3+Q1T2 Q2T4+Q1T3

Output

InputT2T1 T4T3 00 00 Q1Q2 00 00 00

Fig. 4 A toy example of convolution operation being used to calculate sliding dot products for time series
data. Note the reverse and append operation on T and q in the input. Fifteen dot products are calculated for
every slide. The cells m = 2 to n = 4 from left (red/bold arrows) contain valid products. Table 2 takes this
subroutine and uses it to create a distance profile (see Definition 3) (Color figure online)

Table 2 The MASS algorithm

Procedure MASS(Q, T)
Input: A query Q, and a user provided time series T
Output: A distance profile D of the query Q 
1
2 
3 
4

QT ← SlidingDotProducts(Q, T) // see Table 1
μQ, σQ, ΜT, ΣT ← ComputeMeanStd(Q, T)    // see Rakthanmanon et al. (2012)
D ← CalculateDistanceProfile(QT, μQ, σQ, ΜT, ΣT) // see Equation (1)
return D

sliding dot product function in work. Note that the algorithm time complexity does
not depend on the length of the query (m).

In line 1 of Table 2, we invoke the dot products code outlined in Table 1. The
formula to calculate the z-normalized Euclidean distance D[i] between two time series
subsequence Q and Ti,m using their dot product, QT [i], is (see Supporting Page 2017
for derivation):

D [i] =
√
2m

(
1 − QT [i] − mμQMT [i]

mσQ�T [i]

)
(1)

wherem is the subsequence length,μQ is themean of Q,MT [i] is themean of Ti,m , σQ

is the standard deviation of Q, and �T [i] is the standard deviation of Ti,m . Normally,
it takes O(m) time to calculate the mean and standard deviation for every subsequence
of a long time series. However, here we exploit a technique noted in Rakthanmanon
et al. (2012) in a different context. We cache cumulative sums of the values and square
of the values in the time series. At any stage the two cumulative sum vectors are
sufficient to calculate the mean and the standard deviation of any subsequence of any
length.

Unlike the dozens of time series KNN search algorithms in the literature (Ding et al.
2008), this algorithm calculates the distance to every subsequence, i.e. the distance
profile of time series T . Alternatively, in join nomenclature, the algorithm produces
one full row of the all-pair similarity matrix. Thus, as we show in the next section,
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Table 3 The STAMP algorithm

Procedure STAMP(TA, TB, m)
Input: Two user provided time series, TA and TB, interested subsequence length m
Output: A matrix profile PAB and associated matrix profile index IAB of TA join TB, JAB = A⋈θ1nnB
1 
2 
3 
4 
5 
6 
7 

nB ← Length(TB)
PAB ← infs, IAB ← zeros, idxes ← 1:nB-m+1
for each idx in idxes // in any order, but random for anytime algorithm

D ← MASS(B[idx], TA) // see Table 2
PAB, IAB ← ElementWiseMin(PAB, IAB, D, idx) 

end for
return PAB, IAB

our join algorithm is little more than a loop that computes each full row of the all-pair
similarity matrix and updates the current “best-so-far” matrix profile when warranted.

4.2 The STAMP algorithm

We call our join algorithm STAMP, ScalableTime seriesAnytimeMatrix Profile. The
algorithm is outlined in Table 3. In line 1, we extract the length of TB . In line 2, we
allocate memory and initial matrix profile PAB and matrix profile index IAB . From
lines 3 to line 6, we calculate the distance profiles D using each subsequence B[idx]
in the time series TB and the time series TA. Then, we perform pairwise minimum for
each element in D with the paired element in PAB (i.e., min(D[i], PAB[i]) for i = 0
to length(D)−1.) We also update IAB[i]with idxwhen D[i] ≤ PAB[i] as we perform
the pairwise minimum operation. Finally, we return the result PAB and IAB in line 7.

Note that the algorithm presented in Table 3 computes the matrix profile for the
general similarity join. To modify the current algorithm to compute the self-similarity
join matrix profile of a time series TA, we simply replace TB in line 1 with TA, replace
Bwith A in line 4, and ignore trivial matches in D when performing ElementWiseMin
in line 5.

To parallelize the STAMP algorithm for multicore machines, we simply distribute
the indexes to secondary process run in each core, and the secondary processes use the
indexes they received to update their own PAB and IAB. Once the main process returns
from all secondary processes, we use a function similar to ElementWiseMin to merge
the received PAB and IAB.

4.3 An anytime algorithm for TSAPSS

While the exact algorithm introduced in the previous section is extremely scalable,
there will always be datasets for which time needed for an exact solution is untenable.
We can mitigate this by computing the results in an anytime fashion, allowing fast
approximate solutions (Zilberstein and Russell 1995). To add the anytime nature to
the STAMP algorithm, all we need to do are to ensure a randomized order when we
select subsequences from TB in line 2 of Table 3.
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Fig. 5 (Main) The decrease in RMSE as the STAMP algorithm updates matrix profile with the distance
profile calculated at each iteration. (Inset) The approximate matrix profile at the 10% mark is visually
indistinguishable from the final matrix profile

We can compute a (post-hoc) measurement of the quality of an anytime solution
by measuring the Root-Mean-Squared-Error (RMSE) between the true matrix profile
and the current best-so-far matrix profile. As Fig. 5 suggests, with an experiment on
random walk data, the algorithm converges very quickly.

Zilberstein and Russell (1995) give a number of desirable properties of anytime
algorithms, including Low Overhead, Interruptibility, Monotonicity, Recognizable
Quality, Diminishing Returns and Preemptability (the meanings of these properties
are mostly obvious from their names, but full definitions are at Zilberstein and Russell
1995).

Because each subsequence’s distance profile is bounded below by the exact matrix
profile, updating an approximate matrix profile with a distance profile with pairwise
minimum operation either drives the approximate solution closer the exact solution
or retains the current approximate solution. Thus, we have guaranteed Monotonicity.
From Fig. 5, the approximate matrix profile converges to the exact matrix profile
superlinearly; therefore, we have strong Diminishing Returns. We can easily achieve
Interruptibility and Preemptability by simply inserting a few lines of code between
lines 5 and 6 of Table 3 that read:

5new 

6new 

7new

if CheckForUserInterrupt = TRUE
Report({PAB, IAB}, ‘Here is an approximate answer.’)

if GetUserChoice = ‘further refine’, CONTINUE, else BREAK

The space and time overhead for the anytime property is effectively zero; thus, we
have Low Overhead. This leaves only the property of Recognizable Quality. Here we
must resort to a probabilistic argument. The convergence curve shown in Fig. 5 is very
typical, so we could use past convergence curves to predict the quality of solution
when interrupted on similar data.

4.4 Time and space complexity

The overall complexity of the algorithm is O(n2logn) where n is the length of the
time series. However, our experiments (see Sect. 4.1) empirically suggest the running
time of STAMP’s growth rate is roughly O(n2) instead of O(n2logn). One possible
explanation for this is that the nlogn factor comes from the FFT subroutine. Because
FFT is so important in many applications, it is extraordinarily well optimized. Thus,
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the empirical runtime is very close to linear. This suggests that the running time
can be further reduced by exploiting recent results in the Sparse Fourier Transform
(Hassanieh et al. 2012) or by availing of hardware specialized for FFT. We leave such
considerations for future work.

In contrast to the above, the brute force nested loop approach has a time complexity
of O(n2m). Recall the industrial example in the introduction section. We have m =
10,080, but log(n) = 5.7, so we would expect our approach to be about 1768 times
faster. In fact, we are empirically even faster. The complexity analysis downplays the
details of important constant factors. The nested loop algorithmmust also z-normalize
the subsequences. This either requires O(nm) time, but with an untenable O(nm) space
overhead, or an O(n2m) time overhead. Recall that this is before a single Euclidean
distance calculation is performed.

Finally, we mention one quirk of our algorithm which we inherit from using the
highly optimized FFT subroutine. Our algorithm is fastest when n is an integer power
of two, slower for non-power of two but composite numbers, and slowest when n is
prime. The difference (for otherwise similar values of n) can approach a factor of 1.6x.
Thus, where possible, it is worth contriving the best case by truncation or zero-padding
to the nearest power of two.

4.5 From STAMP to STOMP, an optimally fast algorithm

As impressive as STAMP’s time efficiency is, we can create an even faster algorithm
if we are willing to sacrifice one of STAMP’s features: its anytime nature. This is a
compromise that many users may be willing to make. Because this variant of STAMP
performs an ordered (not random) search, we call it STOMP, Scalable Time series
Ordered-search Matrix Profile.

As we will see, the STOMP algorithm is very similar to STAMP, and at least in
principle it is still an anytime algorithm. However, because STOMPmust compute the
distance curves in a left-to-right order, it is vulnerable to an “adversarial” time series
dataset which has motifs only towards the right side, and random data on the left side.
For such a dataset, the convergence curve for STOMP will similar to Fig. 5, but the
best motifs will not be discovered until the final iterations of the algorithm. This is
important because we expect the most common use of the matrix profile will be in
supportingmotif discovery, given that motif discovery has emerged as one of the most
commonly used time series analysis tools in recent years (Brown et al. 2013; Mueen
et al. 2009; Shao et al. 2013; Yoon et al. 2015). In contrast, STAMP is not vulnerable
to such an “adversarial arrangement of motifs” argument as it computes the distance
profiles in random order (Table 3, line 3). With this background stated, we are now in
a position to explain how STOMP works.

In Sect. 4.1 we introduced a formula to calculate the z-normalized Euclidean dis-
tance of two time series subsequences Q and Ti,m using their dot product. Note that
the query Q is also a subsequence of a time series; let us call this time series the
Query Time Series, and denote it T Q (T Q = T if we are calculating self-join). To
better explain the STOMP algorithm, here we denote query Q as T Q

j,m , where j is the

starting position of Q in T Q . We denote the z-normalized Euclidean distance between
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T Q
j,m and Ti,m as Dj,i , and their dot product as QT j,i . Equation (1) in Sect. 4.1 can

then be rewritten as:

Dj,i =
√
2m

(
1 − QTj,i − mμ jμi

mσ jσi

)
(2)

where m is the subsequence length, μ j is the mean of T Q
j,m , μi is the mean of Ti,m , σ j

is the standard deviation of T Q
j,m , and σi is the standard deviation of Ti,m .

The technique introduced in Rakthanmanon et al. (2012) allows us to obtain the
means and standard deviations with O(1) time complexity; thus, the time required to
compute Dj,i depends mainly on the time required to compute QTj,i . Here we claim
that QT j,i can also be computed in O(1) time, once QT j−1,i−1 is known.

Note that QT j−1,i−1 can be decomposed as:

QTj−1,i−1 =
m−1∑
k=0

T Q
j−1+kTi−1+k (3)

and QT j,i can be decomposed as:

QTj,i =
m−1∑
k=0

T Q
j+kTi+k (4)

Thus we have

QTj,i = QTj−1,i−1 − T Q
j−1Ti−1 + T Q

j+m−1Ti+m−1 (5)

Our claim is thereby proved.
The relationship between QT j,i and QT j−1,i−1 indicates that once we have the

distance profile of time series T with regard to T Q
j−1,m , we can obtain the distance

profile with regard to T Q
j,m in just O(n) time, which removes an O(logn) complexity

factor from the MASS algorithm in Table 2.
However, we will not be able to benefit from the relationship between QT j,i and

QT j−1,i−1 when j = 1 or i = 1. This problem is easy to solve: we can simply pre-
compute the dot product values in these two special cases with MASS algorithm in
Table 2. Concretely, we use MASS(T Q

1,m, T ) to obtain the dot product vector when

j = 1, and we use MASS(T1,m, T Q) to obtain the dot product vector when i = 1.
The two dot product vectors are stored in memory and used when needed.

We call this algorithm the STOMP algorithm, as it exploits the fact that we evaluate
the distance profiles in-Order. The algorithm is outlined in Table 4.

The algorithm begins in Line 1 by evaluating the matrix profile length l. Lines 2
calculates the first distance profile and stores the corresponding dot product in vector
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Table 4 The STOMP algorithm

Procedure STOMP(TA, TB, m)
Input: Two user provided time series, TA and TB, interested subsequence length m
Output: A matrix profile PAB and associated matrix profile index IAB of TA join TB, JAB = A⋈θ1nnB
1
2 
3 
4 
5 
6 
7 
8 
9 

10
11
12
13
14

nB ← Length(TB), l ← nB-m+1
D,QT ← MASS(B[1], TA) 
DB,QTB ← MASS (A[1], TB) 
PAB ← D, IAB ← ones  // initialize matrix profile and matrix profile index
for i = 2 to l // in-order evaluation

for j= l downto 2 // update dot product
QT[j] ← QT[j-1] - TA[j-1]× TB[i-1] + TA[j+m-1]× TB[i+m-1] 

end for
QT[1] ← QTB[i] 
μQ, σQ, ΜT, ΣT ← ComputeMeanStd(B[i], TA)    // see Rakthanmanon et al. (2012)
D ← CalculateDistanceProfile(QT, μQ, σQ, ΜT, ΣT) 
PAB, IAB ← ElementWiseMin(PAB, IAB, D, i) 

end for
return PAB, IAB

QT. In Line 3 the algorithm pre-calculates the dot product vector QTB for later use.
Note that in lines 2 and 3, we require the similarity search algorithm in Table 2 to
not only return the distance profile D, but also the vector QT in its first line. Line 4
initializes the matrix profile and matrix profile index. The loop in lines 5–13 evaluates
the distance profiles of the subsequences of B in sequential order, with lines 6–8
updating QT according to the mathematical formula in Equation (5). Line 9 updates
QT [i]with the pre-computed result from line 3. Finally, lines 10–12 evaluate distance
profile and update matrix profile.

The time complexity of STOMP is O(n2); thus, we have an achieved a O(logn)

factor speedup over STAMP. Moreover, it is clear that O(n2) is optimal for any full-
join algorithm in the general case. The O(logn) speedup clearly make little difference
for small datasets, for instance those with just a few tens of thousands of datapoints.
However, as we tackle the datasets with millions of datapoints, something on the wish
list of seismologists for example Beroza (2016) and Yoon et al. (2015) this O(logn)

factor begins to produce a very useful order-of-magnitude speedup.
As noted above, unlike the STAMP algorithm, STOMP is not really a good anytime

algorithm, even though in principle we could interrupt it at any time and examine the
current best-so-far matrix profile. The problem is that closest pairs (i.e. the motifs)
we are interested in might be clustered at the end of the ordered search, defying
the critical diminishing returns property (Zilberstein and Russell 1995) In contrast,
STAMP’s random search policy will, with very high probability, stumble on these
motifs early in the search.

In fact, it may be possible to obtain the best of both worlds in meta-algorithm
by interleaving periods of STAMP’s random search with periods of STOMP’s faster
ordered search. This meta-algorithm would be slightly slower than pure STOMP, but
would have the anytime properties of STAMP. For brevity we leave a fuller discussion
of this issue to future work.
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Table 5 The STOMPI algorithm

Procedure STOMPI(TA, t, m, PAA, IAA, QT, ΜT, ΣT )
Input: The original time series TA, a new data point t following TA, subsequence length m, the 
matrix profile PAA and its associated matrix profile index IAA of TA, dot product vector QT, mean 
vector ΜT and standard deviation vector ΣT

Output: The updated matrix profile PAA,new and its matrix profile index IAA,new corresponding to 
the new time series TA,new= TA, t, the updated dot product vector QTnew, updated mean vector ΜT, 

new and standard deviation vector ΣT,new

1
2 
3 
4 
5 
6 
7 
8 
9 

10
11
12
13
14
15
16
17

nA ← Length(TA), l ← nA-m+1, TA,new = [TA, t], S ← TA,new [l+1:nA+1]
tdrop ← TA,new[l] // tdrop is the first item of the last subsequence of TA

for j= l+1 downto 2                  // update dot products with equation (5)
QTnew[j] ← QT[j-1] - TA,new[j-1]× tdrop + TA,new [j+m-1]× t

end for
QTnew[1] ← 0
for j= 1 to m                  // calculate the first dot product with simple brute-force

QTnew [1] ← QTnew[1] + TA,new[j] × S[j]
end for
μQ ← ΜT[l] + (t - tdrop) / m // update mean of S
σQ ← ΣT[l]2 + ΜT[l]2 + (t2 - tdrop

2) / m - μQ
2 // update standard deviation of S

ΜT,new ← [ΜT, μQ], ΣT,new ← [ΣT, σQ] 
D ← CalculateDistanceProfile(QTnew, μQ, σQ, ΜT,new, ΣT,new) 
PAA, IAA ← ElementWiseMin(PAA, IAA, D[1:l], l+1) // note that we ignore trivial match here
pAA,last, iAA,last ← FindMin(D) // note that we ignore trivial match here
PAA,new ← [PAA, pAA,last], IAA,new ← [IAA, iAA,last] 
return PAA,new, IAA,new, QTnew, ΜT, new, ΣT,new

4.6 Incrementally maintaining TSAPSS

Up to this point we have discussed the batch version of TSAPSS. By batch, we mean
that the STAMP/STOMP algorithms need to see the entire time series TA and TB (or
just TA if we are calculating the self-similarity join matrix profile) before creating
the matrix profile. However, in many situations it would be advantageous to build the
matrix profile incrementally. Given that we have performed a batch construction of
matrix profile, when new data arrives, it would clearly be preferable to incrementally
adjust the current profile, rather than starting from scratch.

Because the matrix profile solves both the times series motif and the time series
discord problems, an incremental version of STAMP/STOMP would automatically
provide the first incremental versions of both these algorithms. In this section, we
demonstrate that we can create such an incremental algorithm.

By definition, an incremental algorithm sees data points arriving one-by-one in
sequential order, which makes STOMP a better starting point than STAMP. Therefore
we name the incremental algorithm STOMP I (STOMP Incremental). For simplicity
and brevity, Table 5 only shows the algorithm to incrementally maintain the self-
similarity join. The generalization to general similarity joins is obvious.

As a new data point t arrives, the size of the original time series TA increases by
one. We denote the new time series as TA,new, and we need to update the matrix profile
PAA,new and its associated matrix profile index IAA,new corresponding to TA,new. For
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clarity, note that the input variablesQT , MT and�T are all vectors, whereQT [i] is the
dot product of the i th and last subsequences of TA; MT [i] and �T [i] are, respectively,
the mean and standard deviation of the i th subsequence of TA.

In line 1, S is a new subsequence generated at the end of TA,new. Lines 2–5 evaluate
the new dot product vector QTnew according to Equation (5), where QTnew[i] is the
dot product of S and the i th subsequence of TA,new. Note that the length of QTnew
is one item longer than that of QT. The first dot product QTnew[1] is a special case
where Equation (5) is not applicable, so lines 6–9 calculate with simple brute-force. In
lines 10–12 we evaluate the mean and standard deviation of the new subsequence S,
and update the vectorsMT,new and �T,new. After that we calculate the distance profile
D with regard to S and TA,new in line 13. Then, similar to STAMP/STOMP, line 14
performs a pairwise comparison between every element in D and the corresponding
element in PAA to see if the corresponding element in PAA needs to be updated. Note
that we only compare the first l elements of D here, since the length of D is one
item longer than that of PAA. Line 15 finds the nearest neighbor of S by evaluating
the minimum value of D. Finally, in line 16, we obtain the new matrix profile and
associated matrix profile index by concatenating the results in line 14 and line 15.

The time complexity of the STOMPI algorithm is O(n)where n is the length of size
of the current time series TA. Note that as we maintain the profile, each incremental
call of STOMPI deals with a one-item longer time series, thus it gets very slightly
slower at each time step. Therefore, the best way to measure the performance is to
compute the Maximum Time Horizon (MTH), in essence the answer to this question:
“Given this arrival rate, how long can we maintain the profile before we can no longer
update fast enough?”

Note that the subsequence length m is not considered in the MTH evaluation, as
the overall time complexity of the algorithm is O(n), which is independent of m. We
have computed the MTH for two common scenarios of interest to the community.

• House Electrical Demand (Murray et al. 2015): This dataset is updated every 8 s.
By iteratively calling the STOMPI algorithm, we can maintain the profile for at
least twenty-five years.

• Oil Refinery: Most telemetry in oil refineries and chemical plants is sampled at
once a minute (Tucker and Liu 2004). The relatively low sampling rate reflects
the “inertia” of massive boilers/condensers. Even if we maintain the profile for
40years, the update time is only around 1.36 s. Moreover, the raw data, matrix
profile and index would only require 0.5 gigabytes of main memory. Thus the
MTH here is forty-plus years.

For both these situations, given projected improvements in hardware, these numbers
effectively mean we can maintain the matrix profile forever.

As impressive as these numbers are, they are actually quite pessimistic. For sim-
plicity we assume that every value in the matrix profile index will be updated at each
time step. However, empirically, much less than 0.1% of them need to be updated. If
it is possible to prove an upper bound on the number of changes to the matrix profile
index per update, then we could greatly extend the MTH, or, more usefully, handle
much faster sampling rates. We leave such considerations for future work.
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4.7 GPU-STAMP

As we will show in the next section, both STAMP/STOMP are extremely efficient,
much faster than real time for many tasks of interest in music processing or motion
capture processing. Nevertheless, there are some domains that have a boundless desire
for larger and larger joins. For example, seismologistswould like to do cross correlation
(i.e. joins) ondatasets containing tens ofmillions of data point (Beroza2016;Yoonet al.
2015). For such problems, it may be worth the investment in specialized hardware.
Because our algorithms, unlike most join algorithms, do not require complex data
structures, indexes or random access, they are particularly amiable to porting to GPUs.

To show this, we implemented STAMP in CUDA C++, which allows for massively
parallel execution on NVIDIAGPUs. STOMP can also be ported to GPU, but we only
focus on GPU STAMP due to the page limits. The GPU implementation of STOMP
is left for future work. As we will show in Sect. 5, we can run STAMP on a GPU
up to thirty times faster than a CPU implementation. We do this by exploiting highly
optimized CUDA libraries that execute each of the STAMP’s subroutines such as FFT
and distance calculation in parallel on a GPU. For example, to evaluate the distance
profile, we assign a thread to calculate each single element in the profile. As these
elements are independent of each other, we can launch as many threads as possible to
compute the distance profile in parallel. Assuming that we have τ concurrent threads,
it is possible to remove a constant factor of τ from the time complexity of the distance
profile calculation as well as many of the other STAMP subproblems.

4.8 STAMP and STOMP allow a perfect “progress bar”

Both the STAMP and STOMP algorithms have an interesting property for a motif
discovery/join algorithm, in that they both take deterministic and predicable time. This
is very unusual and desirable property for an algorithm in this domain. In contrast,
the two most cited algorithms for motif discovery (Li et al. 2015; Mueen et al. 2009),
while they can be fast on average, take an unpredictable amount of time to finish. For
example, suppose we observe that either of these algorithms takes exactly one hour to
find the best motif on a particular dataset with m = 500 and n = 100,000. Then the
following are all possible:

• Settingm to be a single data point shorter (i.e.m = 499), could increase or decrease
the time needed by over an order of magnitude.

• Decreasing the length of the dataset searched by a single point (that is to say, a
change of just 0.001%), could increase or decrease the time needed by over an
order of magnitude.

• Changing a single value in the time series (again, changing only 0.001% of the
data), could increase or decrease the time needed by over an order of magnitude
(see “Appendix” for more details on these unintuitive observations).

Moreover, if we actually made the above changes, we would have no way to know in
advance how our change would impact the time needed.
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In contrast, for both STAMP and STOMP (assuming that m 	 n), given only n,
we can predict how long the algorithm will take to terminate, completely independent
of the value of m and the data itself.

To do this we need to do one calibration run on the machine in question. With a
time series of length n, we measure δ, the time taken to compute the matrix profile.
Then, for any new length nnew, we can compute δrequired the time needed as:

δrequired = δ

n2
× n2new

So long as we avoid trivial cases, such as that m ∼ n or nnew and/or n are very small,
this formula will predict the time needed with an error of less than 5%.

5 Experimental evaluation

We begin by stating our experimental philosophy. We have designed all experiments
such that they are easily reproducible. To this end,we have built awebpage (Supporting
Page 2017) which contains all datasets and code used in this work, together with
spreadsheets which contain the raw numbers and some supporting videos.

Given page limits and the utility of our algorithm for a host of existing and new data
mining tasks, we have chosen to include exceptionally broad but shallow experiments.
We have conducted such deep detailed experiments and placed them at Supporting
Page (2017). Unless otherwise statedwemeasurewall clock time on an Intel i7@4GHz
with 4 cores.

This section is organized as follows. Section 5.1 analyzes the scalability of our
algorithms. In Sect. 5.2 we compare our algorithms with two state-of-the-art methods.
Section 5.3 shows how the anytime property of STAMP can be exploited to quickly
provide an approximate solution tomotif discovery problems. In Sect. 5.4 we show the
application of our algorithms in comparing multiple time series, and in Sect. 5.5 we
show how our algorithms can be used to discover motifs/discords, or to do semantic
segmentation within a single time series.

5.1 Scalability of profile-based self-join

Because the time performance of STAMP is independent of the data quality or any
user inputs (there are none except the choice of m, which does not affect the speed),
our scalability experiments are unusually brief; for example, we do not need to show
how different noise levels or different types of data can affect the results.

In Fig. 6 we show the time required for a self-joinwithm fixed to 256, for increasing
long time series.

In Fig. 7, we show the time required for a self-join with n fixed to 217, for increasing
long m. Again recall that unlike virtually all other time series data mining algorithms
in the literature whose performance degrades for longer subsequences (Ding et al.
2008; Mueen et al. 2009) the running time of both STAMP and STOMP does not
depend on m.
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Fig. 7 Time required for both STAMP and STOMP self-join with n = 217, varying m

Note that the time required for the longer subsequences is slightly shorter. This is
because the number of pairs that must be considered for a time series join is (n−m)/2,
so as m is becomes larger, the number of comparisons becomes slightly smaller.

We can further exploit the simple parallelizability of the algorithm by using four
16-core virtualmachines onMicrosoft Azure to redo the two-million join (n = 221 and
m = 256) experiment. By scaling up the computational power, we have reduced the
running time from 4.2 days to just 14.1 hours. This use of cloud computing required
writing just few dozen lines of simple additional code (Supporting Page 2017).

In order to see the improvements of STOMP over STAMP, we repeated the last
two sets of experiments. In Fig. 6 we also show the time required for a self-join with
m fixed to 256, for increasing long time series. As expected, the improvements are
modest for smaller datasets, but much greater for the larger datasets, culminating in a
4.7× speedup for the ∼ 2 million length time series.

In Fig. 7, we show the time required for a self-join with n fixed to 217, for increasing
long m. Once again note that the running time of STOMP does not depend on m.
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As we noted in Sect. 4.7, instead of abandoning the anytime property of STAMP to
gain speedup with STOMP, we can instead gain speedup by exploiting GPUs. Once
again we repeated the two experiments shown in Figs. 6 and 7, this time considering
the performance of GPU-STAMP. We used an NVIDIA Tesla K40 GPU with 2880
cores and 12GB memory. In Table 6 we show the time required for a self-join with m
fixed to 256, for increasing long time series.

InTable 7,we show the time required for a self-joinwithn fixed to 217, for increasing
long m, using GPU-STAMP.

By comparing the values in Table 6 to STAMP’s values in Fig. 6, we see that
GPU-STAMP achieved a 30× speedup over original STAMP for large datasets.

Note that the parallelized version of MASS (Table 2) is a basic component of
GPU-STAMP (see Table 3). To further investigate the scalability of GPU-STAMP,
here in Table 8, we show how the average runtime of the parallelized version of
MASS changes as n increases. To obtain this average runtime, we measured the run-
time for GPU-STOMP, then divided it by n − m + 1 (number of iterative calls of
MASS).

Note that to achievemaximum speedup forMASS, the number of threads we assign
on the GPU is always equal to the time series length n. We can see that up to n = 216,
the average runtime does not change much; this is because the GPU resources are not
fully used and all n threads can be executed in parallel. When n becomes larger than
216, the runtime grows linearly as n increases; this is because the kernel has utilized
the maximum computing throughput of the GPU, and the work needs to be partially
serialized.

Given that we can improve STAMP, both by using the STOMP variant and by
using GPU-STAMP, it is natural to ask if a GPU accelerated version of STOMP
would further speed up the time needed to compute the matrix profile. The answer
is yes; however, we defer such experiments for another venue, in order to do
justice to the careful optimizations required when porting STOMP to a GPU
framework.

Table 6 Time required for GPU-STAMP self-join with m = 256, varying n

Value of n 217 218 219 220 221

Time Required 0.90 min 3.28 min 12.48 min 49.32 min 3.24 hours

Table 7 Time required for GPU-STAMP self-join with n = 217, varying m

Value of m 64 128 256 512 1,024
Time Required 54 sec 54 sec 54 sec 54 sec 54 sec

Table 8 Time required for the parallelized version of MASS with m = 256, varying n

Value of n 210 211 212 213 214 215 216 217 218 219 220 221

Average 
Time (ms) 0.16 0.17 0.22 0.24 0.24 0.20 0.26 0.43 0.75 1.42 2.82 5.56
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5.2 Comparisons to rival methods

Unlike all algorithms we are aware of, our timing results are independent of the
data. In contrast, most traditional algorithms depend very critically on the data. For
example, Luo explains how they contrived a dataset to have some relatively close
pairs (“We add another group of vectors acting as the near-duplicates of the vec-
tors”) to give reasonable speed-up numbers (2012). Against such algorithms, even
if they were competitive to ours “out-of-the-box,” we could just add noise to the
time series and force those algorithms to perform drastically slower, as our algo-
rithm’s time was unaffected. Indeed, Fig. 18 right can be seen as a special case of
this.

In addition, STAMP/STOMP time requirements are also independent of the dimen-
sionality (i.e.m, the length of the subsequences). For example, in the following section
we have a query length m of 60,000. While the “break-even” point depends on the
intrinsic (not actual) dimensionality of the data, no metric indexing technique out-
performs brute force search for dimensionalities of much greater than a few hundred,
much less sixty thousand. For this dimensionality issue, Fig. 18 left can be seen as a
special case of this problem.

To empirically show these two advantages of STOMP/STOMP over traditional
methods, we compare it to the recently introduced Quick-Motif framework (Li
et al. 2015), and the more widely known MK algorithm (Mueen et al. 2009). The
Quick-Motif method was the first technique to do exact motif search on one million
subsequences.

To be fair to our rival methods, we do not avail of GPU acceleration (we compare
the rival methods with the CPU version of STOMP, not GPU-STAMP), but use the
identical hardware (a PC with Intel i7-2600@3.40GHz) and programming language
for all algorithms. We use the original author’s executables (Quick Motif 2015) to
evaluate the runtime of both MK and Quick-Motif, and we measure the runtime of
STOMP based on its C++ implementation.

In choosing the dataset to experiment on, we noticed that the memory foot-
print for Quick-Motif tends to be very large for noisy data. For example, for a
seismology data with m = 200, n = 218, we measured the Quick-Motif mem-
ory footprint as large as 1.42 GB, while STOMP requires only 14MB memory for
the same data, which is less than 1/100 the size. The huge memory requirement
for complex and noisy datasets makes it impossible to compare the STOMP algo-
rithm with Quick-Motif and MK, since Quick-Motif and MK often crashed with
an out-of-memory error as we varied the value of m. Therefore, instead of com-
paring performance of the algorithms on noisy datasets such as seismology data,
here we experimented on the much smoother ECG dataset (used in Rakthanmanon
et al. 2013a), which is an ideal dataset for both MK and Quick-Motif to achieve
their best performance (in both time and space). Figure 8 shows the time cost
and memory footprint of the three algorithms for the ECG dataset with a fixed
length n = 218 and varying subsequence length m.

We can see that both the runtime andmemory footprint for STOMP are independent
of the subsequence length. In contrast, Quick-Motif and MK both scale poorly in
subsequence length in both runtime and memory usage. The reason that we are unable
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Fig. 8 (Left) Speed comparison of STOMP, MK and Quick-Motif for the ECG data, varying m (right)
Memory footprint of the three methods, varying m

to show the runtime and memory consumption for MK for m = 1024, 2048 and 4096
is that it runs out of memory in these cases. The memory footprint for Quick-Motif is
relatively smaller than MK; however, note that for Quick-Motif the memory footprint
is not monotonic in m, as reducing m from 4096 to 2048 requires three times as much
memory. This is not a flaw in implementation (we used the author’s own code) but a
property of the algorithm itself. Both algorithms can be fast in ideal situations, with
smooth data, short subsequence lengths, and “tight” motifs in the data. But both can,
and do, require very large memory space and degenerate to brute-force search in less
ideal situations (see “Appendix”).

Note that because the space overhead of our algorithm is extremely small, just
O(n), we can comfortably fit everything we need into main memory. For example, for
the n = 221 experiments, the raw data, the matrix profile and the matrix profile index
together require just 50.3 megabytes of memory. In contrast, the handful of attempts
to do time series joins that we are aware of all use indices (Lian and Chen 2009; Luo
et al. 2012; Ma et al. 2016) and as such have a space overhead of O(nD), where D is
the reduced dimensionally used to index the data, a number typically between eight
and twenty. In fact, even this bloated O(nD) hides large constants in the overhead for
the index structure. As a result, even for datasets smaller than 221, these approaches
are condemned to be disk-based. It is hard to imagine any disk-based algorithm being
competitive with a main memory algorithm, even if you ignore the time required to
build the index and write the data to disk, and even if you only consider threshold joins
with a very conservative threshold.

Having said all that, and adding a further disclaimer that it is dubious to compare
CPU times across papers that use different machines, we note the following. All exist-
ing TSAPSS methods require data transformations, the building of indexes and the
creation of data structures before actually attempting the joins. As best as we can deter-
mine, our index-free STAMP or STOMP would finish well before the rival methods
had even finished building the indexes and performed other required preprocessing
needed before comparing a single pair of subsequences (Luo et al. 2012; Ma et al.
2016).

In the rest of the experimental sectionwe concentrate on showingmultiple examples
of the utility of matrix joins, both for multiple tasks and on multiple domains.
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5.3 The utility of anytime STAMP

In the early 1980s it was discovered that in telemetry of seismic data recorded by the
same instrument from sources in given region there will be many similar seismograms
(Geller and Mueller 1980). Geller and Mueller suggested that “The physical basis of
this clustering is that the earthquakes represent repeated stress release at the same
asperity, or stress concentration, along the fault surface” (1980). These repeated pat-
terns are call “doublets” in seismology, and exactly correspond to the more general
term “time series motifs”. Figure 9 shows an example of doublets from seismic data. A
more recent paper notes that many fundamental problems in seismology can be solved
by joining seismometer telemetry in search of these doublets (Yoon et al. 2015), includ-
ing the discovery of foreshocks, aftershocks, triggered earthquakes, swarms, volcanic
activity and induced seismicity (we refer the interested reader to the original paper for
details). However, the paper notes a join with a query length of 200 on a data stream
of length 604,781 requires 9.5 days. Their solution, a clever transformation of the data
to allow LSH based techniques, does achieve significant speedup, but at the cost of
false negatives and the need for significant parameter tuning.

The authors kindly shared their data and, as we hint at in Fig. 10, confirmed that
our STOMP approach does not have false negatives.

We repeated the n = 604,781, m = 200 experiment and found it took just 1.7
hours to finish. As impressive as this is, we would like to claim that we can do even
better.

0 2 4 6 8 10 12 14 16 18 20
seconds

Time:19:23:48.44 Latitude:37.57 Longitude:-118.86 Depth: 5.60 Magnitude: 1.29
Time:20:08:01.13 Latitude:37.58 Longitude:-118.86 Depth: 4.93 Magnitude: 1.09

Fig. 9 A set of doublets extracts from the seismic data recorded at a station near Mammoth Lakes on
February 17th, 2016. One occurrence (fine/blue) is overlaid on top of another occurrence (bold/orange) that
happened about 45min later (Color figure online)

4,000 5,000 6,000 7,000 8,000 9,0000
5
10
15

Seismic time series (excerpt) 

Matrix Profile

Fig. 10 (Top) An excerpt of a seismic time series aligned with its matrix profile (bottom). The ground
truth provided by the authors of Yoon et al. (2015) requires that the events occurring at time 4050 and 7800
match
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Fig. 11 (Top) An excerpt of the seismic data that is also shown in Fig. 10. (Top-to-bottom) The approxima-
tions of the matrix profile for increasing interrupt times. By the time we have computed just 0.25% of the
calculations required for the full algorithm, the minimum of the matrix profile points to the ground truth

Table 9 An algorithm for converting DNA string sequence to DNA time series (Color table online)

Procedure ConvertDNAStringToTimeSeries(chromosome)
Input: DNA string sequence chromosome
Output: DNA sequence in form of time series T
1
2 
3 
4 
5 
6 
7

T1 = 0;
for i = 1 to length(chromosome) 

if chromosomei = A, then Ti+1 = Ti + 2 
if chromosomei = G, then Ti+1 = Ti + 1
if chromosomei = C, then Ti+1 = Ti - 1 
if chromosomei = T, then Ti+1 = Ti - 2 

end for

The seismology dataset offers an excellent opportunity to demonstrate the utility
of the anytime version of our algorithm. The authors of Yoon et al. (2015) revealed
their long-term ambition of mining even larger datasets (Beroza 2016). In Fig. 11 we
repeated the experiment with the snippet shown in Fig. 10, this time reporting the
best-so-far matrix profile reported by the STAMP algorithm at various milestones.
Even with just 0.25% of the distances computed (that is to say, 400 times faster), the
correct answer has emerged.

Thus, we can provide the correct answers to the seismologists in just minutes, rather
than the 9.5 days originally reported.

To show the generality of this anytime feature of STAMP, we consider a very
different dataset. As shown in Table 9, it is possible to convert DNA to a time series
(Rakthanmanon et al. 2012)We converted the Y-chromosome of the Chimpanzee (Pan
troglodytes) this way.

While the original string is of length 25,994,497, we downsampled by a factor
of twenty-five to produce a time series that is little over one-million in length. We
performed a self-join with m = 60,000. Figure 12 bottom shows the best motif
is so well conserved (ignoring the first 20%), that it must correspond to a recent
(in evolutionary time) gene duplication event. In fact, in a subsequent analysis we
discovered that “much of the Y (Chimp chromosome) consists of lengthy, highly similar
repeat units, or ‘amplicons’” (Hughes et al. 2010).

This demanding join would take just over a day of CPU time (see Fig. 6). However,
using anytime STAMP we have the result shown above after doing just 0.021% of the
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Pan troglodytes Y-chromosome 

0 60,000

12,749,475 to 14,249,474 bp
622,725 to 2,122,724 bp

Fig. 12 (Top) The Y-chromosome of the Chimp in time series space with its matrix profile. (Bottom) A
zoom-in of the top motif discovered using anytime STAMP, we believe it to be an amplicon (Hughes et al.
2010)
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Queen-Bowie

1,000 2,000

-10
0

10

Vanilla Ice

Fig. 13 Two songs represented by just the 2nd MFCC at 100Hz. We recognize that it is difficult to see any
structure in these times series; however, this difficulty is the motivation for this experiment

computations, in about 18 s. At Supporting Page (2017) we have videos that intuitively
show the rapid convergence of the anytime variant of STAMP.

5.4 Profile-based similarity join of multiple time series

In this section we show the usage of Matrix Profile-based similarity join on the com-
parison of multiple time series. The first and second examples are more familiar to
APSS users, quantifying what is similar between two time series. The third exam-
ple, quantifying what is different between two time series (similar to contrast sets), is
novel and can only be supported by threshold-free algorithms that report the nearest
neighbor for all objects. The fourth example shows how the common characteristic
among a set of time series, the time series shapelet, can be extracted with our method.

5.4.1 Time series set similarity: case study in music processing

Given two (or more) time series collected under different conditions or treatments, a
data analyst may wish to know what patterns (if any) are conserved between the two
time series. To the best of our knowledge there is no existing tool that can do this,
beyond interfaces that aid in a manual visual search (Hao et al. 2012). To demonstrate
the utility of automating this, we consider a simple but intuitive example. Figure 13
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Fig. 14 The result of JAB (Queen-Bowie (red/bold), Vanilla-Ice (green/fine)) produces a strongly conserved
five second region (Color figure online)

shows the raw audio of two popular songs converted to Mel Frequency Cepstral Coef-
ficients (MFCCs). Specifically, the songs used in this example are “Under Pressure”
by Queen and David Bowie and “Ice Ice Baby,” by the American rapper Vanilla Ice.
Normally, there are 13 MFCCs; here, we consider just one for simplicity.

Even for these two relatively short time series, visual inspection does not offer
immediate answers. The problem here is compounded by the size reproduction, but
is not significantly easier with large-scale (Supporting Page 2017) or even interactive
graphic tools (Hao et al. 2012).

We ran JAB (Queen-Bowie, Vanilla Ice) on these datasets with m = 500 (5 s), the
best match, corresponding the minimum value of the matrix profile PAB, is shown in
Fig. 14.

Readers may know the cause for this highly conserved subsequence. It corresponds
to the famous baseline of “Under Pressure,” which was sampled (plagiarized) by
Vanilla Ice in his song. The join took 2.67 s. While this particular example is only of
interest to the music processing community (Dittmar et al. 2012), the ability to find
conserved structure in apparently disparate time series could open many avenues of
research in medicine and industry.

5.4.2 Time series set similarity: DNA joins revisited

In Fig. 12 we showed the utility of STAMP for self-joins of DNA. We now revisit
this domain, this time considering AB-joins. Here we use AB-joins to aid in the hunt
for inversions between the genomic sequences of related organisms. Inversions are
chromosome rearrangements in which a segment of a chromosome is reversed end to
end. We consider two of the 180 known strains of Legionella, L. pneumophila Paris
and L. pneumophila Lens, which consist of 3,503,504 and 3,345,567 bp respectively
(Gomez-Valero et al. 2011). After conversion to time series of the same lengths, we ran
JAB (Paris, Lens) with a subsequence length of 100,000. We discovered that most the
matrix profile had very lowvalues, unsurprising given the relatedness of the two strains.
However, one region of the matrix profile, almost exactly in the middle, reported a
much larger difference. To see if this greater distance was the result of an inversion,
we simply flipped one of the sequences left-to-right, performing JAB (reverse(Paris),
Lens). Gratifyingly, as shown in Fig. 15 bottom, this time the best matching section
corresponded exactly to the previously poor matching section.

As before, we are not claiming any particular biological significance or utility of
this finding. What is remarkable is the scalability of the approach. We joined two time
series, both over three million data points long, and we did this for a subsequence
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Fig. 15 (Top) The entire genomes of L. pneumophila Paris (red/fine) and L. pneumophilaLens (green/bold)
after conversion to time series. (Bottom) A region of approximately 100,000 bp is strongly conserved, after
reversing one of the sequences. (Inset) A dot-plot alignment of the two organisms created by more con-
ventional analysis (Gomez-Valero et al. 2011) confirm the locations and length of the inversion discovered
(Color figure online)

length of 100,000. By exploiting the anytime property of STAMP, and stopping the
algorithm after it had completed just 0.1% of the operations, we were able to obtain
these results in under 10min.

5.4.3 Time series difference

We introduce the Time Series Diff (TSD) operator, which informally asks “What
happens in time series TA that does not happen in time series TB?” Here TA/TB
could be an ECG before a drug is administered/after a drug is administered, telemetry
before a successful launch/before a catastrophic launch, etc. The TSD is simply the
subsequence referred to by the maximum value of the JAB join’s profile PAB.

We begin with a simple intuitive example. The UK and US versions of the Harry
Potter audiobook series are performed by different narrators, and have a handful of
differences in the text. For example, the UK version contains:
Harry was passionate about Quidditch. He had played as Seeker on the Gryffindor
house Quidditch team ever since his first year at Hogwarts and owned a Firebolt, one
of the best racing brooms in the world...

But the corresponding USA version has:
Harry had been on the Gryffindor House Quidditch team ever since his first year at
Hogwarts and owned one of the best racing brooms in the world, a Firebolt.

As shown in Fig. 16, we can convert the audio corresponding to these snippets into
MFCCs and invoke a JAB join set to produce a matrix profile PAB that represents
the differences between them. As Fig. 16 left shows, the low values of this profile
correspond to identical spoken phrases (in spite of having two different narrators).
However, here we are interested in the differences, the maximum value of the profile.
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As we can see in Fig. 16 right, here the profile corresponds to a phrase unique to the
USA edition.

The time required to do this is just 0.044s, much faster than real time given the
audio length. While this demonstration is trivial, in Supporting Page (2017) we show
an example applied to ECG telemetry.

5.4.4 Time series shapelet discovery

Shapelets are time series subsequences which are in some sense maximally represen-
tative of a class (Rakthanmanon andKeogh 2013b; Ye andKeogh 2009). Shapelets can
be used to classify time series (essentially, the nearest shapelet algorithm), offering the
benefits of speed, intuitiveness and at least on some domains, significantly improved
accuracy (Rakthanmanon and Keogh 2013b). However, these advantages come at the
cost of a very expensive training phase, with O(n2m4) time complexity, where m is
the length of the longest time series object in the dataset, and n is the number of
objects in the training set. In order to mitigate this high time complexity, researchers
have proposed various distance pruning techniques and candidate ranking approaches
for both the admissible (Ye and Keogh 2009) and approximate (Rakthanmanon and
Keogh 2013b) shapelet discovery. Nevertheless, scalability remains the bottleneck.

Because shapelets are essentially supervised motifs, and we have shown that
STOMP can find motifs very quickly, it is natural to ask if STOMP has implica-
tions for shapelet discovery. While space limitations prohibit a detailed consideration
of this question, we briefly sketch out and test this possibility as follows.

As shown in Fig. 17, we can use matrix profile to heuristically “suggest” candidate
shapelets. We consider two time series TA (green/bold) and TB (pink/light) with class
1 and class 0 being their corresponding class label, and we take JAB, JAA, JBA and
JBB. Our claim is the differences in the heights of PAB, PAA (or PBA, PBB) are strong
indicators of good candidate shapelets. The intuition is that if a discriminative pattern
is present in, say, class 1 but not class 0, then we expect to see a “bump” in the PAB

(the intuition holds if the order of the classes are reversed). A significant difference
(quantified by a threshold shown in dashed line) between the heights of PAA and PAB

curves therefore indicates the occurrence of good candidate shapelets, patterns that
only occur in one of the two classes.

The time taken to compute all four matrix profiles is 0.28 s and further evaluation of
the two twelve candidates selected takes 1.65 s. On the same machine, the brute force

…indor house Quidditch team ever since his first ye…
Harry had been on the Gryffindor House Quidditch te..

since his first year at Hogwarts and owned a Fire..
since his first year at Hogwarts and owned on..

ED = 2.9 

Closest Match 

0 100(1.6 seconds) 0 100

ED = 10.4

(1.6 seconds)

Furthest Match (Time Series Difference) 

Fig. 16 The2ndMFCCof snippets from theUSA(pink/bold) andUK(green/fine)HarryPotter audiobooks.
TheJAB join of the two longer sections in themain text producesmostly small values in theprofile correspond
to the same phrase (left), the largest value in the profile corresponds to a phrase unique to the USA edition
(right) (Color figure online)
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Fig. 17 (Top left) Two time series TA and TB formed by concatenating instances of class 1 and 0 respectively
of the ArrowHead dataset (Chen et al. 2015). (Bottom) The height difference between PAB (or PBA) and
PAA (or PBB) are suggestive of good shapelets. (Top right) An example of good shapelet extracted from
class 1

shapelet classifier takes 4min with 2364 candidates. Note that, in this toy demonstra-
tion, the speedup is 124×; however, for larger datasets, the speedup is much greater
(Supporting Page 2017).

5.5 Profile-based similarity self-join

In the previous section we showed how Matrix Profile-based similarity join can be
used to discover the relationship between multiple time series. Here we will show
the utility of Matrix Profile-based similarity self-join on the analysis of a single time
series in various aspects, including motif discovery, discord discovery and semantic
segmentation.

5.5.1 Profile-based motif discovery

Since their introduction in 2003, time series motifs have become one of the most
frequently used primitives in time series data mining, with applications in dozens of
domains (Begum and Keogh 2014). There are several proposed definitions for time
series motifs, but in Mueen et al. (2009) it is argued that if you can solve the most
basic variant, the closest (non-trivial) pair of subsequences, then all other variants
only require some minor additional calculations. Note that the locations of the two
(tying) minimum values of the matrix profile are exactly the locations of the closest
(non-trivial) motif pair.

The fastest known exact algorithm for computing time series motifs is the MK
algorithm (Mueen et al. 2009). Note, however, that this algorithm’s time performance
depends on the time series itself. In contrast, the Profile-Based Motif Discovery
(PBMD) takes time independent of the data. To see this, we compared the two
approaches on an electrocardiogram of length 65,536. In Fig. 18 left we ask what
happens as we search for longer and longer motifs. In Fig. 18 right we ask what
happens if the motif length is fixed to m = 512, but the data becomes increasing
noisy.
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Fig. 18 The time required to find the top-motif pairs in a time series of length 65,536 for increasingly long
motif lengths (left), and for a length fixed to 512, but in the face of increasing noise levels (right). The two
algorithms being compared are MK (Mueen et al. 2009), the current state-of-the-art, and STOMP (PBMD)
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Fig. 19 (Top) An excerpt from an ECG incorporating a premature ventricular contraction (red/bold).
(Bottom) The time series profile peaks exactly at the beginning of the PVC (Color figure online)

While PBMD is better able to take advantage of parallelism, for fairness we use a
single processor for both approaches.

These results show that even in the best case for MK, PBMD is competitive, but as
we have longer queries and/or noisier data, its advantage becomes unassailable. More-
over, PBMD inherits STOMP’s parallelizability and incremental computability. Given
these features, we expect PBMD to become the state-of-the-art for motif discovery.

5.5.2 Profile-based discord discovery

A time series discord is the subsequence that has the maximum distance to its nearest
neighbor. While this is a simple definition, time series discords are known to be
very competitive as novelty/anomaly detectors. For example, Vipin Kumar performed
an extensive empirical evaluation and noted that “on 19 different publicly available
data sets, comparing 9 different techniques (time series discords) is the best overall
technique” (Chandola et al. 2009).

Note that as shown in Fig. 19, the time series discord is encoded as the maximum
value in a matrix profile.

The time taken to compute the discord is obviously just the time needed to compute
the matrix profile (0.09 s in the above case).

A recent paper proposes to speed up discord discovery using Parallel Discord Dis-
covery (PDD), which “divides the discord discovery problem in a combinable manner
and solves its subproblems in parallel” (Huang et al. 2016). By using a Spark cluster
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consisting of 10 computing nodes, they can find the top discord in a dataset of length
1,000,000 in just 10.2 hours. However, using our single machine, STOMP takes us
4.5 hours (If we use GPU-STAMP we can further reduce this to 45min). Note that the
PDD algorithm is only finding the top discord, whereas our approach finds the exact
discord score for all 1,000,000 subsequences.

There are a few dozen other discord discovery algorithms in the literature (Huang
et al. 2016). Some of them may be competitive in the best case, but just like motif-
discovery algorithms they all degenerate to brute force search in the worst case.

Moreover, recently researchers have noted the utility of anytime algorithms for
finding outliers in truly massive data archives (Assent et al. 2012), and the utility of
supporting online algorithms for finding outliers in streaming data (Assent et al. 2012).
In both cases, researchers have created sophisticated indexing structures to support
these tasks (Assent et al. 2012; Seidl et al. 2009). However, because we can do discord
discovery using only the matrix profile, we automatically inherit the ability to do both
anytime and incremental outlier detection, essentially “for free”. For example, the
PDD framework can exploit multiple nodes to gain speedup, but it does not have any
kind of answer until the last instant (Huang et al. 2016). In contrast, in most datasets
STAMP has an approximate answer that can be viewed almost instantly. Likewise,
PDD is only defined as a batch algorithm, where as our algorithms can compute
discords incrementally. We show an example of this incremental computation ability
in the next section.

5.5.3 Incrementally maintaining motifs and discords

We have demonstrated the ability to detect time series motifs and discords using
the matrix profile in the previous two sections. However, we assumed that the entire
time series was available beforehand. Here we remove this assumption and show how
STOMPI allows us to incrementally maintain time series motifs and discords in an
online fashion. There are many attempts at one (Niennattrakul et al. 2010; Begum and
Keogh 2014) or both (Truong and Anh 2015) of these tasks in the literature, but they
are all approximate and allow false dismissals.

In Sect. 4.6, we introduced the STOMPI algorithm. The ability to incrementally
maintain the matrix profile implies the ability to exactlymaintain the time series motif
(Mueen et al. 2009) and/or time series discord (Chandola et al. 2009) in streaming
data.We simply need to keep track of the extreme values of the incrementally-growing
matrix profile, report a new pair of motifs when a newminimum value is detected, and
report a new discord when we see a new maximum value.

We demonstrate the utility of these ideas on the AMPds dataset (Makonin 2013).
While this is a real dataset, it lacks ground truth annotation so we slightly contrived
it such that we can check the plausibility of the outcomes. For simplicity, we assume
that the kitchen fridge and the heat pump are both plugged into a single metered
power supply. For the first week, only the refrigerator is running. At the end of the
week, the weather gets cold and the heat pump is turned on. The sampling rate is one
sample/minute, and the subsequence length is 100 (i.e. 1h and 40min). We apply the
STOMP algorithm to the first three days of data, then invoke the STOMPI algorithm

123



C.-C. M. Yeh et al.

0 5,000 10,000
0 100

new minimum value
new motif

Matrix Profile

Power Usage Data

Fig. 20 (Top) The matrix profile of the first 9864 min of data. (Bottom) The minimum value of the matrix
profile corresponds to a pair of time series motifs in the power usage data. (Right) The time series motif
detected (best viewed in color) (Color figure online)
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Fig. 21 (Top) The matrix profile for the first 10,473 min. (Bottom) The maximum value of the matrix
profile corresponds to a time series discord. (Right) The time series discord detected is the first heat pump
pattern occurrence in the dataset

to handle newly arriving data. Whenever we detect a new extreme value, we report an
event.

Our first event occurs at the 9864th minute (6day 20h 24min). As shown in Fig. 20,
a new minimum value is detected, which indicates a new time series motif. The just-
arrived 100-min-long pattern looks very similar to another pattern that occurred five
hours earlier. While there is a lot of regularity in the fridge data in general, the excep-
tional similarity observed here suggested some underlying physical mechanism that
caused such a perfectly-conserved pattern, perhaps a mechanical ice-making “subrou-
tine.”

Our second event occurs at the 10,473th minute (7day 6h 33min). As shown in
Fig. 21, a new maximum value is detected, which indicates a new time series discord.
The time series discord corresponds to the first occurrence of a heat pump pattern in
the power usage data.

The maximum time needed to process a single data point with STOMPI in this
dataset is 0.0003s, which is less than 0.004% of the data sampling rate. Thus, on this
dataset we could continue monitoring with the STOMPI algorithm for several decades
before running out of time or memory.

5.5.4 Profile-based semantic segmentation

The goal of time series semantic segmentation is to partition a dataset containing
multiple activities/regimes into atomic behaviors or conditions. For example, for
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0
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1 2 0

walking slow   walking slow  run           run run run

Number of arcs intersecting each point

Fig. 22 (Top) A (toy) time series (in red) and nearest neighbor locations for each subsequence. (Bottom)
The number of arcs crossing above each of the points of time series (Color figure online)

human activity data the regimes might later be mapped to {eating, working, com-
muting,...}(Zhou et al. 2008), whereas for sleep physiology the discovered regimes
might later be mapped to {REM, NREM, Unknown} 0As these examples suggest,
most work in this area is highly domain-dependent. In contrast, here we show
how the matrix profile index can be employed for domain agnostic time series
segmentation.

The intuition of our approach is as follows. Within a single regime we might expect
that most subsequences will have a nearest neighbor close by (in time). For example,
consider the toy problem shown in Fig. 22, which shows two obvious regimes. We
would expect that the nearest neighbor to the first run gait cycle is the second or third
or fourth run cycle, but it will almost certainly not be one of thewalk cycles. In general,
this tendency for nearest neighbor pointers not to cross the boundaries corresponding
to regime changes may be sufficient to discover these boundaries, and of course, this
is precisely the information that is encoded in the matrix profile index.

Thus, for each point we count how many “arcs” connecting two nearest neighbors
cross it if we connect each subsequence to its nearest neighbor as shown in Fig. 22.
The time complexity of this arc counting segmentation algorithm is O(n), which is
negligible compared to the O(n2) time complexity of STOMP.

For experimental evaluation, we applied the procedure described above to a heavily
studied activity segmentation problem (Zhou et al. 2008) derived from CMU Motion
Capture Database (2017). The recordings are represented as multi-dimensional time
series, and most research efforts carefully select the best subset for the segmentation
task. For example, Zhou et al. (2008) states that “we only consider the 14 most infor-
mative joints out of 29.” In contrast, we shall attempt to do this with a single dimension
and without any preprocessing of the time series (e.g., down sampling or smoothing).
The only parameter we need to set is sliding window size. We found the result is not
sensitive to the sliding window size as long as it is within the range of average gait
length, and we set it to be 200 points. In Fig. 23 we show the segmenting results
obtained using our approach. The total runtime for this matrix profile based segmen-
tation algorithm, including the time to run STOMP and to count the arcs, is 0.74 s.
The human annotations are taken Zhou et al. (2008) and placed here for comparison.

Much of the evaluation in this community lacks formal metrics, preferring instead
visual sanity tests like the one in Fig. 23. Given this, we can say that our approach is
very competitive on this dataset, in spite of the fact that we handicapped ourselves to
only consider one dimension.
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0 5,000 10,000

Matrix  Profile

Split Points   
Prediction

One-dimension of multi-d time series: Subject 86, recording 4, dimension 30

W S P N        W C T              D                 P            W

Fig. 23 (Top) A matrix profile (in blue) obtained for the time series (red) and number of arcs crossing
each point (green). Low values of this green curve correspond to candidate split points. (Bottom) Human
annotations of the activities: w walking, s stretching, p punching, c chopping, t turning, d drinking (Color
figure online)

O W     O NW       O R          O C O R      W      O       S       O

0 100,000 200,000

One-dimension of multi-d time series: Subject 2, dimension 6 (y-accelerometer on hand)

Matrix Profile

Split Points Prediction

Fig. 24 (Top) A matrix profile (in blue) obtained for the time series (red) and number of arcs crossing
each point (green). Low values of this green curve correspond to candidate split points. (Bottom) Human
annotations of the activities: w walking, nw Nordic walking, r running, c cycling, s playing soccer, o other
(Color figure online)

We conducted experiments on another activity dataset: PAMAP (Physical Activity
Monitoring for Aging People) (Reiss et al. 2011). Here the recordings aremuch longer,
in order of hundreds thousands of data points. Each of the recordings consists of 45
dimensions, and again we randomly picked just one of the dimensions containing
some representation of performed activity.We set the slidingwindow size to 1500. The
results are presented in Fig. 24. As the reader can clearly see, the ground truth human
annotations again correspond to the segmentation results provided by our algorithm.
Note, than the data here is weakly labeled which means the regions marked as “other
(transient activities)” may contain some variability within depending on what the
subject was doing during the break. The total runtime of our segmentation algorithm
for this recording of length 228,000 (38min of data sampled at 100Hz) took only
829.8 s (about 14min).

Moreover, because we make no domain-specific assumptions, the same algorithm
works well in other vastly different domains. Figure 25 shows the segmentation of a
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6,0000

Matrix  Profile

Split Points Prediction

A snippet of a PPG recording

Pulsus (Severe) Pulsus

Fig. 25 (Top) The m = 450 matrix profile (in blue) obtained for the time series (red) of PPG signal and
number of arcs crossing each point (green). (Bottom) Human annotations: severe pulsus and pulsus (Color
figure online)

Photoplethysmogram (PPG) signal, where our algorithm again agrees the annotation
kindly provided by noted Pulsus paradoxus expert, Dr. John Criley (UCLA School
of Medicine). The runtime for segmenting the PPG signal shown in Fig. 25 with our
approach is just 0.31 s, which is about two orders of magnitude faster than the data
recording time (25s of data recorded at 240Hz).

Finally, our algorithm as outlined above does have a potential weakness. Consider
a longer version of the times series shown in Fig. 25 that has a walk regime, followed
by a run regime, followed by another walk regime, etc. Here the nearest neighbor to a
walk subsequence could “jump” a walk regime to a distant walk subsequence. In fact,
this actually happens a little in Fig. 23, and we imposed a kind of temporal constrain
to mitigate this: in particular, we take into account only those nearest neighbors whose
distance is less or equal to the median of the nearest neighbor distances.

6 Conclusion

We have introduced a scalable algorithm for creating time series subsequences joins.
Moreover, we show that as a “side-effect” of computing all-pairs exact joins, we also
obtain the motifs and discords, which are important time series primitives (Chandola
et al. 2009; Hao et al. 2012).

Our algorithm is simple, fast, parallelizable and parameter-free, and can be incre-
mentally updated for moderately fast data arrival rates. For domains where massive
scalability is required, we have demonstrated that we can port our ideas to GPUs and
avail of hardware to gain further speedups or push the computation into the cloud. We
have shown that our algorithm has implications for many existing tasks, such as motif
discovery, discord discovery, shapelet discovery and semantic segmentation, and may
open up new avenues for research, including computing various definitions of time
series set difference, a contrast set-like operation. Our code, includingMATLAB inter-
active tools, a C++ version, and the GPU version, are freely available for community
to confirm, extend and exploit our ideas.

There are many avenues for future work, and we suspect that the research commu-
nity will find many uses for, and properties of, the matrix profile that did not occur to
us.
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Appendix: On the unpredictable time needed for state-of-the-art
algorithms

In Section 4.8 we made some unintuitive observations about all known rival motif
discovery/time series join algorithms. In essence, by making the problem apparently
slightly easier, by either reducing the dimensionality or time series length, the time
needed canget actuallymuchworse (andvice versa).Herewe sketchout an explanation
for this fact.

The key observation is that these algorithms all use some form of pruning. The
utility of pruning depends on two things; the distance between the discovered motifs
(relative to all pairwise distances), and how quickly the algorithm can find these best
motifs (or some good best-so-far motif) to enable the pruning strategy to extract the
most benefit. Note that the former factor is a property of the data, not the algorithm.

Imagine we construct a dataset of length 100,000, and search for motifs of length
100. If our data is just random numbers, this is the worst case for both Li et al. (2015)
and Mueen et al. (2009), as the intrinsic dimensionality is the same as the actual
dimensionality. In MATLAB, we could create such a dataset with:

>> data1 = [rand(100000,1)];

As this is the worst case for Li et al. (2015) and Mueen et al. (2009), both degenerate
to brute force search and will take several hours to finish. Naturally the “motif” they
discover will only be slightly closer than any randomly chosen pair of subsequences.

Now let us create a near identical dataset, but one which has a critical difference,
this dataset has a perfect motif embedded at the beginning and at the end of the time
series:

>> pattern = rand(100,1);
>> data2 = [pattern;rand(99800,1);pattern];

If we run motif discovery on this dataset, both Li et al. (2015) and Mueen et al. (2009)
terminate much faster, in just seconds. This is because both will find the embedded
motif early on, and this will allow very aggressive pruning.

Finally, suppose we consider a new dataset, which is simply data2 with the last
point truncated:

>> data3 = data2(1 : end − 1);

It is clear that although this dataset is very slightly smaller than data2, the time
needed by either Li et al. (2015) or Mueen et al. (2009) will return to the many hours
needed for than data1. This is because the best motif in data3 will once again
be a time series pair that is only be slightly closer than any randomly chosen pair of
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subsequences, and the pruning will thus be ineffective. By similar reasoning we can
construct the two other cases noted in Section 4.8.

Finally, we note that although the examples above are contrived and “worst case”, in
practice both Li et al. (2015) andMueen et al. (2009) do vary greatly in the time require
to terminate, on real datasets that appear essentially identical to human inspection.
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